PSIT401: Blockchain

M. Sc (Information Technology)		Semester – IV		
Course Name: Blockchain		Course C	ode: PSIT401	
Periods per week (1 Period is 60 minutes)		4		
Credits		4		
		Hours	Marks	
Evaluation System	Theory Examination	21/2	60	
	Internal		40	

- To provide conceptual understanding of the function of Blockchain as a method of securing distributed ledgers, how consensus on their contents is achieved, and the new applications that they enable.
- To cover the technological underpinnings of blockchain operations as distributed data structures and decision-making systems, their functionality and different architecture types.
- To provide a critical evaluation of existing "smart contract" capabilities and platforms, and examine their future directions, opportunities, risks and challenges.

Blockchain: Introduction, History, Centralised versus	Unit	Lectures Outcon	Details	Outcome
Decentralised systems, Layers of blockchain, Importance of blockchain, Blockchain uses and use cases. Working of Blockchain: Blockchain foundation, Cryptography, Game Theory, Computer Science I Engineering, Properties of blockchain solutions, blockchain transactions, distributed consensus mechanisms, Blockchain mechanisms, Scaling blockchain 12 CO: Working of Bitcoin: Money, Bitcoin, Bitcoin blockchain, bitcoin network, bitcoin scripts, Full Nodes and SVPs, Bitcoin wallets. 12	I	12 CO1	Blockchain: Introduction, History, Centralised versus Decentralised systems, Layers of blockchain, Importance of blockchain, Blockchain uses and use cases. Working of Blockchain: Blockchain foundation, Cryptography, Game Theory, Computer Science Engineering, Properties of blockchain solutions, blockchain transactions, distributed consensus mechanisms, Blockchain mechanisms, Scaling blockchain Working of Bitcoin: Money, Bitcoin, Bitcoin blockchain, bitcoin network, bitcoin scripts, Full Nodes and SVPs, Bitcoin wallets.	C01

	Ethereum: three parts of blockchain, Ether as currency			
п	and commodity, Building trustless systems, Smart	12	CO2	
	contracts, Ethereum Virtual Machine, The Mist			

	browser Wallets as a Computing Metaphor. The Bank			1
	Teller Metaphor Breaking with Banking History How			
	Encryption Leads to Trust System Requirements			
	Using Parity with Geth Anonymity in Cryptocurrency			
	Central Bank Network Virtual Machines FVM			
	Applications State Machines Guts of the FVM			
	Blocks Mining's Place in the State Transition			
	Function Renting Time on the FVM Gas Working			
	with Gas Accounts Transactions and Messages			
	Transactions and Messages Estimating Gas Fees for			
	Operations Opcodes in the EVM			
	Solidity Programming: Introduction Global Banking			
	Made Real Complementary Currency Programming			
	the EVM Design Rationale Importance of Formal			
	Proofs Automated Proofs Testing Formatting Solidity			
	Files Reading Code Statements and Expressions in			
	Solidity Value Types Global Special Variables Units			
	and Functions			
I		l		ł
	Hyperledger: Overview, Fabric, composer, installing			
	hyperledger fabric and composer, deploying, running			
	the network error troubleshooting.			
	Smart Contracts and Tokens: EVM as Back End			
ш	Assets Backed by Anything Cryptocurrency Is a	12	CO3	
	Measure of Time, Function of Collectibles in Human			
	Systems, Platforms for High-Value Digital Collectibles.			
	Tokens as Category of Smart Contract, Creating a			
	Token, Deploying the Contract, Playing with Contracts.			
	Mining Ether: Why? Ether's Source, Defining Mining,			1
	Difficulty, Self-Regulation, and the Race for Profit,			
	How Proof of Work Helps Regulate Block Time, DAG			
	and Nonce, Faster Blocks, Stale Blocks, Difficulties,			
	Ancestry of Blocks and Transactions, Ethereum and			
	Bitcoin, Forking, Mining, Geth on Windows, Executing			
IV	Commands in the EVM via the Geth Console,	12	CO4	
	Launching Geth with Flags, Mining on the Testnet,			
	GPU Mining Rigs, Mining on a Pool with Multiple			
	GPUs.			
	Cryptoecnomics: Introduction, Usefulness of			
	cryptoeconomics, Speed of blocks, Ether Issuance			
	scheme, Common Attack Scenarios.			l
	Blockchain Application Development: Decentralized			
	Applications, Blockchain Application Development,			
	Interacting with the Bitcoin Blockchain, Interacting			
	Programmatically with Ethereum-Sending			
v	Transactions, Creating a Smart Contract, Executing	12	C05	
	Smart Contract Functions, Public vs. Private	12	005	
	Blockchains, Decentralized Application Architecture,			
	Building an Ethereum DApp: The DApp, Setting Up			
	a Private Ethereum Network, Creating the Smart			
	Contract, Deploying the Smart Contract, Client]

Application, DApp deployment: Seven Ways to Think	
About Smart Contracts, Dapp Contract Data Models,	
EVM back-end and front-end communication, JSON-	
RPC, Web 3, JavaScript API, Using Meteor with the	
EVM. Executing Contracts in the Console.	
Recommendations for Prototyping, Third-Party	
Deployment Libraries, Creating Private Chains,	

Books at	Books and References:					
Sr. No.	Title	Author/s	Publisher	Edition	Year	
1.	Beginning Blockchain	Bikramaditya	Apress		2018	
	A Beginner's Guide to	Singhal,				
	Building Blockchain	Gautam Dhameja,				
	Solutions	Priyansu Sekhar				
		Panda				
2.	Introducing Ethereum and	Chris Dannen	Apress		2017	
	Solidity					
3.	The Blockchain	Elad Elrom	Apress		2019	
	Developer					
4.	Mastering Ethereum	Andreas M.	O'Reilly	First	2018	
		Antonopoulos				
		Dr. Gavin Wood				
5.	Blockchain Enabled	Vikram Dhillon	Apress		2017	
	Applications	David Metcalf				
		Max Hooper				

PSIT403a: Deep Learning

M. Sc (Information Technology)		Semest	er – IV	
Course Name: Deep Learning		Course C	Course Code: PSIT403a	
Periods per week (1 Period is 6	0 minutes)		4	
Credits			4	
		Hours	Marks	
Evaluation System	Theory Examination	21/2	60	
	Internal		40	

- To present the mathematical, statistical and computational challenges of building neural networks
- To study the concepts of deep learning
- To enable the students to know deep learning techniques to support real-time applications

Unit	Details	Lectures	Outcome
Ι	Applied Math and Machine Learning Basics: Linear Algebra: Scalars, Vectors, Matrices and Tensors, Multiplying Matrices and Vectors, Identity and Inverse Matrices, Linear Dependence and Span, norms, special matrices and vectors, eigen decompositions. Numerical Computation: Overflow and under flow, poor conditioning, Gradient Based Optimization, Constraint optimization.	12	CO1
Π	Deep Networks: Deep feedforward network , regularization for deep learning , Optimization for Training deep models	12	CO2
Ш	Convolutional Networks, Sequence Modelling, Applications	12	CO3
IV	Deep Learning Research: Linear Factor Models, Autoencoders, representation learning	12	CO4
V	Approximate Inference, Deep Generative Models	12	CO5

Books an	nd References:				
Sr. No.	Title	Author/s	Publisher	Edition	Year

1.	Deep Learning	Ian Goodfellow,	An MIT	1st	2016
		Yoshua Bengio,	Press		
		Aaron Courvile	book		
2.	Fundamentals of Deep Learning	Nikhil Buduma	O'Reilly	1st	2017
3.	Deep Learning: Methods and Applications	Deng & Yu	Now Publishers	1st	2013
4.	Deep Learning CookBook	Douwe Osinga	O'Reilly	1st	2017

M. Sc (Information Technology)		Semester – IV		
Course Name: Deep Learning Practical		Course Code: PSIT4P3a		
Periods per week (1 Period is 60 minutes)		4		
Credits		2		
		Hours	Marks	
Evaluation SystemPractical Examination		2	50	
	Internal		-	

List of Practical:

10 practicals covering the entire syllabus must be performed. The detailed list of practical will be circulated later in the official workshop.

Course Outcomes:

After completion of the course, a student should be able to:

CO1: Describes basics of mathematical foundation that will help the learner to understandthe concepts of Deep Learning.

CO2: Understand and describe model of deep learning

CO3: Design and implement various deep supervised learning architectures for text & imagedata.

CO4: Design and implement various deep learning models and architectures.

CO5: Apply various deep learning techniques to design efficient algorithms for real-worldapplications.

PSIT404c: Storage as a Service

M. Sc (Information Technology)		Semest	er – IV
Course Name: Storage as a Service		Course Code: PSIT404c	
Periods per week (1 Period is 60	minutes)		4
Credits			4
		Hours	Marks
Evaluation System	Theory Examination	$2^{1/2}$	60
	Internal		40

- Understand the need for Storage Area Network and Data protection to satisfy the information explosion requirements.
- Study storage technologies: SAN, NAS, IP storage etc., which will bridge the gap between the emerging trends in industry and academics.
- To get an insight of Storage area network architecture, protocols and its infrastructure.
- To study and discuss the applications of SAN to fulfill the needs of the storage management in the heterogeneous environment.
- Study and understand the management of Storage Networks
- To understand different techniques of managing store.

Unit	Details	Lectures	Outcome
I	Introduction to Information Storage Information Storage Data Types of Data Big Data Information Storage Evolution of Storage Architecture Data Center Infrastructure Core Elements of a Data Center Key Characteristics of a Data Center Managing a Data Center Virtualization and Cloud Computing Data Center Environment Application Database Management System (DBMS) Host (Compute) Operating System	12	CO1

	Memory Virtualization Device Driver 20 Volume Manager File System Compute Virtualization Connectivity Physical Components of Connectivity Interface Protocols IDE/ATA and Serial ATA 28 SCSI and Serial SCSI Fiber Channel		
	Internet Protocol (IP) Storage Disk Drive Components Platter Spindle Read/Write Head Actuator Arm Assembly Drive Controller Board Physical Disk Structure Zoned Bit Recording Logical Block Addressing Disk Drive Performance Disk Service Time Seek Time Rotational Latency Data Transfer Rate Disk I/O Controller Utilization Host Access to Data Direct-Attached Storage DAS Benefit and Limitations Storage Design Based on Application Requirements and Disk Performance Disk NativeCommand Queuing Introduction to Flash Drives Components and Architecture of Flash Drives Features of Enterprise Flash Drives Concept in Practice: VMware ESXi Data Protection: RAID RAID Implementation Methods Software RAID		
	Hardware RAID Array Components RAID Techniques Striping Mirroring Parity RAID Levels RAID 0 RAID 1 Nested RAID RAID 3 RAID 4 RAID 5 RAID 6 RAID Impact on Disk Performance Application IOPS and RAID Configurations RAID Comparison Hot Spares		
Π	Intelligent Storage Systems Components of an Intelligent Storage System Front End Cache Structure of Cache Read Operation with Cache Write Operation with Cache Implementation Cache Management Cache Data Protection Back End Physical Disk Storage Provisioning Traditional Storage Provisioning LUN Expansion: MetaLUN Virtual Storage Provisioning 82 Comparison between Virtual and Traditional Storage Provisioning Use Cases for Thin and Traditional LUNs LUN Masking Types of Intelligent Storage Systems High-End Storage Systems Midrange Storage Systems Fiber Channel Storage Area Networks Fiber Channel: Overview The SAN and Its Evolution Components of FC SAN Node Ports Cables and Connectors Contents Interconnect Devices SAN Management Software FC Connectivity Point-to-Point Fiber Channel Arbitrated Loop Fiber Channel Switched Fabric FC-SW Transmission Switched Fabric Ports Fiber Channel Architecture Fiber Channel Protocol Stack	12	CO2

	FC-4 Layer FC-2 Layer FC-1 Layer FC-0 Layer Fiber		
	Channel Addressing World Wide Names FC Frame		
	110. Structure and Organization of FC Data Flow		
	Control		
	BB Credit EE Credit Classes of Service		
	Fabric Services Switched Fabric Login Types Zoning		
	Types of Zoning FC SAN Topologies Mesh Topology		
	Core-Edge Fabric Benefits and Limitations of Core-		
	Edge Fabric Virtualization in SAN Block-level Storage		
	Virtualization Virtual SAN (VSAN)		
	IP SAN and FCoF iSCSI Components of iSCSI iSCSI		
	Host Connectivity iSCSI Topologies Native iSCSI		
	Connectivity		
	Bridged iSCSI Connectivity Combining FC and Native		
	isCSI Connectivity isCSI Protocol Stack isCSI PDU 6		
	iscsi Discovery iscsi Names iscsi Session iscsi		
	Command Sequencing ECIP ECIP Protocol Stack ECIP		
	Topology ECIP Performance and Security ECOE I/O		
	Consolidation Using ECoE Components of an ECoE		
	Network		
	Converged Network Adapter Cables		
	ECoF Switches ECoF Frame Structure		
	FCoE Frame Manning FCoE Enabling Technologies		
	Priority-Based Flow Control (PEC) Enhanced		
	Transmission Selection (FTS		
	Congestion Notification (CN)		
	Data Center Bridging Exchange Protocol (DCBX) 1		
	Natwork-Attached Storage General-Purpose Servers		
	versus $N\Delta S$ Devices		
	Benefits of NAS File Systems and Network File		
	Sharing Accessing a File Systems and Retwork The		
	Network File Sharing Components of NAS		
	NAS I/O Operation NAS Implementations		
	Unifi ed NAS Unifi ed NAS Connectivity 164		
	Gateway NAS Gateway NAS Connectivity		
	Scale-Out NAS Scale-Out NAS Connectivity		
	NAS File-Sharing Protocols NFS CIFS		
	Factors Affecting NAS Performance File-Level		
Ш	Virtualization	12	CO3
	Object-Based and Unified Storage		
	Object-Based Storage Devices Object-Based Storage		
	Architecture Components of OSD Object Storage and		
	Retrieval in OSD		
	Benefits of Object-Based Storage		
	Common Use Cases for Object-Based Storage Content-		
	Addressed Storage CAS Use Cases		
	Healthcare Solution: Storing Patient Studies		
	Finance Solution: Storing Financial Records Unified		
	Storage Components of Unifi ed Storage Data Access		
	from Unified Storage		

	Introduction to Business Continuity		
	Information Availability		
	Causes of Information Unavailability		
	Consequences of Downtime		
	Measuring Information Availability		
	BC Terminology BC Planning Life Cycle		
	Failure Analysis Single Point of Failure		
	Resolving Single Points of Failure Multipathing		
	Software Dusiness Impact Analysis PC Technology		
	Solutions		
	V/O Operation without DowerDath I/O Operation with		
	1/O Operation without PowerPath 1/O Operation with DowerPath Automatic Dath Eailoyer Dath Eailor without		
	PowerPath Automatic Path Fahover Path Fahure without		
	Path Fallover with PowerPath: Active-Active Array		
	Path Failover with PowerPath: Active-Passive Array		
	Backup and Archive		
	Backup Purpose Disaster Recovery Operational		
	Recovery Archival Backup Considerations Backup		
	Granularity Recovery Considerations Backup Methods		
	6 Backup Architecture Backup and Restore Operations		
	Backup Topologies Backup in NAS Environments		
	Server-Based and Serverless Backup NDMP-Based		
	Backup		
	Backup Targets Backup to Tape Physical Tape Library		
	Limitations of Tape 2 Backup to Disk Backup to Virtual		
	Tape Virtual Tape Library Data Deduplication for		
	Backup Data Deduplication Methods DataDeduplication		
	Implementation Source-Based Data Deduplication		
	Target-Based Data DeduplicationBackup in Virtualized		
	Environments Data Archive Archiving Solution		
	Architecture Use Case: E-mail Archiving Use Case: File		
	Archiving		
	Local Replication Replication Terminology Uses of		
	Local Replicas Replica Consistency Consistency of a		
	Replicated File System		
	Consistency of a Replicated Database		
	Local Replication Technologies		
	Host-Based Local Replication		
	LVM-Based Replication Advantages of LVM-Based		
	Replication Limitations of LVM-Based Replication File		
	System Snapshot		
IV	Storage Array-Based Local Replication	12	CO4
	Full-Volume Mirroring Pointer-Based Full-Volume		
	Replication Pointer-Based Virtual Replication Network-		
	Based Local Replication		
	Continuous Data Protection CDP Local Replication		
	Operation Tracking Changes to Source and Replica		
	Restore and Restart Considerations Creating Multiple		
	Renlicas		
	Local Replication in a Virtualized Environment Remote		
	2. consequences in a viscalized Division internet remote		

	Replication Modes of Remote Replication Remote Replication Technologies Host-Based Remote		
	Replication LVM-Based Remote Replication Host-		
	Based Log Shipping Storage Array-Based Remote		
	Replication Synchronous Replication Mode		
	Asynchronous Replication Mode Disk-Buffered		
	Replication Mode Network-Based Remote Replication		
	CDP Remote Replication		
	Three-Site Replication Three-Site Replication —		
	Cascade/Multihon Synchronous + Asynchronous		
	Synchronous + Disk Ruffered		
	Three-Site Replication — Triangle/Multitarget Data		
	Migration Solutions Remote Replication and Migration		
	in aVirtualized Environment		
	Cloud Computing Cloud Enabling Technologies		
	Characteristics of Cloud Computing Benefits of Cloud		
	Computing		
	Cloud Service Models Infrastructure-as-a-Service		
	Platform-as-a-Service Software-as-a-Service Cloud		
	Denloyment Models		
	Public Cloud Private Cloud Community Cloud Hybrid		
	Cloud Cloud Computing Infrastructure Physical		
	Infrastructure Virtual Infrastructure Applications and		
	Platform Software Cloud Management and Service		
	Creation Tools Cloud Challenges		
	Challenges for Consumers Challenges for Providers		
	Cloud Adoption Considerations		
	Securing the Storage Infrastructure		
	Information Security Framework Risk Triad		
	Assets Threats Vulnerability Storage Security Domains		
	Securing the Application Access Domain Controlling		
	User Access to Data Protecting the Storage		
	Infrastructure 341		
	Data Encryption Securing the Management Access		
	Domain Controlling Administrative Access Protecting		
	the Management Infrastructure Securing Backup,		
	Replication, and Archive Security Implementations in		
	Storage Networking FC SAN FC SAN Security		
V	Architecture Basic SAN Security Mechanisms LUN	12	CO5
	Masking and Zoning		
	Securing Switch Ports Switch-Wide and Fabric-Wide		
	Access Control		
	Logical Partitioning of a Fabric: Virtual SAN		
	NAS NAS File Sharing: Windows ACLs		
	NAS File Sharing: UNIX Permissions		
	NAS File Sharing: Authentication and Authorization		
	Kerberos Network-Layer Firewalls IP SAN Securing		
	Storage Infrastructure in Virtualized and Cloud		
	Environments Security Concerns		
	Security Measures Security at the Compute Level		

Security at the Network Level Security at the Storage	
Level Concepts in Practice: RSA and VMware Security	
Products RSA Secure ID RSA Identity and Access	
Management	
RSA Data Protection Manager VMware vShield	
Managing the Storage Infrastructure	
Monitoring the Storage Infrastructure	
Monitoring Parameters Components Monitored Hosts	
Storage Network Storage	
Monitoring Examples Accessibility Monitoring	
Capacity Monitoring Performance Monitoring Security	
Monitoring Alerts	
Storage Infrastructure Management Activities	
Availability Management Capacity Management	
Performance Management Security Management	
Reporting Storage Infrastructure Management in a	
Virtualized Environment Storage Management	
Examples	
Storage Allocation to a New Server/Host	
File System Space Management Chargeback Report	
Storage Infrastructure Management Challenges	
Developing an Ideal Solution 384Storage Management	
Initiative Enterprise Management Platform Information	
Lifecycle Management Storage Tiering Intra-Array	
Storage Tiering Inter-Array Storage Tiering	

Books and References:

books and References.						
Sr. No.	Title	Author/s	Publisher	Edition	Year	
1.	Information Storage and	EMC	John	2^{nd}	2012	
	Management: Storing,		Wiley &			
	Managing, and Protecting		Sons			
	Digital Information in					
	Classic, Virtualized, and					
	Cloud Environments					

Course Outcomes:

After completion of the course, a student should be able to:

CO1: Understand different techniques of storage and RAID Technologies

CO2: Understand different intelligent storage technologies. Also, understand the benefits of Fibre Channel Storage Networks along with iSCSI.

CO3: Understand the architecture of NAS and deployment along with Object based and unified storage technologies. Also, the learner will be able to configure the storage devices to maintain highest level of availability

CO4: Understand Replication and Migration techniques and implement them.

CO5: Understand Different techniques for managing and securing storage infrastructure

PSIT402d: Cyber Forensics

M. Sc (Information Technology) Semester -			er – IV
Course Name: Cyber Forensics Course Code: PSIT		ode: PSIT402d	
Periods per week (1 Period	is 60 minutes)	4	
Credits		4	
			Marks
Evaluation System	Theory Examination	21/2 60	
	Internal		40

- Explain laws relevant to computer forensics
 Seize digital evidence from pc systems
 Recover data to be used as evidence
 Analyse data and reconstruct events
 Explain how data may be concealed or hidden

Unit	Details	Lectures	Outcome
I	Computer Forensics: The present Scenario, The Investigation Process, Computers – Searching and Seizing, Electronic Evidence, Procedures to be followed by the first responder.	12	C01
п	Setting up a lab for Computer Forensics, Hard Disks and File Systems, Forensics on Windows Machine, Acquire and Duplicate Data	12	CO2
Ш	Recovery of deleted files and partitions, Using Access Data FTK and Encase for forensics Investigation, Forensic analysis of Steganography and Image files, Cracking Application passwords.	12	CO3
IV	Capturing logs and correlating to the events, Network Forensics – Investigating logs and Network traffic, Investigating Wireless and Web Attacks.	12	CO4
v	Email Tracking and Email Crime investigation. Mobile Forensics, Reports of Investigation, Become an expert witness.	12	CO5

Books and References:						
Sr. No.	Title	Author/s	Publisher	Edition	Year	
1.	EC-Council CHFIv10 Study Guide		EC-Council		2018	
2.	The official CHFI Exam 312-49 study Guide	Dave Kleiman	SYNGRESS		2007	
3.	Digital Forensics and Incident Response	Gerard Johansen	Packt Publishing		2020	
4.	Practical Cyber Forensics	Niranjan Reddy	Apress		2019	

M. Sc (Information Tecl	Semester – IV		
Course Name: Cyber Forensics	Course Code: PSIT4P2d		
Periods per week (1 Period is 60	4		
Credits	2		
			Marks
Evaluation System Practical Examination		2	50
	Internal		-

List of Practical:

10 practicals covering the entire syllabus must be performed. The detailed list of practical will be circulated later in the official workshop.

Course Outcomes:

After completion of the course, a student should be able to:

CO1: Investigate the cyber forensics with standard operating procedures.

CO2: Recover the data from the hard disk with legal procedure.

CO3: To recover and analyse the data using forensics tool

44 4 60 / 104

lk K TE 🗆