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SYLLABUS

Course Outcomes

1. Students will learn Dihedral groups, Matrix groups, Automorphism group, Inner
automorphisms, Structure theorem for finite abelain groups via examples.

2. Students will be able to understand group actions and orbit-stabilizer formula;
Sylow theorems and applications to classification of groups of small order.

3. Students will be able to earn knowledge of prime avoidance theorem, Chinese re-
mainder theorem, and specialized rings like Euclidean domains, principal ideal do-
mains, unique factorization domains, their inclusions and counter examples.

Unit I. Groups and Group Homomorphisms (15 Lectures)

Review: Groups, subgroups, normal subgroups, center Z(G) of a group. The kernel of a
homomorphism is a normal subgroup. Cyclic groups. Lagrange’s theorem. The product
set HK = {hk/h € H & € K} of two subgroups of a group G: Examples of groups such
as Permutation groups, Dihedral groups, Matrix groups, U,-the group of units of Z, (no
questions be asked).

Quotient groups. First Isomorphism Theorem and the following two applications (refer-
ence: Algebra by Michael Artin)

1. Let C* be the multiplicative group of non-zero complex numbers and R > 0 be
the multiplicative group of positive real numbers. Then the quotient group C*/U
is isomorphic to R > 0:

2. The quotient group GL,(R)/SLn(R) is isomorphic to the multiplicative group of
non-zero real numbers R*:

Second and third isomorphism theorems for groups, applications.

Product of groups. The group Z,, X Z,, is isomorphic to Z,,, if and only if gcd(m,n) = 1.
Internal direct product (A group G is an internal direct product of two normal subgroups
H, K if G = HK and every g € GG can be written as ¢ = hk where h € H;k € K in a
unique way). If H, K are two finite subgroups of a group, then |HK| = % If H K
are two normal subgroups of a group G such that H N K = {e} and HK = G, then
G is internal direct product of H and K. If a group G is an internal direct product of
two normal subgroups H and K then G is isomorphic to H x K. (Reference: Algebra by
Michael Artin) Inner automorphisms, Automorphisms of a group. If G is a group, then
A(G); the set of all automorphisms of G, is a group under composition. If G is a finite
cyclic group of order 7; then A(G) is isomorphic to U,; the groups of all units of Z, under
multiplication modulo r. For the infinite cyclic group Z; A(Z) is isomorphic to Z,. Inner
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automorphisms of a group. (Reference: Topics in Algebra by I.N.Herstein). Structure
theorem of Abelian groups (statement only) and applications (Reference: A first Course
in Abstract Algebra by J. B. Fraleigh).

Unit II. Groups acting on sets and Sylow theorems
Center of a group, centralizer or normalizer N(a) of an element a € G; conjugacy class

C(a) of @ in G: In finite group G; |C(a)| = o(G)/o(N(a) and o(G) = > o(G)/o(N(a)
where the summation is over one element in each conjugacy class, applications such as:

1. If G is a group of order p™ where p is a prime number, then Z(G) # {e}:

2. Any group of order p?; where p is a prime number, is Abelian. (Reference: Topics
in Algebra by I. N. Herstein).

Groups acting on sets, Class equation, Cauchy’s theorem: If p is a positive prime number
and plo(G) where G is finite group, then G has an element of order p. (Reference: Topics
in Algebra by I. N. Herstein). p-groups, Sylow theorems and applications:

1. There are exactly two isomorphism classes of groups of order 6:
2. Any group of order 15 is cyclic

(Reference for Sylow’s theorems and applications: Algebra by Michael Artin).

Unit ITI. Rings and Fields (15 lectures)

Review: Rings (with unity), ideals, quotient rings, prime ideals, maximal ideals, ring ho-
momorphisms, characteristic of a ring, first and second Isomorphism theorems for rings,
correspondence theorem for rings (If f : R — R’ is a surjective ring homomorphism, then
there is a 1 —1 correspondence between the ideals of R containing the ker f and the ideals
of R'). Integral domains, construction of the quotient field of an integral domain. (no
questions be asked).

For a commutative ring R with unity:
1. Anideal M of R is a maximal ideal if and only if the quotient ring R/M is a field.

2. Anideal N of R is a prime ideal if and only if the quotient ring R/M is an integral
domain.

3. Every maximal ideal is a prime ideal.

4. Every proper ideal is contained in a maximal ideal.

5. If an ideal [ is contained in union of prime ideals P;, P, - - - , P,,, then [ is contained
in some P;.
6. If a prime ideal P contains an intersection of ideals I;, I5,--- , I,,, then P contains

some ideal [;.




Rings of fractions, inverse and direct imges of ideals, Comaximal ideals, Chinese Remain-
der Theorem in rings and its applications to congruences.

Definition of field, characteristic of a field, sub field of a field. A field contains a sub
field isomorphic to Z, or Q:

Polynomial ring F[X] over a field, irreducible polynomials over a field. Prime ideals,
and maximal ideals of a Polynomial ring F[X] over a field F:: A non-constant polynomial
p(X) is irreducible in a polynomial ring F[X] over a field F' if and only if the ideal (p(X))
is a maximal ideal of F'[X]: Unique Factorization Theorem for polynomials over a field
(statement only).

Unit IV. Divisibility in integral domains (15 lectures)

Prime elements, irreducible elements, Unique Factorization Domains, Principle Ideal Do-
mains, Gauss’s lemma, Z[X] is a UFD, irreducibility criterion, Eisenstein’s criterion,
Euclidean domains. Z[y/=5] is not a UFD.

Reference for Unit IV: Michael Artin: Algebra, Prentice-Hall India.

Recommended Text Books
1. Michael Artin: Algebra, Prentice-Hall India.
2. LLN. Herstein: Topics in Algebra, Wiley-India.

3. R.B.J.T. Allenby: Rings, fields and Groups, An Introduction to Abstract Algebra,
Elsevier (Indian edition).

4. J. B. Fraleigh, A first Course in Abstract Algebra, Narosa.

5. David Dummit, Richard Foot: Abstract Algebra, Wiley-India.

Vi



UNIT 1

INTRODUCTION TO GROUPS

Unit Structure

1.0 Objectives

1.1 Prerequisites

1.2 Groups

1.3 Subgroups

1.4 Cyclic Groups and Cyclic Subgroups.
1.5 Order of an Element In Group

1.6 Permutation Group

1.7 Lagrange Theorem

1.8 Summary

1.9 Unit and Exercises

1.0 Objectives

After going through this unit you shall come to know about
e The algebraic structure called groups with its basic properties

e The concept of subgroups and types of groups

e The notion of the order and its relation with the order of the groups

We assume that a student has basic knowledge of set theory and is familiar with

U,MN,... etc. We are giving some basic concepts, which a student should go

through quickly.
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1.1 Prerequisites

SETS : The cardinality of a set A is denoted by‘ A ‘ If A and B are sets, the
cartesian product of A and B is defined as, A X B = {(a, b)/a €A, be B}.

If (a,b),(a',b') € A€ B, then (a, b) = (a’,b') Sa=a',b=>b'
Notations for sets which we shall frequently deal with.

1) N = Set of natural numbers= {1, 2,3,... }

2) Z =Setofintegers= {0,4+1,+2,£3,%+4,... }

3) Q = Set of rational numbers = {ﬂ ‘m,n€EZ, n= 0}
m

4) R =Set of real numbers

5) C =Set of Complex numbers = {a +ib:a,be R}

FUNCTIONS :
If A, B are non-empty sets, a function f from A to B (denoted by

f:A— B or A—L B ) is a subset of 4 X B satisfying the following.

For each a € A, 4 unique b € B such that (a,b) € f. This is denoted by
f (a) =b.The set A is called the domain of f and B is called the codomain of f.

The function f is often specified by a rule,(such as f (x) = x? ). When a function

f is not specified an elements of the domain, it is importaut to check that f is well-
defined.

Forf:A — B, the set f(A)= {b €B/b=f(a) for some a€ A} is called the

range of f or image of A under f.
If f:A— B and g:B — C then the composite map go f: 4 — C is denoted
by go f(a)=g(/(a)).

Note:If f:A— B, g:B—C, h:C — D then

ho(go f) =(hog)of
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Letf:A— B

1) fis said to be injective (or one-one)
If f(al):f<a2):>al =a, foreach a;,a, € 4

2) f is said to be Surjective (or onto) if for each b€ B, 4 an a € A such that
fla)=bic. f(4)=B.

3) fis said to be bijective (or a bijection if f is both injective and surjective.

4) f:A— B issaidto invertible if there exists g : B — A suchthat go f =id ,
(identity map on A) and f o g =idy (identity map on B).

We state some importaut results without proof.

Proposition: Let f: 4 — B

1) fis bijective if and only if f is invertible.

2) If A and B are finite sets and‘ A ‘ :‘ B ‘ Then f is bijective if and only

if fis injective if and only if f is surjective.
If f:A—B andCCA, then f/C:C—B(C=0) is defined by
f/A(c) = f(c) A ¢ € C and fis called the restriction of f.

Let A be a non-empty set. A relation R on A is a subset of A X A. We shall
write aRb if (a, b) €ER.

DEFINITIONS:

Definition: Let R be a relation on a non-empty set A, Then, R is said to be
1) Reflexive if aRa~ a€ A

2) Symmetric if aRb = bRa ~ a,b € A

3) Transitive if aRb, bRc = aRc ~+ a,b,c € A

Definition: 1) A relation R on a non-empty set A is called an equivalence relation
if R is reflexive, symmetric and transitive.

2) If R is an equivalence relation on A, then equivalence class of a € A is defined

to be[ a ] = {x €A: xRa}. ‘a’ is called a representative of the class [ a ] .

Note: The notion of equivalence relation is very importaut in Algebra.
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Definition: Let A be a non-empty set. A portion of A is a collection {Al. }l_e ; of
non-empty subsets of A such that

@ Uda=4 d) 4N4,=0 fori,jel, i=j

i€l
The notion of partition and equivalence relation on a set A are same.
We state the result without proof.
Proposition: Let A be a non-empty set.

1) Let R be an equivalence relation on A. then, the set of (distinct) equivalence
classes of a form a partition of A.

(We note that a€A=>a€[a]
o AC U {a} U [a|CA ('.'[a]CA)
acA acA
Also,if [a]=]b], then [a |N[b]=o
2)If {Ai }iel is a partition of A, then the relation R on A defined by aRb if and

only if a,b €& A, for some i€ 1. It is an equivalence relation whose classes are

precisely A;'s.
Some Important Properties of Integers :
We next mention certain important properties of integers.

Note: For a € Z,

a|: a if a>0

=—a if a<0

1) Well-ordering Property of a set of positive integers (or set of non-negative
integers)

If A is non-empty subset of N <0r 7" =NU {O}), J anelement ¢ € A such that
¢ <a foreacha € A. (£ is called the least element of A)

2) If a,bE€Z anda = 0, we say that a divides b (denoted by a(b)) if there is
C € Z suchthat b=ac.

In case, a does not divide b, we writex_ b




Chapter 1: Introduction to Groups

3) If a,be Z, not both o, there is a unique positive integer d called the greatest

common divisor (g.c.d.) of a and b satisfying.

1) d/ a, C/ b (d is common divisor of a and b)
ii) If ¢/a, ¢/b thenc/d. (If C is a common divisor of a and b, ¢/d)

The g.c.d. of a and b will be denoted by (a, b). If (a, b) =1, then we say that a and

b are relatively prime (or coprime). (Note : If one of a, b is 0, (a,b)=]|a| or |b |)

4) 1If a, b are non-zero integers, there is a unique positive integer ¢ (called the
least common multiple or l.c.m.) of a and b if

i) a/l, bjt
ii) If a/m, b/m then ¢/m
For non-zero, a,b, ‘ a H b ‘ =3 4!

5) The division algorithm: If a,b&€Z and b> 0, then there exist unique
integers q, r (q — quotient, r — remainder) such that a=qgb+1, 0 <r<b.

6) For non-zero integers a, b, (a,b) =1 if and only if 3 X\, p €Z such that

Na+pb=1.

7) A positive integer p > 1 is called a prime if the only positive divisors of p are
1 and p ifself.

8) An importaut property of prime numbers : If p is a prime and plab where

a,b€Z then p/a or p/b.
(General property : If a,b,c € Z and a = 0 then a/bc, (a,b) =1= a/c.

9) The Fundamental Theorem of Arithmetic :

If n is a positive integer, n > 1, then n can be factored uniquely into product of

primes, i.e. n:p?1 pg z pﬁk where pj.....py are distinct primes,

P <Pj....<pyx and o are positive integers. 1 <1<k.
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10) The Euler ¢ function is defined as follows :

For n€N, dp(n) = Number of positive integers < n which are relatively prime

ton. o(1)=1 6(2)=1, 6(3)=2, 6(4)=2
(j)(p)zp—l, d)(pk):pk —pk_1 where p is prime
it n=pi" .. p%, o(n)=(p{" = p{" ). pi* — pi*)

o

D

o

Pr

=n

(11)  First and Second Principal of Induction :

Consider a statement p(n) where n € N (or No{0})
If 1) p(1) is true and
2) p(k) is true = p(k+1) is true then p(n) is true %+ n €N
OR

2) p(k) is true for [ <k <n

= p(n) is true then p(n) is true &+ n€N.
Z,(or Z/nZ)Z THE INTEGERS MODULO n :
Let n be a fixed positive integer (n>1)

Define a relation ~ in Z by,

a ~ b ifand only if n/c—b for a,beZ.
Foreachae Z, a~a (-,-n/a-aﬁn/O)

..~ is reflexive —(1)

Fora,beZ a~b=n/a->b
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=a—b=knk€z=—(a—b)=(—k)n=—-b—a=(—k)n(—kez)
=b~a

.".~1s symmetinic — (2)

Fora,b,cez,a~b,b~c=n/a—b,n/b—c
=a—b=kn, b—c=kn, k,kcZ
=a—c=(a-b)+b—-—c)=k,+k)n, k+k €Z
=ar~c

.~ is transitive (3)

By (1), (2), (3), ~ is an equivalence relation.
Let Z, denote the set of all equivalence classes w.r.t. ~
Let us denote [a] by a fora € Z.
Then, by division algonthm,a =gn +r, ¢ € Z,0<r<n—1.
S.a—r=gqn
c.anr. o<r<mn-—I.
.". For each an,Z:?,ogrgn—l
Moreover, ifo <r<s<n-—1.
Theno<s—r<n
c.s—r=knforanyk € Z
crEs.

.. The distinct equivalence classes are 0,1,..n—1
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.. The set of all equivalence classes is Z, = { 6, i, ..n—1} and is called the set of

integers modulo n.
LetU (n) = {E:ISagn—l.(a, n) =1} where &z[a] wrt.~
For Z,Z;Eu(n). (a,n)=1,(b,n)=1

SN, U, Ny, Uy €7 such that Nj a+un=1, X\, b+un=1
SN atun) (b +upn) =1

SNNy @b+ (up N DN uy atuyuy, n)n=1

c(ab,n)=1 .'.%Eu/n).

U (n) is called the set of prime residue classes modulo n.

BINARY OPERATION.

Definition: A binary operation * on a non-empty set A is a function
*:AXA — A (ie.Foreachab € A, dunique * (a,b) € A)

We shall do note * (a, b) by a * b.

Let * be a binary operation on a non-empty set A

Then

1) *is said to be associative if for eacha,b,c € G, (a*b)*c=a*(b*c¢)

2) * is said to be commutative if for each a,b,€ Ga*b=>b *a(wesayaandb
commute ifa*b=b *a

3) A issaid to have an identity element e w.r.t. * ifa*e =a=e aforeacha € A

4) Suppose A has an identity element e w.r.t. *. Then, a € A is said to have an
inversebin Aifa*b=e=b *a.




Chapter 1: Introduction to Groups

Examples

(1) + (usual addition is associative and commutative binary operation in N, Z, Q,
R, G. (N has no identity element).

(2) x (usual multiplication) is associative, commutative binary operation in N, Z,
Q. R,G.

(3) — (usual subtraction) is not a binary operation in 1N. However is a binary
operation in Z, Q, R, C. It is neither commutative nor associative.

(4) We define addition and multiplication in Z , as follows.

—_ a+b=
- - *)
a.b

a—+

'?
We show that these operation are well defined and do not depend on the

choice of representatives a and b of a and b respectively.

Suppose a_l = a_z and E = b_z inZ,

c.ay—ay, =kn,by—b, =

ca+b )—(ay +by)=(a, —a,) + (b —b,) = nk + mn= (k + m) n.

ca b =a, +b,

Also (&) —ay)) by +ay (b —by)=a, b —ay by

cknb +a, mm=a; b —a, b,

Thus, * and . defined in (*) do not depend on choice of representative and are well
defined binary operations.

We note that (E+13)+E:E+(E+E) and (5—1—1_));:52—1—52 check using

definition.

Also 0 is identity w.r.t. + and 1 is identity w.r.t.
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1.2 Groups

Definition: A group is an ordered pair (G, *) where G is a set and * is a binary
operation on G satisfying the following axioms.

(1) (a*b)*c=a*(b*c)foralla, b,c, € G (*is associative)

(2) Thereexists e Gsuchthata*e=a=e¢ *aforeacha €G. (G has an identity
element)

(3) For each a€ G, there exists al € Gsuchthata*a =e=a' *a (Each
element in G has an inverse in G)

Note :

It can be shown that in a group G,

(a; *a,)*(ay *ay)=a, *(a, *(ay *a,) in general, for

a, a,,.a, € G, the product a; * a, *. * an is uniquely defined

(Proof by induction) and does not depend where brackets are written.

Properties of groups

Let (G, *) be a group

(1)Forab,c,eG,a*b=a*c = b=c (left cancellation law)
b*a=c*a=b=c. (rightcancellation law)

(2) Identity of G is unique

(3) Each a € G has a unique inverse. We shall denote inverse of a by al.

Definition: A group (G *) is said to be a 1) finite group, if G is a finite set, and we
say order of G (0(G)) is [g], and 2) On infinite group if G is an infinite set

Definition: A group (G,*) is said to be Abelianifa*b=b*a*ab €G
Note : We shall denote group (G,*) by G and a * b by ab

(In case, the binary operation is addition, we write a + b)

10
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Law of indices in a group.

(1) a""=a"d" form,neN.

2 (@) '"=d" =(")" form,n EN.
We definea’=e

And for negative integor m, a" = (ail) -

In additive notation, we write na instead of a” and 0.a=0

ma + na = (m + n) a, m(na) = (mn) a
Result: If G is an abelian group and a, b €G, then (ab)" = a" b" +neN
Examples of Groups

1) (Z+),(Q,+),(P,+),(0,+) are infinite abelian groups.

2) (Q°,),(R",.),(G",.) Where F* =F - {O}, F = Q, R, G are infinite abelian

groups.

3)(Z,,+)1s a group (we have shows associability 0 is identity element and for

r,0<r<n—1,n—risthe inverse of 7.

4) U(n) is a group under multiplication modulo n. we know multiplication is

associative.
We have already seen, that a,be U(n)= a.be Un) .
s 1is identity of U (n)
We show a € U(n) < ahas an inverse mod n,

acU(n) = X\,MEZ suchthat \a+nn=1

=XN+nn=1=Xa=1 =X \.a=1. .a is invertible

5) M

mxn (R) 18 @ group under addition of m x n matrices. It is an abelian

6) GL,(Q),GL,(R) are groups under multiplication of n x n matrices. Where

GL ,(R)={A/A is an n x n invertible}. GL , (R) is non-abelian.

11
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(7) Symmetric Group Sn

IfS=1,,ie.S={1,2....n}

Then T(S) = {f/f:1,—1,, f objective} is called symmetric group on n
symbols and is denoted by S, . An element of S, is denoted by

1 2 3 4 . . n
o) o2) o3) o@) ... ... o(n)

(8)_Dihedral group: (denoted by D) dihedral group is group of symmetries of
regular n-gon (eg. Equilateral triangle, square, regular pentagon and so on.)

In general D, = {I,p,p”,p>,p"cccccc0” 1t 1P, 11p”,1p ocotp” '+ Where p denotes the

. 2 . .
rotation by [—ﬂ and p denotes reflection about the axis of symmetry.
n

=2n

Clearly |D,

The binary operation is composition and the relation is p" =I,u° =1,p'p=pp" "

Example: D, = {I,p,p,p.pp.pp*}

b

Order of an element in a group: Let G be a group and a € G. Then order of "a
denoted by O(a) (or by ‘a‘ )is
(i) the least positive integer n (if it exists) such thata™ =e

(i1) infinite if no such integer exists.

Note : O(e) is always 1 in any group.
Proposition 1:. Let G be a group and a € G. Then (xax_l) "—xa"x 'nez

Proof :We prove inductively, (xax )" = xa" x 'neN
The result is true forn = 1.

If the result is true for KEN,

k 1

()ccvfl)kJrl =(xax" ") k (xax ) =xa" x xax ' = xa*eax™ ' = xa"x!

12
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.. The result is true for each n€ N.

(xax )’ =e=xa’x""(a" =e)

Forn<o(xax ") =((xax )" '=(xa"x ) '=(x"H) @), x!
=xa" x ' by (5) 2

Thus, (xax )" =xa"x ' MneZ

(2) Let G be a group and a,b, € GThen,

(1) O (xax ") =0(a),

(ii) O (ab) = O (ba),

(ii)) O(a) = O(a™ ")

Proof :-

(i)Suppore O(a) =n, then a” = e and O(xax™") =k

xax Y =xa"x '=xex '=e . kin

k

Now,(xax 'Y =xa*x'=e d"=x"x=e -nlk

Hencen=k
If O(a) is infinite and O(Xaxfl) =k, then (xaxfl)k —xd'x ' =e

-.a" =xex ' =e. This is a contradictions that o(a) is finite
. If O(a) is infinite, O(xax ') is infinite

(i) ba=b(ab)b™" - .O(ba)=o(ab)

(iii) Let O(a) =k.

n:(an)—lze—lze

Ola)=n=a"=e=a
=(a")<0()
By similar argument (ail)k = e:>(ak)71 —e=d" = O(ail) < O(Ofl)

Thus, we must have O(a) = O(a_l)

13



ALGEBRAII

1.3 Subgroups

Definition: Let G be a group. A subset H of G is called a subgroup of G if

(1) a,b €h = ab €H (closure property)
(i1) e€ H (identity)

(ii)acH =a ' €H

We note that from the given condition that

(1) the law of composition of G defines a binary operation in H. The induced binary
operation in H is associative. From

(11) 1t follows that H is a group. Thus, a subgroup of a group is a group under
induced binary operation.

Notation H is a subgroup of G is denoted by H < G.
Note

1) Any group has two obvious subgroups {e} and G itself. {e is called the trivial
group.

2) A subgroup of G other than G itself is called a proper subgroup of G.
Examples of Subgroups:
1)nZ = {kn: k€& Z } is a subgroup of (Z ,+) Where n is a fixed prositive integer.

2)SLy(R)={A€ GL,(R):det A=1} is a subgroup of GL , (R)

Subgroup Test (Necessary and sufficient condition.)

Let G be a group and H be a non-empty sub set of G,then H < G if and only if V
a,b € H, ab “leH (or a-b €H in additive notation)

Example :

1) Let G be an abelian group and
H={xeG: x2= e}, Then, H<G.

(ecH. . H=w.
a,bEH:>a2 :e,b2 —e,
(ab~ 'Y =a(b 'Y =a*(b*) ' =e)

14
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2) Centre of a group :- Let G be a group and Z(G) = {a€ G: ax = xa~*x € G}
Then, Z(G) <G  (Z(G) is called the centre of the group G)

Proof: ex =xe+x€G, =e€ Z(G) and Z(G) = &

Leta,b € Z(G) and x€G.

cax=xa,bx T x b x €6)

Sx Y T =) e Yy h = Y iexb =07 x
blx=xb"'=b"'ecz(G)

(@b Hx=ab '¥)=a(xb ) =(ax)b ' =(xa)b ' =x(ab”")

cab ' € Z(G) . Z(G)<G.

Note : Z(G) is always abelian.

3) Centralizer of an element: Let G be a group and a€ G. Then, C(a) = {X€G:
ax =xa} (C(a) is called the centralizer of a)

Proof : ac =ea =ec C(a)and C(a) = .

Letx,y € C(a), Then ax=xa,ay = ya

R | o -1 _ -1 _ 1
S.a ay=a ya iey=a ya,y =(aya) =a ya

a(xy_l) = (ax)y_1 = xay_1 = xaa_ly_la = (xy_l)a
~xy eC(a). . Ca)<G.

4) Intersection of subgroups:-

Let H, K <G, where G is a group. Then H n K <G
Proof:ecH,eck =eeHNn K =>HnNn K=Y
x,yEHNn K=x,y€ Hx,y € K jxy_leH,xy_IEK
ﬁxy_IEH N K

SJHN K<G

More generally, if {Hi} ien 18 a family of subgroups of a group G, then NHis a
subgroup of G.
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Finite subgroup Test

Let H be a non-empty subset of a group G. Then, H < G iff H is closed under the
binary operation of G.

Proof Clearly, H <G = H is closed under the binary operation of G.
Conversely, suppose H = & anda,b € H =abcH

Now, H = &

.. Jac H. We show inductively a” € H\-n€EN.

a€ H given.

dfeceH=d"acH=d""cH
a"eHMneN
Let S={a",ne N},Then,S <H

But H is finite.

.. S 1s finite.

o.3i,jEN,i=j(i> j)suchthata' =a’

a Tl =e, i—jeN

S.e€SCH.iea” € Handa" € H forre NU{0}
Also, a i*jeH:ai*jfl.aeH('.'i—j—lZO).
Buta™/la= a7/ =4" =e.

and a.a 7' =e
cad /' =g e,
.'.aEH:>a_IEH

e € H, and H satisfies the closure property

S H<G.

Hx|
|HNK|

Theorem: Let G be a group, and H, K <G, (H, K finite), then |HK | =

16
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Proof: HK = {hk/h € H,k € K} Moreover, for he H ke K, tc Hn K,

teHandteK
ht ' eHand tke K
((ht™") (tk) € HK. And ((ht ")(tk) = hk.

Thus, for each he H, k€ K, hk is counted ‘H NK ‘ times.

1.4 Cyclic Groups and Cyclic Subgroups

Proposition: let G be a group and a€ G. Then, H= {a" : n€ Z }

Then H is a subgroup of G. Moreover, if K < G and a€ K, then Hc K (H is the
smallest subgroup of G containing a)

Proof : We Show H < G.
a’=e €HandH = O

Supposex,ye H,x=a",y=a",mne 7z

Then,xy ' =a" (") '=a"a "=a""cHm—ncZ

L H<G

IfacK, K <G, We show inductively a” €K forne N
al €K,

a¥ cK keN=ad aeK =dM ek

..By Principle of Induction, a” €K-¥*n€eEN
a’=ccK (K<G)

ifn<0,neZ,

d"=@")y a"eK=>@")'eK=d"€k

a"eKNMnez
S HCK
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Cyclic Subgroup :

Definition: Let G be a group and a€ G. Then, the subgroup {a" : n€ Z} is called

the cyclic subgroup of G generated by "a’ and is denoted by <a>.

Cyclic group :

Definition: A group G is said to be a cyclic group if there exists a € G such that

G ={a":n €Z} and this is denoted by G = <a>a’ is called the generator of a.

Example :

1)(Z,+)is acyclic group. Z = {n:n€ Z}={n.l:n€Z} =<I>
Properties of Cyclic groups

Proposition 1: A cyclic group is abelian.

Proof: If G=<a>, forx, y€ G, x=a” , x=a"

,.xy:am.am :am+n n+m n _m

I
Q
I
Q
Q
I
=

Note : The converse of the above result is not true. Consider U(8) = {

mod 8 under multiplication.

e.g. U(8) is abelian, but U(8) is not cyclic.

P === 7 =]

..we can not write U(8) as {a" :n € Z}

Proposition 2: A subgroup of a cyclic group is cyclic
Proof : Let G be cyclic group, G =<a>and H < G.
If H= {e}, H=<e>and H is cyclic.

Suppose H= {e}

Thenletx €H, x = e.

HcG .',x:ak forsomek € Z,k =0.

1739 595}

~x 'eHiea*ecH. d"€Hand a™ € H,and one of k,—k €N.

S.8S={neN:a" € H}is anon—empty sub set of N (kor—keS)

18
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By well ordering Principle, S has a least element (say) m.

We show H=<a" >,

Lety € Hyy=a', ( € Z,

By division algorithm,

sa =@ at=am g =(@™) 1 a' eH(a" €eH=(a") Y c€H,a" €H)
But m is the least positive integer such thata™ € H,

cad €eH 0<r<m=r=0=l=gm=a"'=@") =d" e<a" >.
yeEH=ye<ad" >

SHC<a" > butd” eH=<da">CH
S.H=<a" >, His cyclic

1.5 Order of an Element in A Group

LetGbeagroupanda € G

Then, there are two possibilities

(1) O (a) is finite

(i1) O (a) is infinite.

(1) O(a) is finite,

Some more results on finite cyclic groups.

Proposition : Let G be a finite cyclic group of order n, G = < a >, then G has a
unique subgroup of order a for each divisor d of n.

Proof : Let G = <a>, o(G) = o(a) =n.
Let a be a positive divisor of n,

n=d.d

Then < ad, > has order d.
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For

(a l)d =da"=e
~o(@<d.

If o(a”) =k k<d—()
Thena®™* =e

n<d'k iedd<d%k
cd<k—(2)

From (1) and (2), k =d.

~o(@)=o(<a’ >)=d.

Thus, we have a subgroup. H= < ad '>=<a"?> of order d.
We show H is a unique subgroup of G of order d.

Let K be any subgroup of G of order d.

K <G and G is cyclic

.. Kis cyclic.

LetK=<a’>. o(k) =d. .'.O(ag) =d.

.. d is the least positive integer such that (ae)d =e. (¥
By division algorithm, 3 g, r € z such that
l=qd +r 0<r<d —1

ld=qd'd+rd =qgn+rd.

!/
,.aﬂd :aqd d+rd :aqn+rd —q" .ard :(an)q ard rd rd

=elad" =a
ad=a""=eby(®

But 0 <rd <d’'d =n and n is the least positive integer such that a" =e
.".vd =0 which means r = 0 (d is positive)

.'.€:qd’.'.<aé Ss=—<a ><<a’ > KcH
But|K|=|H|=d.
S K=H.

.". G has unique subgroup of order d for each positive divisor d of n.
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Proposition 4: Let G be a finite cyclic group of order n, G = <a> then a” is a
generator of G if and only if (m, n) = 1.

Proof : Suppose G=<a" >,0(G)=n=o0(a)

Then, a € G.

ca=(a") forsomercZ a=d" a7 =e

sonl/l—mr

S d—mr=ns forse€Z

cA=mr+ns,r,se.

S.(myn)=1.

Conversely, suppose (m, n) = 1.

c.adr, s € Z such that rm + sn=1.

LgmEen gl g

s(d") (@") =a

S(@").e’=a

(@ =a=<a>

SG={ad" Imely={a@") IkeZ}c<a" >
s<a>C<ad">C<a>

<ad">=<a>=0G.

In particular, G has ¢(n) generators.

Note : A group G of order n is cyclic if and only if G has an element of order n.
Proposition 5: Let G be a group and a € G. If o(a) = n, then
o(a) B n

g.cd(o(a),r) - g.cd(n,r)

Proof:ad" =e.

o(a")=

sa" =cie(d) =e

c.o(a")is finite. Let o(a" )=k

Letd =gcd(n,r), n=nd, r=nd, gcd(n,n)=1
(a")" = (arld )y = arldnl — arI" — (@)1 =el=¢e

o(ar)|n1 ie k|n1 (D
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On the other hand, (¢")" =e and o(a)=n

.‘.n|rkien,d r.dk

oy |k but (ny 1) =1

sk (2)

k:nl

, - n n

ieo(@d)=n=—=———
@)=m d gcd(n,r)

Proposition 6: If G is a cyclic group of order n, and d‘n then no of elements of

order d is &(d).
Proof : By Proposition 3, G has exactly one (Cyclic) subgroup of order d, say

<a>. Then, every element of order d generates <a> and by proposition 4, has ¢(a)

generators .. No of elements of order d in G is ®(n)
Note : In G is a cyclic group of order n then G is generated by ¢(n).

Proposition 1: Let G be an infinite cyclic group generated by a. Then
1) Every non-trivial subgroup of G is infinite.

2) G has infinitely many distinct subgroups.

Proof : We first note that in an infinite cyclic group<a>,1,j, € Z = ad=a’

(1) Let H be a non-trivial subgroup of G. Then H is cyclic.

H=<a" > for somemeZ,m=0
={(a™)" :n € Z} which is infinite (" (a™)" = (a™)’ for distinct
i, j,€7)

.. every non-trivial subgroup of G is infinite.

(2) Let G, = (ak), k € N .Then are infinitely many distinct subgroups of G.
Forif G, =G, =<d" >=<a">=d" c<d">=k=Im (€T

a"e<d" >=m=rtk, (€7

s AP =1(eN
s A=l=and k=m
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Proposition 2: Let G be an infinite cyclic group generated by "a’ and a ! are the
only generators of G.

Proof:-Suppose G=<a" > meZ,

G=<a>=<ad">

cae<a™>anda=(a") kel

sa=a"" and 1=mk (".- distinct powers of "a' are distinct)
som=1

-1
.".Generators of G are a and a

Note : Z is an infinite cyclic group and 1 and — 1 are the only generation of Z

1.6 Permutation Groups

We have defined symmetric group S, ={f/ f :1, — I, s.t. fis bijective} where

I, ={1,....n}. (S,,0) is a group of order n! where ‘o’ is composition of maps.

Reason: o €S, is determined by specifying o (1),....,0(n). o(1) can be choosen

in n ways. After choosing o (1), 0(2) can be choose in n - 1 ways and finally o (n)
can be choose in 1 way.

.. NoofelementsinS, =n(n—1)=n!.

We have already seen 0 €S, is denoted by

_ 1 2 3 .. n
"oy 02) oB) .. G(n)]

It is non-abelian if n <3

, 1 2 3 4 n 1 2 3 4 .. n
Consider o) = , 0,=
2 31 4 n 21 3 4 .. n
1 2 3 4 n 1 2 3 4 ... n
61003 = » 0200 =
321 4 n 1 3 2 4 .. n

Cycle: o€S, is said to be a cycle of length r if there exists
1§11<12< ..... <lr§n such that 0(11) = i2, 0(12)213 G(irfl):ir’
o(i,)=1, and o(k)=k fork = {i,...,1.}. Itis denoted by (F ....i,.)
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NOte . (il i2 . i},):(iz i3 "'i}’ il):(il" il ""i}"—l)

A cycle of length 2 is called a transposition. A cycle of length 1 is denoted by (k),
which means £ is fixed.

Cycles x and y €S, are said to be disjoints if x= (i i5...i.), ¥={(J;... J;)
al’ld {lllr}{]l ..... JS}ZQ

We note that if x and y are disjoint cycles then xy = yx

Reason :- x = (i...0.) y=(j; J,),{ij. i} N {Jj... J} =2

Then xy(iy) = xy(i,) =i, ifl=1...r—1

XY(fk):x(jk+1) ifl=k<-1
= Jk-1
=i if k=s

xy(ky=k if kliy 30U J)
yx(i) =y (i) (F1<L<r—1)=i,,
yx(i,)=y(i) =i

)=y )=jrnif1<k<s—1

=i if k=s
yx(k)=k fork & {iy ..i.} U {ji..ji}
SLXY=)x
Theorem:

1. Every o0 €S, can be written as a product of disjoint cycles (unique upto order)
2. Every o €S, can be written as product of transpositions.

Proof : proof of (1) easy .

(2) Let 0= 0;.... 0 , where ois are disjoint cycles.

Let o, = .... i)

Theno, = i) i,_).... (G, i3) (7 i)

.".Each cycle is a product of transpositions

*. o0 1s a product of transposition.
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Order of a cycle of length r in group S, :
Leto=(i; ...1,)

Then we note o(i,) =i,,0° (i) =i, k, o’ (i) =1i., o’ (i) =1
so@) =i for1<k<r

Similarly for i,,.. i,

o (i) =1y, 4 for1<r—k

Gk(im):im+k_r Jorr—k+1<m<r

.'.Gk(im)—l—im Jorkk<r—1

and o (i,))=1,

co (i, =i, fori<m<r

..0" =1, and r is the least positive integer such that " =1
co(o)=r.

2. Order of 0€S, where o, ..0; are disjoint cycles of length 7# ....7.
0(0; ....0,)=Ilcm[O(0,) ....0o(c,)]=Ilcm[7 .....1;.]

Definition : (Even and Odd Permutation) A permutation that can be expressed as
a product of an even number of 2-cycles is called an even permutation. A
permutation that can be expressed as a product of an odd number of 2-cycles is
called an odd permutation.

Definition: (Sign of a permutation) The sign of a permutation « is said to be 1 if
« iseven and — 1 if « is odd.

1 if aiseven

sign(e) = {—1 if ccis odd

ii) sign (c = sign (o)
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Proof: (i) If ojis a product of k1 transpositions and 0,is a product of k 2

transpositions then 0,.0, is a product of k; + k, transpositions.
Thus, sign(o,.0,) = (— Dtk
= sign(0,.0,) = (—=D™.(=1)

= sign(o0,.0,) = sign(o,).sign(o,)

Let A, =(0€S, : Sign(o)=1) ( This group is called Alternating group i.c. it is
the group of all even permutation of Sn)
S,

We shall prove later that An < G and ‘An‘ =

Generators and relations: A group generated by a finite set S, stashing a set of
relations, which give all possible finite products of elements in the group can be
described by the generators and relations.

eg. D, = {e a, 2" " bab,....a" by =<ab>, a" =e=>b>, ba=ab""

1.7 Lagrange Theorem

This is one of the most importaut theorems for finite groups

Definition: Cosets: Let G be a group and H be a subgroup of G for a€ G, we define,
Ha= {X\a:\ € H} to be the right coset of H in G containing a and

aH = {aX\ € H} to be the left coset of H in G containing a

For example, if G = Sy = {1, (123), (132), (12), (13), (23)} and H = {I, (1,2)}
Then the right cosets of H in G are,

HI=H={lL, (12)}

H (123) = {(123), (12) (123)} = {(123), (23)}

H (132) = {(132), (12) (132)} = {(132), (13)}

We now prove Lagrange theorem

Theorem: If G is a finite group and H is a subgroup of G then O (H) \ O(G).
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Proof : We define a relation ~ in G as follows : For a,b,€ G, a ~ b if and only if
ab~' € H. We show ~ is an equivalence relation in G we note a ~ a for each a

€Gsince aa ' =ec H. - ~isis reflexive
For a,beG,a~b=>ab '€ H

=@ Y 'eH=ba'ecH=b~a

.~ IS symmetric.
For a,b,c,e,G,a~b,b~c=ab '€ H,bc '€ H

=ab 'bc'cH=ac'€eH=>c~a

..~ IS transitive

Thus ~ is an equivalence relation an G.

acG,lal={xcG/a~x}={x€G/x~a}(. ~is symmetric)
={x€G/xa ' =\ \N€H}={x€G/x=N€H}=Ha

2) Thus, we have the following,

Fora €G,a € [a]=Ha

UazQG.

acG
Moreover, as two equivalence classes [a], [b] are either disjoint or equal,

HaNHb= ¢ orHa=Hb fora, b €G.

o.G= UHa
acG
3) Letac G

We now define amap @: H — Has.t. @ (N\) = \a.

The map is well-defined and for
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The map is clearly onto.
-". the map is bijective.
|H| = |Ha|.

.'.|G|:|Ha1|+|Ha2| + e +‘Hak , where Hay,

Ha,, aredistinct right cosets of H in G

~|G|=k|H|
ieo(G)=ko(H)and o(H)\o(G)

Definition: The number of right cosets of H in G is called index of H in G and is
denoted by (G : H) or ‘G:H‘.

Note:Fora,beG,Ha:Hb<:>ab_1 €EH

We also note that the number of left gets of H in G is same as the number of right
cosets of Hin G.

Left coset of H contain "a’ = aH = {ah : h€ H} .Further, aH = bH iff a'beH.
Proof:

aH =bH =b=becb H,and hencebca H = b=a for somex\ €H

=a 'b=X\XN€EH.

Conversely a'b=X\NeH=b=ahbcaH

SXEDH=x=b\ N€EH=x=ax,\N€aH
S.bHCaH

x€aH =x=a\N,NeH=x=b\ “NebH
c.aH ChbH
c.aH=bH iff a'beH.

There is 1-1 correspondences between the set of right cosets of H in G and the set
of left cosets of H in G

Ha—a 'H. Hi=Hb<ab 'c He(@ ) 'b'eHea 'H=b"H
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Consequences of Lagrange’s Theorem:

(1) In a finite group G, order of each a € G divides the order of Gie.
O(a)/ O(G) and a °®) =¢

Proof: For a € G, <a> < G, and o(a) = o(<a>)

G is finite. .*. By Lagrange’s Theorem o(a) ‘O(G)

a’@=e,

(2) A Group of prime order is cyclic.

Proof: Let O(G) = p, where p is a prime

.G has anelement a=e.<a><G.

o(< a>)|o(G),

so(<a>)=lor pbuto(<a>)=1(C.,a=e)
so(<a>)=p=0(G)

S<a>=0aG.

(3) Fermat’s little Theorem.

For a € Zand every prime p, a” = a (mod p)

Proof :- Consider the group U(p) of prime residue classes modulo p under
multiplication.

LetaeZ,and a=rmod p

If r=0,then, p\a and p\a”
coalf

If r=0.thena=reU(p),oU(p)=p—1

=a=omod p
P =1mod p...by (1)
Buta’ ' =rP'=1mod p
ca’'=1mod p

c.a? =amod p.

(4) Euler’s Theorem : Letaczandn € N, (a, n) = 1,Then, a?" =1moden.
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Proof :- a €U (n),O(U(n))=2(n)

. By Lagrange's Theorem a®™ =1mod n.

Remark :- We shall show later that the converse of Lagrange’s Theorem is not true
for groups in general. However, we have already seen that it is true in case of cyclic
groups.

1.8 Summary

1) A group is an ordered pair (G, *) where G is a set and * is a binary operation
on G satisfying the following axioms.
(1) (a*b)*c=a*(b*c)foralla, b,c, € G (*is associative)

(2) Thereexistse€ Gsuchthata*e=a=e *aforeacha €G. (G has an identity
element)

1

(3) For each a€ G, there exists al € Gsuchthata*a' =e=a' *a (Each

element in G has an inverse in G)

2) Order of an element in a group: Let G be a group and a € G. Then order of
‘a’ denoted by O(a) (or by ‘a‘) is

(i) the least postive integer n (if it exists) such thata” =e
(i1) infinite if no such integer exists.
3) Subgroup: Let G be a group. A subset H of G is called a subgroup of G if
(1) a,b €h = ab € H (closure property) (ii) e<€ H (identity)
(ii)acH =a ' €H
4) Cyclic group : A group G is said to be a cyclic group if there exists a € G such
that
G={a" :n €Z} and this is denoted by G = <a> "a’ is called the generator of a.

5) Let G be a finite cyclic group of order n, G = <a>, then G has a unique subgroup
of order a for each divisor d of n.

6) Let G be a group and a € G. If o(a) = n, then
o(a) = o(a) _ n
gcd(o(a),r) gcd(n,r)

7) Lagrange theorem: If G is a finite group and H is a subgroup of G then O (H)
\ O(G).
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1.9 Unit and Exercises

1) If R is an equivalence relation on a non-empty set A, then show that —

a) a €| a | (by reflexivity)

b bela|=[a]=]b]

c) Fora,beA,either[a]ﬂ[b]:cl) or [a]:[b]

Thus, an equivalence relation divides the set into disjoint equivalence classes.

m

2) Determine if f: Q — Z defined by f [
n

] =m is well defined.

m

Determine if f: Q — Z defined by f [ =m is well defined.

SEREY

3) Determine whether the following functions are injective, surjective, and

n

bijective.
i) f:Z— Z defined by f(x)=3x+2

ii) f:R" —R" defined by f(x) = 1
X

iii) f:C— R defined by f(z)=|z]
iv) f:R — R defined by f(x): x?

4) Let f: A — B be a surjective map. Show that the relation R defined by aRb

if and only if f(a) = f(b) is an equivalence relation. Find the equivalence
classes.

5) Consider a relation R on Z defined by aRb if and only if ab>0. Is R an
equivalence relation?

6) Find ¢(200), ¢(350)

7) List elements of U(24).
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8) Which elements in Z have an inverse w.r.t. multiplication.
9) Find inverse of 5 in Z
10) Is multiplication a binary operation in the set of odd integer?

11) List elements in Z,,which are invertible (we will prove a general result later)

12) Show that "0’ is a binary operation in z where aob = atb+5, fora, b € Z.
Show "0’ is commutative and associative.

13) Find identity of Z,, and inverse of 2.

(14) Find generators of Z ¢, Z 5, and subgroups of Z
Ans:

() <r>=Ziff (6,r)=1, 1<r<5(Z;=<i>)
..generatonof Zgarel,5,6=0(2) 0(3) =1x2=2

(i) <r>=Zy iff 20,r)=1,1<r<20=r=
1,3,7,9,11,13,17,19

(6(20) = b(2”) (5) = (2° —2)e 4=8)

(iii) Subgroups of Z;, order 1, 2, 5, 10

(15) List the elements of subgroup <20>in Z 5.

(16) List the elements of subgroups <3>, <7>1in Z .

<3>={1397}
(Ans:- _ e
<7>={1793}

(17) Letabe a group and a€ G. If o(a) = 15 state orders of a3, as, o’

(18) Let G be a group and a€G. If o(a) = 24. Find a generator for
<a'>n<a'® > Ans: —a®
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(19) List all the elements of order 8 in Zg g o0,

(20) Let G be a cyclic group of order 15, G=<a> Find all subgroups of G and list
generators of each of the subgroups of G.

(21) Find a cyclic group of order 4 in U(40).
(22) Show that U, ={z€ G:z" =1} under multiplication is a cyclic group of
under n.

(23) Let G be a group and a,b € G. Ifab = ba, o(a) = m o(b) = n. where (m,n) =1,
show that o(ab) = mn.

Hint :- Show (ab)™ = (a™)" (b")" =e.".0(ab) |mn
(ab)™ =(a")" (b")" =e.".o(ab)|mn

if o(ab) =k, (ab)* =e,a" =b""*,(a")" =e=b""",n\km= nlk
Similarly m |k c.mn |k and o(ab) = mn.

(24) A group G of even order has odd member of elements of order 2. In particular
if has at least one element of order 2.

Hint : If there are k element of order 2, ‘G‘ =1+k+ € ax)>2 =14+ k+2m

O 0, O O
0‘0 0.0 0‘0 0.0
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UNIT 1

ISOMORPHISM OF GROUPS

Unit Structure

2.0 Objectives

2.1 Homomorphism And Isomorphism

2.2 Cayley’s Theorem

2.3 Automorphisms and Inner Automorphisms

2.4 External Direct Product of groups.

2.5 Normal sub groups and Quotient (Factor groups)
2.6 Isomorphism Theorems

2.7 Classification of groups of order <7 upto isomorphism
2.8 Fundamental Theorem Of Finite Abelian Groups
2.9 Summary

2.10 Unit and Exercises

2.0 Objectives

After going through this unit you shall come to know about

e Relation between the groups and the existence of isomorphisms between
groups

e Special kind of subgroups called normal subgroups and its impotance in the
construction of factor groups

e C(lassification of groups upto order 7 using various results of isomorphism
theorem
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Chapter 2: Isomorphism of Groups

2.1 Homomorphism and Isomorphism

Definition: 1] Let G, G be groups. Amap f: G —G is called a homomorphism
of group G to group G if f(ab) = f(a) f(b) for each a, b € G (i.e. f preserves group
operation)

Definition: 2] Let G, G be groups. Amap f: G — G is called an is isomorphism

of group G to group G if 1) f (ab) = f(a) f(b) for for each a,b € G (ie f'is a group
homomorphism) and ii) f'is bijective.

This is denoted by G =~ G

Properties of group homomorphisms and isomorphisms.

Let G, G be groupsand f: G — Gbea group homomorphism anda € G
Then

(i) f(e) = ' where e, e’ are identity elements of G, G respectively.
(i) f@@ H=(@) "

(iii) f(a* ) = (f(a)) ¥ for eachke Z

Proof : (i) e’ = f(e) = f(e.e) = f(e) . f(e)

.". By right cancellation law, f(e) = ¢’

(i) f(aa ") =fle) = ¢’

cf(@) flah=e'= fla)f(a)"

S f@=(f(a)™

(iii) We prove inductively, f(a” ) = (f(a))" ¥n e N

The result is true forn =1

Suppose the result is true for k, ke N

f@*)=(f(a)"

Then, f(a“) = f(a'a)= (") f(@)=(f(@)" f(@) =(f (@)
Inductively, f(a")=(f(a))" *+ne N

7= fle)= e = (f(a))o, the result is true for 0,
forneZ,in<0,n=—m,me N},

f@=fa™= @™y H=0r@m) oy = @y™!

=(f(@)™" =(f(a)"

Thus, the result is true for eachn € Z.
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Properties : Let G, G be groups and f: G — G be an onto group homomorphism

(i) If G is abelian, so is G

(ii) If G is cyclic, so is G.

(iii) O(f(a)) [o(a). If fis an is isomorphism, then o(f(a)) = o(a).

Proof : (i) Let a’,b'€G, As f is onto, for ab,EG such that
flay=d, f(b)="0'

Then, a' b’ = f(a) f(b)= f(ab)= f(ba) = f (b) f(a)= b'd’

Thus, G is abelian.

(i) LetG=<a>= {a":n€Z}

G=[(G)=f({a":n€L})={f(a"):n €L} ={(f (@) :n€L}=< [f(a)>
Thus G is cyclic.

(iii) Suppose o(a) = n, then a”" =e
(@) = f@")=¢
o (f(@)]o(a)
Iff: G — G is an isomorphism, then
o(f(@)=m=(f(a)" =e'= f(a")=(f(a))" == f(e)
=a"=e(. fisone—one) =n/m
By(iiiy m/n .. .m=n.
Result : If G, G, are groups, and f : G —G is an isomorphism, then
f_1 :G—G isan isomorphism.

Examples of homomorphism and isomorphism.

(1) For any group G, I : G — G (I = identity) and the trivial may f: G—G defined
by f(x) = e are group homomorphism.

(2) The map &: R — R defined by @ (x) = X’ isa group homomorphism.

(3) Consider the map f: Z — Z,, defined by f(m) = misa group homomorphism.
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Chapter 2: Isomorphism of Groups

Theorem 1: Any finite cyclic group of order n is isomorphic to Z ,, the group of

integer residue classes modulo under addition.

Proof : Let G be a cyclic group of order n generated by "a’.
Then, G = {e,a, ...a" '} and form€Z,a" =d"

0<r<mn-—1

@:G—€Z,,a" =a",by wherem=rmodn
wedeﬁne@(ar):;forogrgn—1(;:rm0dn)
@ is well — defined, fora" =a*,0<r,s<n-—1

N

=a :e,o§|r—s|<n.

=n\r—sandr—s=0=r=s=r=s
& 1s a group homomorphism, since

and r +s=tmodn

=Si=r+s=r+s=2(@")+2 (")

& is clearly onto.
/8 ={0,1,.....n—1} and for;EZn,;zg(ar).

.. D is a group isomorphism.

F(@)=2(@’),0<r,s<n—1
ﬁ;zg,jr:‘g (O§|F—S|§n_1<n)
—~a =a°

.. is oneone

Corollary: Any two finite cyclic groups of same order are isomorphic

(Consider <a>—<b>bya —b" o<r<mn-—1)
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Theorem 2: An infinite cyclic group is isomorphic to the group of integers under
addition.

Proof : Let G be an infinite cyclic group generated by ‘a’, G = {a" |n €z}

Consider the map @:G — Z defined by @(a")=r for r € Z.
Fora ,a’ €G (r,s€Z)
o(a",a )= =r+s=2(a")+ 3(a’)

;. D is a group homomorphism

N

)=’ )y=r=s=a"=a
.. is one—one

ForreZ,3a" € G suchthat &(a")=r .. is onto.
Thus, & is a group isomorphism

Corollary: Any two infinite cyclic groups are isomorphic

(If <a>, <b > are infinite cyclic groups consider a" —b",r € Z).

2.2 Cayley’s Theorem

Cayley’s Theorem: Every group is isomorphic to a group of permutations
Proof :Let G be a group

Fora € G, we define fa : G — G by fa (x) = ax (fa is multiplication by a on left)
We show fa is bijective map, ie fa is a permutations on G.

fax)=fa(y) forx,yeG=ax=ay=x=y

.*. fa is one one

ForyeG, 3x=a 'y € G such that

fo(x) =ax=a"'y=y
. f, is onto.

let G ={f,:acG)}
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Then G is a group under composition of maps for a, b for

a,b€G, f, 0 f,(x)=f, (f,(x))= 1, (bx) = a(bx) = (ab) x = [, (x)
-'-fa Ofb eaufa Ofb :fab

f, is the identity element of G.

() =ex=x¥xeCG=f,,(x)=ax
Ja 0 Je() = Jae(0) = J4(X) = fe 0 f4(%)

£V is the inverse of £,
S ofu= S e = L= Sy = Sa0 fa
Gisa group and J: G — G defined by @ (a) = f, is an group isomorphism.
" For a,b€G,2(ab)= f,, = f,0 f,=2(a)oa(b)
@(a):@(b)éfa =f,=f,(e)=f,(e)=ae=be=a=b
& is clearly onto.
.". G is isomorphic to (_;', a group of permutations.

Note : The group G consummated above is called the left regular representation
of G

2.3 Automorphisms and Inner Automorphisms

Definition: An isomorphism of a group G onto itself is called an automorphism
of G

Examples
1) Identity map is an automorphism of any group to itself
2) f: G —G defined by f(a + ib) = a — ib is automorphism of the group (G, +).

Let Aut G= {f: f: G —G, f automorphism of G }
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Definition : Let G be a group and a€G. The map i,:G— G defined by

i, (x)= axa”' for x € G is called the inner automorphism of G induced by a.

LetInn (G)={i,:G—G/i,(x)=axa”',a€G)}
Theorem: Aut G is a group and Inn G < Aut G

Proof : If f, g € aut G, f O g € Aut G, O is associative

1 € Aut G, For f € Aut G. then map ! e Aut G,
.. Aut G is a group

i,=i,€nnG.

Fori,, i, € Inn G, wherea,bc G
i i, =i i, =i, ' cnG.
SAnn G < Ant G

2.4 External Direct Product of Groups

Definition: Let, Gy, G,,....,G, be finite collection of groups. The external direct
product of Gi,...G, denoted by G; DG, @...D G, is defined by

GOG o DG, =1{(g5---g,)/ 8 €G 1<i<n} where

/ / !/ /
(815 820 &n) 21+ 82 seen €y ) =(1 & e s 8n&y )

It can be easily verified that Gy © G, ©.... D G, is a group.

=(g (gl/g1 ") e , g, (gn/gn ")) (By associativity in Gy,..G,)
= (1o &) (&) sorve s €)) ()" e 2,").
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Chapter 2: Isomorphism of Groups

Let e,.......,e, beidentity elements groups of G; ....... G, respectively
€lyeneen ,e, beidentity elements groups of G ....... G, respectively
Then, (g5 &) (€, €,) =(g1€15e w05 £,€,) = (&10» &)

e G T 1€,2,) = (€, e,) (gpseeeenne )

..(g,...e,) is identity element of G; & DG,
Let

g, €G; for1<i<mand G, is a group for1<i<n.
Let gi_1 be theinverseof g; in G; for1<i<n.

Then, (gl,..,gn)(g_l,....,gn_l):(g]gl_l, ...... . 8, gn_l)
:(el,....,en):(gl_l, ....... ,gn_lgn):(gl_], ...... ,gn_l)(gl, g,)

This is called the external direct product of G; ©......... @G,

Examples :
1) Zy ®Zy ={(0,0),(1,0),(0,1),(0,2), (1, 1), (1, 2)}

This is an abelian group.

Properties of external direct product.

product.

(1) O(G,®....8G,)=0(G))- O(G,)-....-O(G,)or |G|||G,|.....|G, |

(2) For g,...8,) €G, @....2G,,then 0(g,,..,8,))=Ilcm(0(g)),...0(g,)).
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Proof : (1) is clear by property of cardinality of Cartesian product
(2) Let O(g;)=n; for1<i<n

Let { ={cm|ny,...,n;]

Then n, |€f0r1§i§n,let€:ni r, for1<i<n.

Then (gy.s )" = (g8, )= (&, g,

=(g",....,e,") =(e,.....€,)

-0(g, g\l
Then Let O(g,,...g,)=kiek\l

k k k
(gl7 gn) :(gl 9 gn )(*)
= (el‘) en)
.'.gzk =e, for1<i<nm
=(|k.
Note, by induction, the result is true - m €N

Theorem : Let Gy, ...,G, be finite cyclic groups of orders ny, ...,1, respectively,
Then, G; &.... &G, is cyclic if and only if g.c.d (n;, n;)=1 for1<i, j<n

Corollary: Let m=n,....m_Then Z,, =7, ©...®Z,,
if and only if n;, nare relatively prime fori= j.

Note : If G}, G, are abelian groups, so is G; DG,

Theorem: Let m and n be positive integers of g.c.d (m,n) = 1, then U(mn) is
isomorphic to U(m) & U(n).

Proof :Consider the map f: U(mn) — U(m) & U(n) defined by,
f(x) = (x mod m, x mod m)
The map f is well-defined,
For ifx, y € U(mn), f(xy) = (xy mod m, Xy mod m)
=x mod m, y mod m, x modm, y mod m)

= (x mod m, y mod m) (y modm, y mod m)

= f(x) f(y)
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Let f(x) = f(y) = (x mod m , x mod m) = (y mod m, y mod m)
=x mod m =y mod m x mod m =y mod m
=x = y mod mn (.". m, n are relatively prime)

.". fis one — one

f is onto by Chinese Remainder Theorem.

Therefore, fis bijective

Clearly f is a homomorphism.

Thus, U(mn) is isomorphic to U(m) & U(n).

Corollary: Let m=ny,..n,, g.cd (n,n;)=1 fori=j

ThenU(m)=U(n) ©U(n,y) ®...0U(n,)

2.5 Normal Sub Groups and Quotient (Factor Groups)

Normal Subgroup

Definition: Let G be a group. A subgroup H of G is called a normal subgroup of

GifaHa ! C Hforeachac G

(oraha™' € H for eacha € G,eachhe H)

This is denoted by H <1 G

Theorem 1: Let H be a subgroup of a group G.
Then, the following statements are equivalent.
)H <G (ieaHa ' C H > acG)

2)aHa ' =H foreachacG

3)aH =H, foreachacG
4)H H,=H_, foreacha,bcG

(or aHbH = abH for each a, b € G)
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Proof :- (i) =>(ii)
Suppose H <G

Let a e G, then aHa 'CH

Also, aleq ). a'HaCH (*)

“H=a(a 'Ha)a ' CaHa ' (by*)

-.aHa '=H.

(ii) = (iif)

Ha=aHa 'a=a He=aH.

(iii) = (iv)

H,H, = HHab C Hab (.. H is closed under multiplication)
.".Hab = Heab C HHab = HaHb (Ha = aH)

.Hab C HaHb
.".HaHb= Hab (or aHbH = abHH C ab H

H=eH CHH.
~.aHbH = abHH (abH)

(iv)= (i)

Forae H, aHa ' = eaHa™ QHaHa_1 - Haa '=H
S H<G.

Note : If G is abelian, and H < G, then H < G.
Theorem: Let H <G, Let G/ H ={Ha:a € G}

Then, the operation HaHb = Hab on G/H is a well defined binary operation in G/H
and G/H is a group under this binary operation.
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Proof : We first show that this binary operation is well defined

Let

Letad ™" =h bb''=h,, h,h,cH.
we show Hab = Ha'b’
ab(@'by ' =abb' " d = ahyd ' =ad 'd'hya' T = hy d'hya' !
— hhy where hy =a'byd ' € H (- H < G)
c.ab(a'bY=hh,cH.
.Hab=Ha'b’.
ie HaHb =Ha'Hb'.
and the operation is well defined.
For
H, H,H.,cG/H,
(HH,)H,=H,)H = H(ab)c = Ha(bc) =H,(H,.)=H,(H,H,)
.". The binary operation is associative:
H,=HeG/H
HaHe :Hae :Ha :Hea :HeHa
.".He = H is, the identity element of G/H
For

H,cG/H,3H, "' €G/H such that
HH, '=H,  '=H,=H, 'la=H, 'H,

a

H ~1 s the inverse of H,

a
Thus, G/H is a group.
It is called the quotient groups of G by H (or the factor group of G/H).

Note : If G is finite o(G/H) = o(G)/o(H) =[G : H].
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Example: Let us consider Z /nZ

Let us find the cosets Z /nZ,

Fora € Z,weknow d¢q,r€7Z suchthat a=gn+r,0<r<n—1
ca—renl.;.at+nli=r+nZ,0<r<n-—1I1.
Moreover, for 0 <r,s<n—1

r+nli=s+nl=r—secni
:>‘r—s‘:00r‘r—s‘:n:>‘r—s‘:0,:>r:s
.. The distinct cosets of Z/nZ, areo+ 2, , 1+ Zi,...... ,(n—1) + 7.
Propositions 1 : Let G be a group. If G/Z(G) is cyclic, then G is abelian.
Proof : Suppose G/Z(G) = {(Z(G)x)" :n€ Z} =<Z(a)x>
Fora,beZ (G),letac Z(G)x",be Z(G)",m,n, €, 7
sa=zx",b=2z,x",z,2, € Z(G)

. n m n.m __ m._n __ n n__
ab=zx" z,x" = z;z,x ' x" =z} X" x" =z,x"z;x" =ba

.G is abelian.
Proposition 2: G/Z(G) = Inn G

Proof : Consider f: G/Z(G) — Inn G defined by f(Z(G)x) =1, where

(i, (@) =xax"")

S Z(Gx=2(G)y=xy"" €Z(G),Let xy” ' =z,z € Z(G)
ForaeG,i, (a)= xax ' =zya(zp) ' =zyay 'z = (yay) 'z = yay ' = i,(a)

S =1,

.. fis well defined.

f(Z(G)x. Z(G)y) =f(Z(G) =y) =1,
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ForaeG,i,(a)=(xy)a () '=x(yay Hx ! = ii,(a)

Sy, =00

S SZ(G) x Z(G)y) =iy, =ii, = f(Z(G)x) f(Z(G)y)

.. [ is a group homomorphism.

Forx,yeG, f(z(G)x)= f(z(G)y) =i, = I, = i(a)= iy(a)ivL acG

Sxax '=yay ' MaeG =y xa¥=apx ' MacG=(y 'xeZ(G)
=z(G) y=z(G)x

.. f is one—one

Clearly fori, € Z(G), f(Z(G)x) = i, and fis onto

.". fis a group isomorphism.

Definition: Internal Direct Product :- Let 1,, H,,..., H, be normal

subgroups of G we say G is the internal direct product of H; H, if

()G= Hy,Hyyooos H, =l hoyooosh | h € H,1<i <1}

(i) H,H,,...H,NH, ,={e} fori=1,2..n—1.

Note: ;N H ; ={e}if i = j)

In particular, if H, K are normal subgroups of G, then G is the internal direct product
of H, K if.

(i)G=HK={hk/he H, keck}

(i) HNk=2.

Theorem : If a group G is the internal direct product of subgroups Hy,..,.H, then

Proof: For hy € H h, € H ;b by b 'h, = (h b, b~ b, € H,

J2 g J
—1 1 —1 —1

hoh b R =h (b b R EH,

choh b EH H={e}

by =h by
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Forh.,h~ EHI,ISI'SH

by hy by =Ry hz1 hnl

= b, b =My hy kb, R
= ) (y 1)) (B By i)
=h h' " =e

= h,=h,

Shy Ry =Ry

By similar argument, 4, | = hnfll

Proceeding in this manner, /#, = hl.1 for1<i<n

We define 9:G—H, D......DH, by

a(hyyeees ) = (By,......, b)) (Dis well defined)

D ((hyyes b)) (Wb = D(WB o 0 =@ (R kb)Y
=& (b, b)) (. h =2 (hy,.. b)) @ (B',...h")

.. 1s a group homomorphism

S (hyyonh) =S (B s B Y= (o) = (R, b))

—h =h' forl<i<m=h h = h .h'
] i 1 i n

n

. is one —one

& is clearly onto.

.. is a group isomorphism.

2.6 Isomorphism Theorems

We recall that a homomorphism from a group G to group Gisa map f:G— G
such that f(ab) = f(a) f(b) for each a, b € G.

Let G, G be groups and f: G —G bea group homomorphism we define kernel
of f (denoted by ker f) asker f = {x eG/f (x) =¢'} is the identity element of G.

Proposition 1: Let G, G be groups and f: G —~G bea group homomorphism.
Then, Kerf < G.
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Proof :- We know, f(e)=¢€ ..ec Kerf = Kerf =

Fora,be Ker f. f(ab™)= f(a) f(b") = f(a) (f(B) ' =& & =&
c.ab~' € Ker f and Ker f < G.

ForacG,heker f, f(aha )= f(a) f(h) f(a” )= f(a)e'(f(a)) " =¢
c.aha ' eker f forac G, heker f
s ker <G

Proposition 2: Let G, G be groups and f: G —G bea group homomorphism.
Then, f is one — one if and only if ker f = {e}.

Proof :- Suppose f is one-one

Then x € kerf

=f(x)=€=f(x)=f(e)=€ =x=e. ker f ={e}

Conversely, suppose ker = {e}

Then for x,y €, G, f(x)= f(") = () f5) ' =¢' = f(x) f ) =¢
:>f(xy_1):elz>xy_lEkerf:>xy_1:e:>x:y

.. [ is one — one.
Note: If G, G are groups and f: G —G isa group homomorphism, then

Imf= {f(x) : x €G} is a subgorup of G.

Proposition: Let G be a group and H<1 G, Then p: G —G/H is surjective group
homomorphism, where p(x) = Hx. Forx € G and kerp=H

Proof: Forx,y € G, (p(xy) = ny = HxHy = p(x) p(y)

.".p is a group homomorphism.

p is clearly onto. (For H, € G/ H, p(x)=H(x)3x € G suchthat
x cker p< H = H (identity element of G/H is H)

&SxeH
Skerp=H
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Note:- Thus, if H<I{G, where G is a group, then H is a kernel of a group
homomorphism from G to a suitable group.

We next prove the Isomorphism Theorems.

First Isomorphism Theorem: Letf: G — G bea homomomorphism of groups.

If f is onto, G/kerf ~G (or in general G/kerf = Im f).

Proof :Consider the mapping 7: Glker f — G defined by,

7 (ker f a)= f(a) (or f (Ka)= f(a)) whereK =ker f
This map is well defined

ForKa=Kb,a,b € G

—ab 'cK(=ker f)= f(ab ) =¢' = f(a) f(b ) =¢
= f(a)(f(B) ' =€ = f(a)=f (D)

7 (Ka.Kb) = f (Kab) = flab) = f(a) f(b) = f (Ka) f (Kb)

./ is a group homomorphism.

[ (Ka)= f (Kb) = f(a) = f(b)

. f is one - one.

If fis onto, for ' € G 3 a € G such that f(a) =a’
.'.Z(Ka):f(a):a’

.. f is onto.

Note :- 1. If f is not onto, we consider f : G/ker f — Imf and G/kerf A Imf.

2. The above theorem, is also called. The Fundamental Theorem Of

Homomorphism Of Groups.
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Second Isomorphism Theorem: Let H and K be subgroups of a group G and

H  HK

K < G. Then, -
HNnK K

Proof : We note H K < G and K < HK,
K <G= K< HK
wedefineamap f:H — HK /| K by f(h)=hK forhe H

Then, for Ay, h, € H, f(h)=hh)K="mK)WK)=f(h)f(h)

.. fis a group homomorphism.

f is onto for any element in HK / K is of the form hkk(hk)
And hk = f(h)
Kerf={heH:hK=K}=>he K =h=HNK.

.". By First Isomorphism Theorem of groups

H  HK
HNK K

Third Isomorphism Theorem of groups:

Let G be a group and H, K be normal subgroups of G If K H, then
(G/K) / (H/K) = G/H

Proof : Consider the mapping f: G/K —G/H given by f(Kx) = Hx
This map is well defined, for

K,=K,=xy '€k=xy ' € H= Hx=Hy

J (KxKy) = f(Kxy) = Hxy = HxHy = f(Kx) f(Ky)

.. fis a group homomorphism.

f is clearly onto.

"." Any element of G/H is of the form Hx, x € G

. f(Kx)=Hx

S forker f={Kx/xeG f(Kx)=H}={Kx/xeG,Hx=H}=H/K
.". By First Isomorphism Theorem, G/K/H/K ~ G/H
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Theorem: Let Gy, G,, be groups and H, < Gj, H, <G,.Then

GG, G G

H ®H, <G ®G, and ~

Proof : Consider themap [ :G, & G, — G S &
Hy  H,

defined by f(g-g,)=(H,g,, H,g,)

Then, for (g,,8,), (81/82,) €G, DG,
f((gl,gz)(gl/,gzl))zf(glgl/,gzgzl)z(nglgll,Hzgzgzl)
=(H,g H, gll ,Hyg) Hzgzl) :(ngszgz)(ngl/ H, gzll)

=f(g.2) /(g .2

.. f is a group homomorphism.

G G
For (H,g, , H,g,) € —L & —2
(H,g 282) H = H,

(Hyg,H, g,)=f(g1,8)
.. f is onto

(g1,8)€ker f & f(g,8,)=(H,H,) < (H g, H,g,)=(HH,)
=g €H, g c€H,<(g,8)€H ©H,

.". By First Isomorphism Theorem,

GG G G

Correspondence Theorem: Let G, G be groups and f : G — G be a

homomorphism of group G onto G.

Then
i1H<G = f(H)<G

ilH< G = ' (H)<G f\(H)y={x€G: f(x)EH}
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il HAG= f(H)< G
v] HAG= ' (H)<G
v] H<Gand HDOker f = H = f'(f(H)).

vi] The map H — f(H) is a 1-1 corespondence between the family of subgroups
of G containing ker f and the family of subgroups of G. Furthermore normal

subgroups of G correspond to normal subgroups of G.

Proof :
ilecH, . fley=é cf(H)and f(H)=o

Fora',b' € f(H),d' = f(a),b' = f(b) for somea,bc H.
cab '€ H,and f(ab ') e f(H)

flab™ "= f(a) f(b )= fla)(f(b)) ' =d'®)"
~d' (b)) € f(H)and f(H)<G

ii] Let H<Gand H= f'(H)
Then,e’Eaande':f(e):>f(e)eﬁz>e€f_l(ﬁ)

Y H)=o.

Let a,b€ f~'(H)then f(a), f(b)€ H,and H <G

£(@) (/b)) €Hie f(a) f(b"YeH, f(ab™ )= f(a) f(b)eH
cabte Y H) L FTUH) <G

iii] Let H < G,

Leta' €G,h' € f(H).

Thena' = f(a),h’ = f(h),whereac G,hc€ H

a'h'a"''= f(a) f(0)(f(a)"' = f(a) f(h) f(=1)
= f(aha "Y€ f(h) (. aha ' € H)

S f(H)<G.
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iv]Let H<1G Letac€ G, he f~\(H)ie f(h) eH

s flaha Y= f(a) f(h) fla )= f(a) f(W)(f(a) ' €H
caha e Y H) TN (H)<G

v] Let H<Gand H D kerf.

Then, /' (f(H))DH.

Letxe f~'(f(H)).. f(x)€ f(H)

S f(xX)= [ (h) forsomehe H . f(x)f(h) "' =¢
S f(hY=¢and f(xh™")=¢
cxh'ekerf CH . .xh'=h,h €H
sx=hh,eH and ' (f(H)CH

SN f(H)=H.

vi] Let H bea subgroup of G.

Then, /' (ﬁ) is a subgroup of G containing ker f

ST HY=H.

.Themap H — f(H)is onto.

For HH, <G= f(H,)=f(H,)

Then f~'(f(H)=H, [~ (f(H,))=H,

Hl,HszeI'f _'_leHz.

.".The map is one — one

Corollary: Let G be a group and N G.

Given any subgroup H of G/N, there is a unique subgroup H of G containing N
such that H' =H / N, Futher, H < Giff H/ N<G/N

Proof : Consider the homomorphism f: G —G/N defined by f(x) = Nx. f is an
onto homomorphism and ker f = N .. By correspondence Theorem, there is a
unique subgroup H of G containing N such that f(H) = H/N = H'

Further H <G H/ NG/ N
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!
Proposition : 4, <S, for n>2 then o(A,)= %

Proof : Consider €:S, — {1, —1} defined by € (o) =signo

Then € (0,0,) = sign (0,0,) = Sign (0,) Sign (0,) =€ (0,) € (0,)
foro,,0,€S8,

.". €1s a group homomorphism.

cisonto forec ((12)=—-1Le{)=1,
kere={0ecS,/c(0)=1}=4,

A, <S,.and by First Isomorphism Theorem of Groups,
S, /A4, ~{,—1}

0§ )/ o(4,)=2

Note : We have seen that by Lagrange’s Theorem if G is a finite group and
H < G, then O(H)\O(G).
However, converse of Lagrange’s Theorem is not true is general.

We give an example below.

Example : A 4, has no subgroup of order 6. (O(A 4) = 12).
Proof :Suppose A 4 has a subgroup H of order 6.
Then [4,: H]|=0(4,)/ o(H)=12/6=2

S H <Ay
A, has eight 3 cycles

Let 0 be a 3-cycle in A 4.
If o/H, then HO == H.

If o°¢ H then Ho®> = Ho
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solc'eH.ieoe H , which is not true

If o* € H, then (a*)""' =0 € H.Which is not true
.0 € H, thus all 3 cycles arein H.
SLO(H)>8,

A contradiction.

.. 4, has no subgroup of order 6.

2.7 Classification of Groups of Order < 7 Upto Isomorphism.

We note that group of order 1 is a the trivial group which is unique upto
1somorphism. Group of order 2, 3, 5, 7 are cyclic (as prime order) and are unique
upto isomorphism.

Let G be a group of order 4. Then, any element of G has order which is divisor of
4ie.1,2o0r4.

If G has an element of order 4, then G is cyclic.

Suppose G has no element of order 4.

Then any non-trivial element in G has order 2. Let G = {e, a, b, c} whiche, a, b, ¢

and distinct elements a> =b> =c> =e

We find ab = e

" ab=e=-ab=aa=-b=awhichis not true
ab=a=-ab=ae=-b=ewhichis not true
ab=>b=ab=eb = a= ewhichis not true

..ab=c,similarly ba = e,ba = a,ba = b

sba=c=ab

Similarly, we can show ac =b =ca
bc=a=cb.

*. Composition table of G is
e abc
e e abec

a a € C a
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Thus, any non-cyclic group G of order 4 is of the above type (and is called the
Klein’s four group V)

Let G be a group of order 6. Then, order of any element of G divides 6.

.. Order of any element in G is 1, 2, 3 or 6. G is a group of even order and so has
an element of order 2.

Suppose every non-trivial element of G has order 2. Then, x* =e,V x€ G
s Forx,yeG,(xy) " =xy

Sy X =xy e yx=xy

.. G is abelian

Ifa,beG,a#e,b+#e then H= {e, a,b, ab} is a finite subset of G having closure
property.
e a b ab

e |le a b ab

b |[b ab e a

ablab b a e

..H <G, By Lagrange’s Theorem o(H)/o(G) i.e. 4/6.

A contradiction.

.. G has an element of order 3 or 6.

Case 1: If G has an element of order 6 then G is cyclic.

Case 2 : G has no element of order 6. Let a € G have order 3 and be G
have order 2. Then b # e, a,a’ (o(a)=o0(a’)=3,0(h)=2).1f ab=ba, then

o (ab) =6 which contradicts that G has no element of order 6.
.‘.ba;tab,ba;te('.'a_l =a2)ba¢a(b¢e),ba¢a2 ('.'b;ta)

ba;tb('.'a;te),ba;tab.
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We note e,a,a’,b,ab,a’b are distinct
(a’b#ebza),(a’bza)(-ab=e)(ad’bza’ wb=e)
(a*b#ab-caze)

-.G={e,a,a’,b,ab,a’}

ba=a’h

Thus, G=(a,b)a’ =b* =e,ba=a’b

~.G=S,

.. There are two non isomophic groups of order 6, one is cyclic, and the other is
isomorphic to S3

Note : An abelian group of order 6 is cyclic.

2.8 Fundamental Theorem of Finite Abelian Groups

Let G be a finite abelian group of ordern. Then G=Z, ®Z, ©@...... ®Z, where

n

1|1, for 1<i<k —1 and the above decomposition is unique.

This is also expressed as.

Let G be a finite abelian group of order n > I and let n = p"* p5*... p;* where

Py»--- P, are distinct primes, then

GG DG, D... DG, where o(G)=p/ 1<i<k and

G zZpl_ a, ("B---@Zp,. a1, where o, 2, =...2a, 21 and

a, +..ta, =a,.

We note that if p,,...p, are primes dividing o(G), thenin p; / n for i <i<k.
Recallthat Z,, ©Z, ~Z,, if and only if g.c.d (m,n)=1

Example : Let us list all abelian groups (upto isomorphism) of order 180.

180=2%.3%.5,
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Abelian groups.

Lo Ly ®ZLo®ZLs
Ligy® Ly Lo®Ls®LyDL,
Ly ®ZLg Ls®Ly L)Ly DL,

Let us consider classification of abelian groups of order p2 , p3 , p4 upto

isomorphism.
Partitions Abelian Groups
1] p? 2 z,
2=1+1 ZP@ZP
3
2] p 3 Z 5
P
3=2+1 7 DL
P’ p
3] p* 4 Z
P
4=3+1 Z DL
P P
4=2+2 L DL
P P
4=2+1+1 7 Pl , DL
p? p P
4=1+1+1+1 2,%L,8%,9L,

Example: Expressing abelian groups in the form Gp1 &) sz D...H Gpn
And Z,,®Z,, D DZ, where n;|n. for group of order 360.

360 = 2° x3? x5

llp=2 p=3 p=>5 Abelian groups
2 3 5 Zy,PZLsDZ,
2 3 1 Z,®Z,D7Z,PZL,
2 1 1 ®Z;
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2lp=2 p=3 p=5

2 3 5 Zg®ZDZ,
2 3 1 Z,0L,®L,0L; &L,
2 1 11 OZs

31 p=2 p=3 p=5
22 3% 5 Ty DZ,
2 1 1 Z,07,874DZs

4 p=2 p=3 p=5
2 ¥ 5 Zag
1 1 1
Thus, there are 4 non-isomorphic abelian groups of order 360.
An important consequence of the Fundamental Theorem of finite abelian groups.

Theorem: If G is a finite abelian groups of order n, and m is a positive divisor of
n, then G has a subgroup of order m. (This is converse of Lagrange’s Theorem)

Note : The above partition may not be unique.

2.9 Summary

1) Let G, G be groups. Amap f: G —G is called a homomorphism of group G
to group G if f(ab) = f(a) f(b) foreacha, b € G

(i.e. f preserves group operation)

2) Let G, G be groups. Amapf: G — G is called an is isomorphism of group G

to group G if i) f (ab) = f(a) f(b) for for each ab €G (ie f is a group
homomorphism) and ii) f'is bijective.

3) Any finite cyclic group of order n is isomorphic to Z ,, the group of integer
residue classes modulo under addition.

4) Cayley’s Theorem: Every group is isomorphic to a group of permutations

5) An isomorphism of a group G onto itself is called an automorphism of G

6) Let G be a group and a€G. The map 1,:G— G defined by

i, (x)= axa” for x € G is called the inner automorphism of G induced by a.
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7) For g},...8,)€G D....8G,,then O(g,..,g,)) =Ilcm(0(g),..,0(g,))

8) Let G be a group. A subgroup H of G is called a normal subgroup of G if aHa
-1 C Hforeachace G

(oraha '€ H foreachacG,eachhe H)

9) First Isomorphism Theorem: Let f: G — G bea homomomorphism of

groups. If f is onto, G/kerf ~G (or in general G/kerf = Im f).

10) Second Isomorphism Theorem: Let H and K be subgroups of a group G and

K < G.Then, _ 4 _HK
HAK K

11) Third Isomorphism Theorem of groups:
Let G be a group and H, K be normal subgroups of G If K H, then
(G/K)/ (H/K) ~ G/H

12) There exist unique groups of order 1, 2, 3, 5 as they are prime and 2 groups of
order 4 and 6 upto isomorphism.

13) Fundamental theorem of finite abelian groups: Let G be a finite abelian
group of order n. Then G=Z, ®Z, D...... ®Z, where n,

i+1 ni for

1<i<k —1 and the above decomposition is unique.

2.10 Unit and Exercises

1) Show that Z(G) is a normal subgroup of a group G
2) Show that a subgroup of index 2 is a normal subgroup of any group G

(Let H<G, [G: H] =2, Let a = H, then H, Ha are distinct right cosets of H of G.
H, aH are distinct left cosets of Hin G. G=H U Ha = H UaH.

(Ha=aH=GH)

. ForxeG,xe H= Hx=xH=H

x = H = Hx=xH =G (H).
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3) What is the order of 5 + <6> in the quotient group Zg/ <6>?.

4) Let G={% 1,4, + j, £k} wherei* = j> =k*=—1
jj=—ji=k, jk=—ki=iki=—ik=j

Construct the composition table of G.Show that every subgroup of G is normal.

5) Show that H = {I, (12)} is a not a normal subgroup of S5 but {I, (123), (132)}

is a normal subgroup of S5.

6) If H and K are normal subgroups of a group then HN K <G
7) If H is a subgroup of a group G and K < G, then H K <G.
(ec HK, Fora,be HK,a = hk,b=hk,,h c H,k; € K
Mk, - (hoky) ™' = bk, 'hy ™t = mkh, ' k€K
= hhy, " hy khy, ' € H K)
8) IfH,K <G, where Gisagroupand H < Gthen H NK <K
Miscellaneous problem on Group Theorem

1] Compute order of each element in the following groups

i) D;- Dihedral group of order 6
ii) D, - Dihedral group of order 8.
iii) u(30) iv) S, v) &8

2] LetX=(1234 .. 11 12) €S}, for whichintegers I, i <i <12,is x'a 12

cycle ?.

3IEX=(12)34)(56)(78)(910). Is there a n cycle
o (n>10) such that x = 0" for some positive integer k?
1 n
4] Show that H = { 0 1 /n€Z} isacyclic subgroup of GL,(R)

5] Let G be an abelian group prove or disprove

H={xeG:x" =e for somen € N} is a subgroup of G.
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6] Let G be a finite group of order n > 2, G cannot have a subgroup H of order

n-1.
71 Let Gy, G, be groups. Prove G, ® G, ~ G, ® G,

8] Show that the following are subgroups of G; ® G, where Gj, G, are groups
then,

11{(e, &) 18, €6} 21{(g1,e) 18 €6y}
3]1{(g,8g) :g €G} whereG =G, =G

9] i] Prove that Z © Z, is not isomorphic to Z .

ii] Prove that & ®Z, is not isomorptic c to &
10] Find the subgroup of S, generated by {(12), (12) (3 4)}
11] Prove that S, =<(123 4), (124 3)>

12] Find a group which contains a, b such that o(a) =, o(b) = 5 and o(ab) = 2.

13] Let G be a group and H <1 G, If o(H) =2, Prove that H C Z(G).
14] Show that S, has a unique subgroup of order 12.
15] From the given pairs of subgroups, find isomorphic pairs, justify your answer
N wyandZ, DL, 2] Ly SZLgand L,
31 Z®Zand Z 4] Zy®ZLs and 7,5
51 W) and p(10) 6] p(8) and p(12)
7] 7 and 2 Z (under additional)

16] Find a non-cyclic group of order 4 in Z 4, B 7,

17] Find all generators the following cyclic groups of

1130ZN207 2]7/30Z 3]u(13)

18] Find a cyclic group of order 4 and a non-cyclic group of order 4 in S .
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19] Let G= {[Z Zab]:a,b €Gyand H=1{a+bJ2:a,b€ G} show that
G ~ H (operation being addition in both groups)

20) Prove that every subgroup of D, of odd order is cyclic.

21] Find orders of all elements in 4, and Dn

22] Let G be a finite group and N <1G if [G : H] and o(n) are relatively prime,
then for any x € G, x°™) = e implies x e N
23] Let G be a group and N be a cyclic subgroup of G such that N AG'.
If H <N, show that H < G

24] Let =

b b
{G:{[g d];a,b,dER,adio}andN:{{ bRy

a
0
show that N <1 G and G/N is abelian.

25] Prove or disprove: If G is a group and K <H < G.

K<Hand H<1GthenK G
24] Show that i) Z(D,) ={e} if nis odd
i) Z(D,,,)={e,a} where a™ = e.(o(a) = m).

1 a b
25]Let H={{0 1 c|:a,b,cE€Z,}
0 0 1

Is H abelian? Is H <1 SLy(Z)? Justify your answer.

26] Prove that there is no homomorphism from Zg ®Z, onto 2, © 74

27] Determine all group homomorphism from.
1] Z onto Zg 21 ZytoZy DL,

31 SytoZ,
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28] Suppose @ :11(30) — (30) is a group homomorphism and ker
g ={1,11}. If &(7)=717, find all elements of (30) that map to 7.

29] Suppose F:Z B z— G (G is a group) is a group homomorphism such that
2(3,2)=aand (2,1)=>b, Determine &(4,4) (Assume operation in G is
addition).

30] Show that a group of order 65 is cyclic.

31] Let H, K be distinct subgroups of a group G of index 2 Prove that H N K G
and [G:H NK]=4.In G/ HNK Cyclic? Justify your answer.

32] Let G be an abelian group of order 8. Prove or disprove. G has a cyclic
subgroup of order 4.

33] Classify upto isomorphism abelian groups of under 108.
34] If G is an abelian group of order 120 and G has exactly 8 elements of order 2.
Determine the isomorphism class of G.

35] Find the number of abelian groups (upto isomorphism) of order [1] 15 [2] 42
[3] 16 [4]48.

36] Let G be an abelian group of order 16. and a, b, € G such that o(a) = 0o(6) = 4

and a*> =b” then determine the isomorphism class of G.
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UNIT 2

SYLOW THEOREMS

Unit Structure

3.0 Objectives

3.1 Centralizers , Normalizers and Stabilizers
3.2 Groups Actions

3.3 Orbits & Stabilizer

3.4 Sylow Theorems

3.5 Classification of Group of Order Z » Where p is a Prime

3.6  Classification of groups of order < 15 upto isomorphism

3.7  Summary

3.8  Unit And Exercises

3.0 Objectives

After going through this unit you shall come to know about
e The concept of group action and stabilizers
e The notion of the order and its relation with the order of the groups

e (lassification of groups upto order 15 using various results of Sylov
theorems
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3.1 Centralizers and Normalizers Stabilizer

We recall that centre of a group G is defined as Z(G)={x€G/xg=gr+ g€ G}
Z(G)<1 G, Moreover, if G/ Z(G) is cyclic, G is abelian.

Let G be a group and A be a non-empty subset of G.

Definition: The centralizer of a Cg(A4) in the group G is defined as
CG(A):{gEG/gagf1 :aVaGA}.

We note gagi1 =a$ ga=ag.

C;(4) is the set of all elements in G which commute with every element of A.
Proposition : C;(A4)<G

Proof : ecC;(A) " ea=ae=a+ac 4

Let x,y€Cg5(A) then xa=ax,ya=ay+ac A.

.l
. Foraediy=aya ',y ' =(aya” )" :(ail) yla =gy la!

(xy_l)a:xy_lazxay_1 a ! a:xay_1 :axy_1 :a(xy_l)

oy leCa(4).
We note that if 4={a},a" €C; ({a})+neN.
When 4={a},C; ({a}) is denoted by C; (a).

Definition: The normalizer of A< G in G, is defined as

NG(A):{geG/gAg”:A}.

67



ALGEBRAII

Proposition : N;(4)<G
Proof: ede ' =4
.e€Ng(A)
Let x,y€Ng5(A) then xa X! =A, ya y_1 =4.

1

Ly a T =t (y A y‘l) =l ydy o = x4

sy eNg(A)
Ng(4)<G

Clearly, C,(A) <Ng(A4)

Again, if 4= {a} , we denote N;(A4) by Ng(a) and we shall drop a when there

is no ambiguity.

) Cela)=Z(a)

ii) Cg(a)={a}iff a € Z(G).

Examples :

1) If G=355 and a = (123). Then C(a)= {I, (123), (132)}
If A={1,(123),(132)}.Then Cz(A4)=A, Ng(A)=G.

2) IfGisagroupand H<GthenH, H C N5(H).
.". For xEH,xHx_1 —Hx '=H.

3) IF Gisagroup and H < G then

H CC,(H) iff H is abelian

<:>—\+hEH,aha_1:h—1+a§H.
S ah=havacH,vhe H < H is abelian
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3.2 Group Actions

Let G be a group and S be a non-empty set. Then map -G XS — S denoted by

(g,8)— g-Sisan action of G on S if it satisfies the following conditions.

1) e.S=Sforeach s€S

2) g1.(g2-5)=(g1.g>).s foreach s€ S and each gj,g, €G

S is called a G - set.

Example :

1)

2)

3)

4)

5)

Group acting on itself by left multiplication g.a=aa foreach g€ G,acG

i) ea=ea=a foreach acG.

1) gl.(gz.a):gl.(gz.a): gl.(gz.a) = (glgz)a = (glgz).a for each
ac G, foreach g,8,€G.

Group acting on itself by conjugation g.a = gagi1 for geGand a € G

1) e—a=ecae '=a

g (g0) =g (2ag ! |=a(gae o =(ag)a g e
:(glgz)a (glgz)_l :(gng)'a

A group G acts on P(G) (The set of all subsets of G) by conjugation.
gS=g8§ g_1 for S € P(G). Asin (2), it is a group action.

Let n be a positive integer. Then G=3S,, by 0.i=o0 (i) for i€{l,...n}. For
ie{l,...n} G, :{JESn /a(i):l'}.

Let G be a group acting on a non empty set S.

Then, for g € G, the map g :S — § defined by g(a) = g-ais a permutation

of S and the map &:G — S, defined by @(g)zag is a monomorphism.
(Cayley’s Theorem).
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3.3 Orbits and Stabilizers

If G is a group acting on a set S and s €8 (is fixed) then, the stabilizer of s in G is
theset Gy ={g€G/gs=s}.

G¢ <G
eS=S
ee Gy
Let x,y€G then x —s =5,y —s=5.

y_l-SZ y_l-(y.S)Z(y_1y>.S:e.s:s

(xy_l).S:x.(y_ls):x.s:s
Ly eG G <G
Orbit of SE€ S is defined as {g.s /s €S} and is denoted by orbit (S)

Proposition : Let G be a group and S be a subset of G. Then the number of
conjugates of a subset S is ‘G N, (S)‘ and the number a € S is ‘G :Cq (a)‘ )
We first prove a lemma (The proof may be read quickly)

Lemma : Let G be a group acting on a set S. Then, the relation ~on S defined by
for a,b€ S a~biff a= g.b forsome g € G is an equivalence relation. For each

a € S, the number of elements in the equivalence containing a is [G:Ga] , the
index of the stabilizer of a.

Proof : We first prove ~is an equivalence relation. For a € S ,e-a=a.
c.a~a (~ is reflexive)

a,beS,a~b=3geG suchthat a=gb

—1 —1 —1
=g a=g (g—b):(g g).b:e.b:b
= b ~ a(~ is reflexive)
a,bES,aNb,bNCZ>E|gI,g2€Gsuchthata:gl-b,b:gz.c
=a=g.(gc)= (glgz).C, 218, €G = a~ c(~ is transitive)

[a]:{g-a/gGG} (orbit of a).
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Now if b=g-a€|a|, then g G, is the left costof G, inGand b=ga—gG,

.. We have a map from [a] — left costs of G, in G defined by g.a = gG,, .
The map is well defined for g.a=>b.a

=h'ga=h" (ha)=(h""ha=ea=a
—=h'geG,=hG,=gG

a

Similarly ©G, = gG, =h 'g€G, = (h_lg).a =a=ha =ga
and the map is one - one.

The map is clearly onto, for g€ G, gacG, = ga=gG,.

.. The use of elements in the equivalence classes of a = no. of left costs of G, in
G.

.". Elements in orbit of a = [a : Ga].

Proof of Proposition: G, = {g cGlgSg = S} = Na(S).
No. of conjugates of S =[G : N;(S)| when

S = {a} = N;(S)=Ng(a)=C(a).

.".No. of conjugates of a = [a : Ga]

Class equation : Let G be a finite group and let /;..../, be representatives of the

distinct conjugacy classes of G which are not contained in Z(G). Then

G|=|Z(0)|+ > [G:Cs(G)].
i=1

Proof : For g € G, the conjugacy class of g is {g}_iff g€ Z(G).
(xgx_1 :g—vaEg(:}xg:gx%xEG)@gEZ(G)

Let Z(G)= {Zl...Zm } Let K,...K,. be conjugacy classes of G not contained in

centre, and /,,....[,. be representatives of conjugacy classes. Then, the conjugacy

classes are {e} {Zl }{Zm}, K;..K,.
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This partitions G

~lGI=D"14 > Tk =1ZG))+ Y |G=C(gy)|

i=1 i=1 i=1

80Z(G)

Note : ‘G:(Cgi)

O(G)

Theorem : A group G of order p” where p is a prime and 7 >1has non-trivial
centre.

Proof :By class equation. ‘G‘ — z”: ‘G:C(gi)‘ z‘Z(G)‘
i=1

8 ¢2(G)

As g Z(G), |C(g)|=G,

Now ,

G:C(gi)‘:‘G‘/‘C(gi)‘ so each term in zr: ‘G:C(gl-)‘ is of the form

1=
& ¢Z(G)

k
P .

Now |G|— > |G:C(g)|=|2(G)|
i=1

8 #2(G)
6= p"
P\ Y |G C(g))
i=1
. P\Z(G)|
~|z(e)|=1

-.p\|G

.. G has non-trivial centre.

Note : A group of order p”, p prime, 7> 1 is called a p group. A subgroup whose

order is power of prime is called a p - subgroup.

Corollary: A group of order p2 is abelian.

Proof : By class equation, Z(G)| =1 = |Z(G)| =porp’
If |Z(G)| = p® thenZ(G)=G and G is abelian.
|Z(G)| = pthen G‘Z(G) is cyclic

.. G is abelian.
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3.4 Sylow Theorems

Definition: Let G be a finite group and let p be a prime divisor of |G| If pF divides

|G| and p**! does not divide order |G| then any subgroup of G of order p* is called
Sylow p - sub group of G.

Sylow’s First Theorem :
Theorem: Let G be a finite group and p be a prime. If pk / ‘G‘ then G has a
subgroup of order pk .

Proof :We prove the result by induction 0n|G|. If |G| =1, the theorem is trivially

true. We now assume that the theorem is true for all groups of order less than |G| .

If G has a proper subgroup H such that pk divides |H

, then by induction

hypothesis H has a subgroup of order pk , which is a subgroup of G.

So, we now assume that pk does not divide the order of any proper subgroup of

Gl=|z@)|+ > |G:C4).
acZ(G)

G we next consider the class equation,

PGl P /|G ag Z (G)

- p/|G:H(G)|+ad Z(G)

.. From class equation, it follows that p/ ‘Z (G)‘ . From the structure theorem of

finite abelian groups Z(G) has an element x of order p, x € Z(G)
<x> G
Consider the factor group G/ <x>, pk_1 /‘G / <x>‘

.". By induction hypothesis, G / <x> has a subgroup of order pk_1 . This subgroup
is of the form H/<x> where H < G and x€H .

Yol Hok=r

‘H‘ = pk and thus G has a subgroup of order pk .

k—1
=P
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Corollary 1:
Cauchy’s Theorem : Let G be a finite group and p be a prime that divides the
order of G. Then, G has an element of order p.

Proof : By Sylow’s Theorem, G has a subgroup H of order p.
‘H‘zp,,',H is cyclicand H = <x>
S.0(x)=p.

Corollary 2 :Let G be a finite group, G‘ = pkm, k>1(p,m)=1 then G has a p-

sylow subgroup.

Definition: Conjugate Subgroups :Let H, K be subgroups of a group G. We say
that H, K are conjugates in G if there exists g € Gsuch that H =gk g.

Sylow’s Second Theorem :

Theorem : If H is a subgroup of a finite group G and |H | is a power of a prime P,

then H is contained in a sylow - p subgroup of G.

Proof :Let K be a Sylow p-subgroup of G. Let C = {K =K, K,,... Kn} be the

set of all conjugates of K in G.

Since conjugation is an automorphism, each member of C is also a Sylow p-
subgroup of G. Let Sc denote the group of permutations of C.

For g € G, define F,:C—C by Iy (Ki):gKl-g_l.

1 1

—1 —1 —1 —1
=g gKig g=g gK,g g=K,; =K,

. ¢, is one one.

IfKJEC,Kj:hKl-h_l for some he G

—gg WK 'gg ! =g(g7 K 'g)g !

—g(g K (g7 g = eKig ™!

74



Chapter 3: Sylow Theorems

Where K; = gilh Kl-(gflh)f1 cC.

- Ki=9,(0K;),K; €C

.. D4 is onto.

Thus, &, :C — C is bijective and &, €5,

We defineamap 7:G — S, by T(g)=9,.
For 1<i <n,T(gh) (K,)=@g,(K,) = (gh)K,(gh)"' = ghK;h~ g~
= g(mKi g™ =2, (24, (K) = T() TIT (K,)

Dy, =T(gh)=T(g)T(h).
.. T is a group homomomorphism.
We next consider T(H).

|H| isapower of p. .". |T(H)| is also a power of p.

Now ‘OVbT(H) (Kl)

\[ T(H)|

‘OrbT(H) (Kl.) = power of p (or 1)

Now

O,br iy (ki) =1 forsome 7,1<i<n

<2, (K)=K vgeH ogKg '=Kv+geH
& geN(K)wgeH & H<N(K;) & H<K,
(Hisap—groupa. .xeN(k)&xeH=xck,)
Now |C|=|G: N(K)|.

G:K|=|G:N(K)||N(K):K

subgroup.

G:K| is not divisible by p (K is sylow-p

b
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Now, |C | is sum of no. of elements in the orbits.

|G: K| is not divisible by p.

= |G : N(K)| is not divisible by p.=>|C| is not divisible by p.
€= Jorbrnk;

.". There is at least one orbit having only one element.

.H <K, for some I by

Sylow’s Third Theorem :

Theorem 3 : t G be a finite group and p be a prime dividing |G| . Then, the number
of sylow p subgroups of G is equal to 1 module p and divides |G| .

Furthermore, any two Sylow-p subgroups of G are conjugates.

Proof :Let K be any Sylow - p - subgroups of G and C = {K =K, K,,.... Kn} be
the set of all conjugates of K in G.
We show n=1 mod p.

For g€G, define @,:C—C by @, (K;)=gK,g .

2, (K)=2,(K;)=>gKig ' =gK;g ' =g 'eK,g 'g =2 'eK ;g7 g |

Dy

1S one-one.

For K, €C,K; :hKl-h_l forsome he G .

K =ge WK gg T = g(g MKi(g ) )g !
1 -1 1\

=gK;g  where K; =g th(g h) eC

. @g 1S onto.

R :C — C 1is bijective.
g € S., where S, is the group of permutations of set C.

Let 7:G — S, be defined by T(g) =2, .
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Then, for g, h € G.

T(gh)zggh

For 1<i<n,d,, (K;)=(gh)K; (gh)_1 = ghKh'g™!
:g(hKih_1>g_1 =0, (hKl.h‘l) =0, (2,K;) =2, 09, (K;)

- T(gh)=T(g)T(h)
and T is a group homomorphism.

Consider T'(K)0rbrx\K; / T(K).
But |K| is a power of p. ‘K‘ ‘T(K)‘
|T(K)| is a also a power of p.

=p otherwise

=1 when i =1, and ‘orbT(K)Ki

‘OrbT(K)Ki

n

‘C‘ = ZorbT(k) K, =14 p(n—1)m=1mod p

i—1
We next show every sylow p subgroup is a member of C. Suppose H is a sylow p-
subgroup of G which is not a member of C.
We consider T(H), then sum of the orbits size blender action of T(H) is sum of
terms each divisible by p - orbT( H) k;1=1 for any i.
.'.nE‘C‘ mod p
A contradiction.

~HeC

Now n:[G:N(K)}

Corollary 1 :A unique sylow p - subgroup is normal.
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Proof : If H is the only Sylow p - subgroup of a group G, then for each
geG,gH g_lis also a sylow - p- subgroup of G.
.'.gHg_1 =H+geG H«G

Corollary 2 : A sylow - p - subgroup of a group which is normal is unique.

Proof : Let H be a sylow p - subgroup of a group G.

Then, any sylow-p-subgroup of G is conjugate to H, and is of the form gHg_1 for
some g €G.

H<G. .gHg '=H.

.".H is a unique sylow p - subgroup of G.

3.5 Classification of Group of Order Z , Where P is A Prime

Theorem: Let ‘G‘ = Zp where p is an odd prime. Then G~ Z, , or G= D,

Proof : By Cauchy’s Theorem, G has subgroups of order 2 and p.
.".G has an element of order 2 and an element of order p.

G=(a.b). |)=p
~|G:(b)|=2 . (b)<G

c.aba”'€<b>
caba ' =b" for somek,1<k<p
b =" =(aba™ )= ab*a' = a(aba Y a ' =a*ba?
2
|a|:2.'.b =b
2
VT =e= p(k2 =)= p(lk+ D(k—)=1<k < p
=k=lork+1=P=k=1lork=p—1
Case 1: Ifk=1,

aba ' =b..ab=ba .'.|ab| =2p and G is cyclic of order 2 p
GrZ,,
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Case 2:ifk=p-1 aba ' —pr!
aba =b"™!
ba = ab?!
.G is a Dihedral group
Groups of order pq. where p,q are distinct prime.
Theorem : If G is a group of order p.q where p.q are primer, p < q and p does not
divide g-1, then G is cyclic and isomorphic to Z .
Proof :Let H be a sylow p subgroup of G and K be a sylow q subgroup of G.
The no of sylow p subgroups of G is of the form 1 + kp and divides pq.
Butp x g-1
.". k=0 and H is the unique sylow.
p — subgroup of a .". H < a.
Similarly, no of q — sylow subgroups of G are 1 + kq and divides pq.
Sk=0
.". K is the unique sylow subgroups of G. .". K <1 G.
H and K are cyclic subgroups of G
Let H = <x>, k=<y>
we show xy = yx.

ox 'y T =0y e H, (cox Ty ek

~oox 'yl enhnk={e} ... |H NK||H||HNK|K
SLXY =YX

|< Xy >| =pqg= |G|

But<xy>CG

SL<xy>=G
~.Giscyclic,:.Gx~Z,,

3.6 Classification 0f Groups 0f Order < 15 Upto Isomorphism

We have already seen that groups of order 2, 3, 5, 7, 11, 13 are cyclic (prime order)
and are unique upto isomorphism.

A group of order 1 is trivial and is unique upto isomorphism.
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We have seen that there are two groups of order 4 upto isomorphism,

Z4 and V, (or Z, ®7Z,) both abelian.

There are two groups of order 6 upto isomorphism cyclic (Z) or non abelian

isomorphic to S; (or Dy) A group of order 9 (p*, p=3) is abelian.

There are two groups of order 10, 14 upto isomorphism cyclic and dihedral groups
Ds and D, (2p, p odd prime). The Group of order 15 is cyclic (of the form pq,

3x5) isomorphic to Z 5 . (Unique)
We now classify groups of order 8 and 12 upto isomorphism.
Group of order 8: There are 3 non-isomorphic abelian groups of order 8.

Lig, Loy DLn, Ly DLy DL,

Refer to Contemporary Abstract Algebra by J. Gallian, pg 442.
Groups of order 12: If G is an abelian groups of order 12,
GrZ,orGrRZ,DZ, DZs.

There are two non-isomorphic abelian groups of order 12.

There are upto isomorphism, exactly three non-abelian groups of order 12, the
Dihedral group Dy the alternating group A4,, and a group T = <a> where o(a) = 6

,o(b)=4, b*=a’,ba=a"'b.

Note: If o(G) =12, and G has a unique sylow 3 subgroup, G = De.

3.7 Summary

1) The normalizer of A<G in G, is defined as N; (4) = {g €eG/gdg = A}.

2) Let G be a group and S be a non-empty set. Then map &: G XS — S denoted
by (g,5)— g.5 is an action of G on S if it satisfies the following conditions.
1) e.S=Sforeach s€ S

2) gl.(gz.s):(gl.gz).s for each s €S and each g1,2, €G S s
called a G - set.
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3) Class equation : Let G be a finite group and let /;..../,.be representatives of

the distinct conjugacy classes of G which are not contained in Z(G). Then

G|=]2(G)|+ > [G:Cs(G))].
i=l1

4) A group G of order p” where p is a prime and 7 >1has non-trivial centre.

5) Let G be a finite group and let p be a prime divisor of |G| If p* divides |G| and

p**! does not divide order |G| then any subgroup of G of order p* is called Sylow
p - sub group of G.

6) Sylow’s First Theorem: Let G be a finite group and p be a prime. If pk / |G|

then G has a subgroup of order pk .

7) Cauchy’s Theorem : Let G be a finite group and p be a prime that divides the
order of G. Then, G has an element of order p.

8) Let G be a group. A subgroup H of G is called a normal subgroup of G if aHa
L' CHforeach ae G

(or aha™' € H for eacha € G, each he H)

9) Sylow’s Second Theorem :If H is a subgroup of a finite group G and |H | isa

power of a prime P, then H is contained in a sylow - p subgroup of G.

10) Sylow’s Third Theorem: If G be a finite group and p be a prime dividing|G|

. Then, the number of sylow p subgroups of G is equal to 1 module p and
divides |G|.

Furthermore, any two Sylow-p subgroups of G are conjugates.
11) A unique sylow p - subgroup is normal.

12) A sylow - p - subgroup of a group which is normal is unique.

13) Let ‘G‘ =7, where p is an odd prime. Then G~ Z, , or G~ D,

14) If G is a group of order p.q where p.q are primer, p < q and p does not divide
q-1, then G is cyclic and isomorphic to Z .
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3.8 Unit And Exercises

1) For the given group G and the H subgroup of G. Show that C;(H)=H and
N,(H)=G.

i) G:D4,H:{l,b, a2,a2b} where a* =e=b" ba=a’b

i) G=58;,H= {l, (123), (132)} :
2) Find all groups (up to isomorphism) of order 99.

Answer : Let G be a group of order 99. Let H be a sylow 3 subgroup of G and
K be a sylow 11 subgroup of G Then, no of sylow 11 subgroups of G is
congruent to 1 mod 11 and divides 99 .*. K is unique sylow subgroup of G.

K <QG.
Similarly H <G, H N K = {e}

It follows that elements from H and K commute and therefore G = H X K

. Gis abelian
GrZy®Zyyor GrZy

3) Determine all groups of order 66 upto isomorphism.

Answer: Let G be a group of order 66. Let H be a sylow 3 subgroup of G and
K be a sylow 11 subgroup 8 G.

Then, 1 is the only positive divisor of 66 which is congruent to 1 mod 11,
Therefore , K <1 G.

. HK <Gand O(HK)=33(33=3x1land 3x11-1)
. HK is cyclic

Let HK =<x> HK hasindex2in G .". HK < G.

Let yEGand‘y‘:Z
yxy71€<x>

Let yxy ' =x' for somei for1to 32, Now‘xi‘ = ‘x‘
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y=xy, x=y'(x)y= (y_lxy>i :(xi)i —

2
X T =e,

~33\i% —1
s Al/i+1lorll/i—1

S1=0, +1, i=114+1i=11£lori=33+1.
. 1=1,10,23 or 32.

There are at most 4 groups of order 66. we observe that
Zso»Dy3, Dy ©Zyand Dy D Z, are of order 66, and no two of them are

isomorphic.
4) Show that the only group of order 255 is Z5ss.
Proof:- Let G be a group of order 255.

255=3.5.17.

Let H be a 17 sylow sub group of G Then, number of 17 sylow subgroups of G is
congruent to 1 mod 17 and divides 255.

The 17 sylow subgroup is unique.(Divisors of 255 are 1,3,5,15,51,85)

S H<AG(H~Zy)
~NH)=G

- |N(H)/ C(H)| divides |Aut (H)| =|Adut Z,,|=|U(17)| =16
Since |N(H)/C(H)|=|G/C(H)|/16 we have [N(H)/C(H)|=1
-.G=C(H)

*. every element of G commutes with every element of H.

L HCZ(G)
-1712(G)

Z(G)[255

2

|G/ 2(G)|=15,530r 1
=G/ Z(G)is cyclic
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.G is abelian

.. Gis cyclic

5)

6)

7)

8)

Show that a group of order pqr, where p,q,r are distant primer is cydic.

If (G) = 36 and G is non-abelian, probe that either G has more than one 2 sylow
subgroup or more than one 3 sylow subgroup.

Show that a group of order 56 has a proper non-triral normal subgroup.

Let G be a group of order 60. If the sylow 3 subgroup is normal, show that the
5 sylow subgroup is also normal.

o O O O
0’0 0‘0 0’0 0‘0
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UNIT 3

INTRODUCTION TO RING

Unit Structure

4.0 Objective

4.1 Introduction

4.2 Ring

4.3 Characteristic Of Ring
4.4 Subring

4.5 Summary

4.6 Unit and Exercise

4.0 Objective

The objective of the this unit is to introduce the concepts of
e Ring integral domain and fields with example.
e The characteristic of ring.

e How to check a given subset of ring is subring?

4.1 Introduction

Basically there are two operations ‘+’ and ‘.” which we can apply on scalars &
vectors. We know how to add and multiply two scalars. In vector space, we saw
two operation vector addition and scalar multiplication. In group theory we have
seen a set with one operation whether addition or multiplication satisfying certain
property. So for we had not seen any set with both operation addition as well as
multiplication. Ring is one such algebraic structure which has both these operation.

Loosely speaking ring means closed structure that is why (may be) an algebraic
structure which is closed with addition and vector multiplication is called as ring.

&5



ALGEBRAII

4.2 Ring

A ring R is set together with two binary operations + (addition) and °-°
(Multiplication) satisfying

)
if)

iii)

(R, +) is an abelian group.
'’ 1s associative : 1.e. (a-b)~c: a-(b-c) forall a, b, ¢, ER.
The distributive laws hold in R.

ie forall a,b,c R (a + b)-c = as+c + bec and a-(b + c) =a-b+a-c

Before we see example of ring let understand versions terms involved in ring with

the help of following remarks.

Remarks:

1)

2)

3)

4)

5)

If R is ring, then (R, +) is abelian group. Multiplication ('-') need not be

commutative. When "' is commutative we say R is commutative Ring.

As (R+) is abelian group, J on element say '0’, such that
a+o=o0+a=a+acR. This element ‘0’ is called as zero element or
additive identity of R. A ring may, may not have multiplicative identity. But
when it has, i.e. if ring R has an element 1 such that a-1=1-a =a forall a
€ R then such element "1’ is called as unity in R & R is said to be ring with
unity. Note that 0= 1. Throughout the course we assume R is ring with unity
otherwise

For eachain R,3b € R such that a +b =0 such element is called additive

inverse of ‘a’ and is unique.

A non zero element ‘a’ of R is said to be unit if there exists b in R such that
a.b = 1. b is said to multiplicative inverse of a. Multiplicative inverse of
element may or may not exists.

An element a € R is said to be zero divisor if there exists b= o such that

a-b=o0. Note that zero divisor cannot be unit.

(as if @ 1s unit and zero divisor then 3 b, ¢ such thata-b=1=b-aand ac =0

=b-a-c=b-c= 1-¢c=0 = ¢=0 a contradiction.

6)

A commutative ring (with unity) is said to Integral domain (ID) if it has no non
zero zero divisor. (i.e. in R the only zero divisor is zero element 0).
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One more way is there to define ID is that, whenever ab=0 in ID=a=0
or b = 0. Not that if R is not /D above relation may not be satisfied as in

Ly 2.3=0 but §¢O,§¢O.
In case of ID cancellation law hold.

asifab=ac=ab—ac=0=a.(b—c)=0=a=00rb—c=0((since ID)

ifazo=b=c..ab=ac=b=cifa=o

7) In the definition of units we have seen that every element of ring R need not be
unit.

A commutative ring in which every non zero element is unit is called as field.

A commutative ring R (with unity) is said to be field if for alla = 0, in R, there
exists b in R such that a.b = I.

They are some standard examples of ring which are easy to show. We will list
then without proving.

1)
Set Commutative Zero Unity Zero ID Units Field
Ring element Divisor
(Z,+,'> Yes 0 1 No | Yes +1 No.
(Q’ _|_,.) Yes 0 1 No Yes | all non Zero Yes
element
(R, +, ) Yes 0 1 No | Yes | AllnonZero | Yes
element
(¢ + .) Yes 0 1 No Yes | all non zero Yes
b b
element
M (R) No. Null Identify Yes No |4eM ; (R) No.
" Matrix Matrix
s.t. |A| =0
Q [ x] , Yes Zero 1 No Yes Non Zero No
Polynomial Constant
R [x] & Poly.
Z|x|

2) IF Ris aring than the set R x R ={(a,b):a,b € R} with + and - define as
(a,b)+ (a,d)=(a+c,b+d) & (a,b)-(c,d)= (ac,bd) is not integral
domain as ifa,b € R, a = 0,b = 0 then (a,0).(0,b)=(0,0) Hence not ID.
(a,0) is zero element of this ring and if 1 is unity in R. then (1,1) is unity in R
x R. If R is commutative, R x R is also commutative.
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3) LetR=7 [i]={a+bi:a,bEZ,i= \/TI} is also ring with 0 as zero element
and 1 as unity. This is commutative ring with no non zero divisor and hence
integral domain. Note that only =1 and 4/ has multiplicative inverse (as (£
1) (£1)=1,i(-i)=1). Soitis not field.

This ring is known as ring of Gaussian integers.
These are some important example of rings. Many examples can be found in

reference books. We end this section by given two more important class of ring.

4) Consider Z, = {6, 1L.n— 1} the set of residue classes modulo n. define + and

‘as a+b=a+b and a.b=ab Then 7, is ring.
Some important results aboutZ .

i) Every non zero element of Z , is either zero divisor or unit.
Proof: - Let a €Z,, such that a =0 suppose a is not zero divisor.

We will show that @ is unit,

Claim: (q,n) = 1. ((a, n) means G.C.D. of a and n)
Suppose (a, n) =d, d > 1. Then d/a and d/n.

n

d

Let b= ,EEZH and b=0 and

b—a @:@;:[3]6 5

= a is zero divisor which is not the case.
Hence (a, n) = 1.

Therefore there exists x, y € Z such that
ax+ yn=1

ax+yn=imax=1 (. yn=0)

.".X is multiplicative inverse of a .

.. d 1s unit.

Hence if a is not zero divisor then @ 1is unit.
(i) If n is prime then Z,, is field.

"." n is prime, therefore (a,n) =1, foralla, I <a<n.

Hence for any @ in Z, multiplicative inverse of a exists.
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5) Polynomial Ring: The polynomial plays very important role in Algebra.
Finding root of polynomial is one of the central problems of Algebra. Set of all
polynomial over IRwith respect to operation polynomial addition and
multiplication from a ring. Let we recognize it’s important and discuss it
separately.

Definition: Let R be a commutative ring. The set of formal symbols

R[x]={a, x" + an_l)cn_1 +..+a,x+a,:a;:€R,nis non negative integer} is
called the ring of polynomials over R in indeterminate x.

Remark:

: -1
i Let f(x)=a,x" +a, X" +.+ax+a, 4

g(x)=b, X" +b, X" +.+b x+b,
Then
SO +g(0)=(a, +b) x" +(a, +b,) X' + .4 (@ +h) x+a, +b,
where s = max {m, n}

and f(x).8(x)=Cpppp X" A Cpin X ot axto,

i
were ¢; = z a;, ;. b,
k=o

Definition: Let f(x)=a, x" +a, X" '+.+ax+a,

If n=0 then n is called degree of f(x), and @, is called leading coefficient of f(x).
If a, =1, then polynomial is called monic polynomial. The degree of polynomial
is denoted by deg f (x) .The polynomial f (x) = (0 has no degree and is called zero

polynomial. The polynomial f (x) = a 1s called constant polynomial.

If R is commutative ring with 0 as zero element and 1 as unity then RM is also

commutative ring with zero element as zero polynomial 0 and unity as constant
polynomial f (x) =1. If R is integral domain then R[x] is also. But R[x] is not

field even though R is field as the only units in R [x] are constant polynomial.

In this next unit we have one separate chapter for polynomial ring where we discuss
one important concept of ring irreducible polynomial.
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Let we discuss some theorems giving relationship between integral domain and
fields.

Theorem 1: Every field is integral domain.

Proof : Let R be a field and let a,b € R such that ab=0 — (1)

Let assume a=0. We will show b = 0.

Since @ =0. and R is field.

S.3dx€R suchthat a-x=1=x-a.

Multiply both side of (1) by x we get
x-a-b=x-0

S (xa)b=0

=1b=0=5b=0

And as R field, therefore R is commutative ring.
Therefore R is integral domain.

Note : Every field is integral domain. But every integral domain need not be field.
For example Z which integral domain but not field.

A ring R is said to be finite ring if R is finite Set.
Theorem 2: Every finite integral domain is field.
Proof : Let R be finite integral domain.

Therefore R 1S commutative ring.
Leta €R be such that a =0

then a, a’ , a’ ,...€ R. But as R is finite all this indices may not be distinct.
That is there exist i = j such that ad=d
leti>jthen ¢ .a/ =a’ .a”’
=d /=1
Also note that i —j > 0
Therefore a7/ ER suchthat a.d /1 =d"/ =1
Therefore a7 s multiplicative inverse of a. @ =0

Therefore all non zero element of R has multiplicative inverse.

Therefore R is a field -
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4.3 Charctristic of Ring

Let R be a finite ring. Then (R, +) is a finite abelian group. If O(R) = m then for all
a €R, ma = 0. Hence for finite ring (R, +) there exist m € N such that m-a =0
foralla € R.

Note that such number is not unique. If m is one such number then, all multiple of
m satisfies same condition. We are interested smallest positive integer »n such that
n-a =0, such number is called characteristic of ring.

Definition: Let R be a ring. A least positive integer n such that n-a=0 for all a
€ R is called characteristic of R & is denoted by char R. If no such number exists
then char R=0.

For example char Z = char Q= char R =0, char Z, =n.

Characteristic of infinite ring is obviously zero. But characteristic of finite ring is
also not easy to find. The theorem given below helps to find characteristic of ring.

Theorem 3: The characteristic of ring R with unit 1 is n if and only if n is least
positive integer such that n-1=0.

Proof :Let assume that char R = n

.. nis least positive integer such that n.a = o for alla €R.
. n-1=0

Conversely let n is least positive integer such thatn-1=0.

To prove that char R =n.

Let ac€R be arbitrary.

Consider n-a=n-1-a= (n : 1) -a=0-a=0and n is least such positive integer.

. char R = n.

Theorem 4:The characteristic of integral domain is (hence field) is either zero or
prime.

Proof:Let R be an integral domain.

If char R = 0 Then nothing to prove.
Hence assume char R =n, n = 0

To prove n is prime number,

Let assume n = x.y where / <x, y <n
o charR=n

. foreacha€R, n-a=0
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ie.na’=0
ie. (xy)a2 =0
. (xa) (va) =0

. x.a=oory.a=o (gipce R 1s integral domain)
which is not possible as x, y < n and char R = n.
Hence no such x, y exists

.. nis prime

Corollary 1:Characteristic of a finite field is prime.
Proof: Let F be a field.

(F, +) is a finite group.

Hence order of F exist & Let o(F) = m

som-1=0.

Let n be least positive integer such that n-1=0 as F is field and hence integral
domain. Therefore by above theorem n is prime.

4.4 Subring

Subrings are non empty subset of a ring which itself is ring with respect to the
operation of ring.

So if we want to prove a non empty subset S of ring R is subring, one has to
prove all the property of ring, which is a lengthy procedure. The following theorem
gives a easy method to determine whether a given subset of Ring R is subring or
not.

Subring Test:

Theorem S:Let s be a non empty subset of ring R. Then S is subring of R if for any
a bes,

a-b € Sand a-beS.
Proof: Let S be subring of R.
Then S be itself a ring.

Therefore forany a, b € S, a-b € Sanda.b €S
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Conversely let assume that § be non empty subset of R, such thata —b and a. b €
S whenever

a,bes.

To prove S is subring.

‘s fora,b& S a-be&S

(S, +) is subgroup of (R, +)

.. (S, +) 1s abelian group.

For a,be S, a-bes

S is closed under multiplication .

Also as multiplication ('- ') distribute over addition in R and therefore in S also.

Therefore S is a ring.

Hence S is subring of R

Eg:- 1) Let R = M,(Z)

a a
b b
a a X X
Let 4, B€S, and let A= =
b yoy
a—x a—z
then4 - B = €S,
y—b y—b
and AB — ax+ay ax-+ay es,
bx+by bx+by
.S is subring of R
. a a—>b
ii) Szzﬂ :b,aEZ}
a—b a
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a a—>b X  x—y
Let 4= and B = €s,
a—b a z—y X
—X a—b—x+
A-B=| ¢ y}esz
a—b—x+y a—x

ax+(a—-b)(x—y) a(x—y)+(a—b)x
(a—byx+alx—y) (a—b)(x—y)+ax

..., is subring

DLet R=Z DL DL
S={(a,b,c)eR/a+b=c}
Takea=(1,2,3),b=(4,2,6)thena,b € S
ab=(1,2,3)-(4,2,6)=(4,4, 18)
but4+4 = 18 . (4,4,18) €S

Hence S is not subring.

4.5 Summary

1) A ring R is set together with two binary operations + (addition) and *- ¢
(Multiplication) satisfying

1) (R, +) is an abelian group.

i) *.’ is associative : i.e. (a-b)-c = a-(b~c) forall a, b, ¢, €R.

iii) The distributive laws hold in R.

e forall a,b,c R (a + b)-c = as+c + bec and a-(b + c) =a<b+ a-c
2) Every field is integral domain.

3) Every finite integral domain is field.

4) Smallest positive integer n such thatn-a=0, such number is called
characteristic of ring.

5) The characteristic of ring R with unit 1 is n if and only if n is least positive
integer such that n-1=0.
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4.6 Unit and Exercises

D

2)

3)

4)

5)

6)

7)

8)

9)

Show that Z X Zunder component wise addition and multiplication is a
ring. Is it an integral domain? Justify.

Let (R—l—, ) be a ring with multiplicative identity 1. Show that (Rl , D, @)
is a ring where, a ®b=a+b—lpand a®b=a+b—ab

Show that the ring

(1) Z [\/E] = {a +bJd : a,b, e Z} d is an integer is integral domain.

(i) Q {\/ﬂ ={a-+ bd : a,beQ}, disaninteger is field.

Let R = {0,2,4,6,8} under addition and multiplication modulo 10. Prove that
R s field.

Let F be a field of order 2" . Prove that char F = 2.

Let D be an integral domain of characteristic P. For any x, y € D show that

) (x+ )P =xP +y? (i) (x+y)pn —_— —l—ypn for all nEN

(i) Find element x and y in a ring of characteristic 4 such that

(x-l—y)4 = x* —|—y4.

Let F be a field and let K be a subset of /" with at least two elements. Prove
that K is  subfield. (i.e. prove that for any

a,beF,b:sOinK,a—banda-b*1 €K)

(This is known as subfield Test)

An element a € R is said to be nilpotent element if there exist n € N such
that a” =0. Prove that a € R is nilpotent then 1 — a is unit in R.

(Hint: a" =0..1—ad" =1

An element a € R is said to be idempotent if a’> =a. Prove that

(1) The set of idempotent of a commutative ring is closed under
multiplication.

(i1) The only idempotent in an integral domain is 0 and 1..
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10) Determine all zero- divisors, units & idempotent elements in (i) Z 8

(ii) Zy % Zy (iii) Zx Q.

11) Let d be a positive integer. Prove that Q[\/E |={a+b Jd : a,beQ} isa
field.

12) In the following examples, show that S is a subring of the given Ring R.

(DS:{a

c

(1) S:{a 2b
b a

b
P :a+c:b+d} R=M,(R)

:¢mq4 R=M,(Q)

13) Determine which of the following are subrings 0f(@,~|—,-). Justify your

answer.

ra,be, (a,b)zl,bisodd}
:a,bEZ,(a,b)zl,b:tO,biseven}

:a,bEZ,bIO,(a,b)zl,aisodd}

v)  S={x:xeQ,x>o0}

w Zz

z
14) Let H:{

,Z,WER} Show H is a non commutative subring of

M, (R) in which every non zero element has an inverse with respect to

multiplication.

O o0 0 0
0‘0 0‘0 0’0 0’0
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UNIT 3

IDEAL AND QUOTIENT RING

Unit Structure
5.0 Objective

5.1 Ideal

5.2. Quotient Ring
5.3 Types of Ideal

5.4 Unit Exercises

5.0 OBJECTIVE:

e The objective of this chapter is to introduce the concept of

e Ideal and its importance.

e Theorem used to determine whether given set is ideal or not.
e Quotient ring

e Types of ideal i.e. Prime and maximal ideal.

e Their relation with Quotient ring.

5.1 Ideals

Our aim is to define something similar to quotient space (in case of vector space)
and quotient group (in case of group). Note that if W is any subspace of vector
space we can very well defined quotient space which itself a vector space. To define
quotient group of group G we need special type of subgroup called as normal
subgroup. In group theory we have seen that if H is normal subgroup of G then G/H
is defined.
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Quotient ring is also similar to quotient space (or group). It is denoted as R/l where
R is ring and 7/ must be similar to normal subgroup (not just subring).

This leads to concepts of ideal.

Definition (Ideals): Let R be a ring a subring / of R is said to be ideal of R if for
xER, acl, xaand ax €l

That is ideals are those subring of R which absorbs the element of R.
If 1 is proper subset of R then / is said to be proper ideal of R.
A ring having no proper ideals is called as simple ring.
Ideal Test: A non empty subset / of ring R is an ideal of R if
(1) a-b € I whenevera, b € 1
(ii) (i)x-a,a-x&l whenevera € Iand x € R.

Example :

1) For any n € 7Z,n Zis ideal of Z as nZ are only subgroup of Z.
2) Let R=R [x] the set of all polynomial with real coefficient.

Let A be subset of all polynomials with constant term zero. Then 4 is ideal of R.
As let f(x), g(x) € A

Therefore ./ (0) = 0= g(0) ( since constant term of f & g is zero)

therefore if h(z) = f(x)— g(x) then h(0) =0
Also for any k(x) € R|x]

k(0)- f(0)=k(0)-0=0_ i fore K(X)S(x) €1
Therefore 1 is ideal of R.

Note that I ={f(x)ER: f(x)=a, x" +....+ a, x}

—{f(X)ER: f(x)=x(a, x" " +..+a)}

={/(eR :f(x)=x.g(x);

=<x>
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3) Let R be ring of the real valued functions of real variable. The subset of S of all
differentiable functions is a subring of R but not an ideal of R.

|x|€R,

x| is not differentiable, x € S, since x is differentiable but

|x| Xx¢Z S as |x| -x 1s not differentiable hence S is not an ideal.

4) LetRbearingand a € R. Then, aR = {ar re R} is ideal of R, known as
principal ideal of R generated by a.

Principal ideal plays very important role in ring theory. An integral domain in
which every ideal is principal ideal is known as principal Ideal Domanin which
we will see in coming chapters.

Theorem 1: Let /, J be any ideal of ring R.

k
ThenlI+J={x+y:x, € Ly €l} IJ= anyn:xnél,ynEJ

n=1
(i.e., 1T is sum of finite product of element of I and J), and 7 ()J is ideal of R.
Proof:

(i) Leta,bec 1+]J

Sa=x+yandb=x,+y,

then a—b=0—x)+( -y, €l +J

Also forany ¥ €R, ar=(x;+y) r=xr+yrel+J

as I ,J areideals, therefore x;r €I and y;r €J)

Similarlyr.a € 1+1J

Hence I + J is ideal.
(i) Leta,b € L J

n m
azle.yl. and b:ij quhere xi,pjel and y,-,quJ
i=1 j=1

thena—-b= in y,-—ZPj q; :le yﬁz(—Pj)qj =
j=1

i=1 j=1 1=1

Letr € R

n
le N

L=1

ar =

r= Z (x; r)y; € IJ (Since 1 is ideal, therefore xr € I)

i=1

Similarly ra € 1J.
Therefore 1J is ideal
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Theorem 2: A Field is simple ring. That is the only ideal in a Field is {0} and F
itself.

Let A be any non zero ideal of field F.

Leta € 4,a = 0. Fis field therefore 3 b € F
Such that a.b =1

But A is ideal also.

S.1=abe 4 (Sincelisideal,r.ac I forr € F)
Joforanyx € R,Fx.1=x € A

SoFCA

= F=A.

5.2. Quotient Ring

Let R be a ring and I be its ideal define R/I={x +[:x € R}

Define '+’ and .’ as

(x+D+(y+l) =(x+y)+I1 and x+ Dy +)=xy+1

We claim that R /[ is a ring with respect to above operation, called quotient ring.

(1) First we prove that ‘+’> and ‘-* defined as above is well defined.
Let assume that X+1=x"+1and y+1=y"'+1

therefore = x—x'€ I and y — y'€ I (By definition of cosets)
Sx—x4y—yel=x+y)—(x +y)el
=x+y+I=x'+y' +I=>x+D+O+D=x+D+Q +1)
.. +1s well defined.

also as x—x',y—y'EI

therefore let x—x =a,y—y =b for somea,bel

. x=x+aand y=y +b
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Soxy=(x +a)(y +b)=xy +x b+y a+ab
xy+I1=x'y +xb+y a+ab+1=x y +I(Since I is ideal therefore
xb+ya+tabel, hencex'b+y'a+ab—|—lzl.
L+ D+ D=+ D (Y +]D)
" " is well defined.
As (R,+) is abelian group

S (R/1,+) is also abelian group.
and ((x—l—I)(y+1))(z+I):(xy+1)(z+1):xyz+l

Similarly (x+1)((y +1)(z+1))=xyz+1
". <.’ is associative.

(x+D)+(y+D))-(z4+1)=((x+y)+1)(z+1)
=(x+y)z+l=(z+yz)+1=(z+ 1)+ (yz+1)
=(x+D(z+1)+(y+1)(z+1)

Therefore -’ is distribute over ‘+’.

Hence (R /1, +,-) is ring.

Remark :

1) If I is subring only, R/I is not defined.

2) If 0 is zero element of R then 0 + I =1 is zero element of R/I.

3) If R is commutative ring then quotient ring R/I is also commutative.

4) If R is ring with unity 1, then R/I is also ring with unity 1 + L.
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Examples :

1)
2)

3)

4)

L/ AZ={4Z,1+ 47,2 + 47,3+ 4L}
27,/ 67={67Z,27+ 67,47 + 6Z }

Let R = Z[i], the ring of Gaussian integer and / = <2-i>

then R/I = {a+bi+<2-1>:a + bi ER}

S2-ie<2-i>=1

So2—i+I=1inR/A ~.2—i=0 inR/I

S.2=i inR/1..4=—-1inR/I

2.5=0inR/I. . Let13+51icR

using 2=1,and 5=0 we get

3+ 51i+1=3+5X 2+ (5X10+1) (2) +1
=3+2+1=5+1(Since5=0inR/1) =1

Thus using 2 =i, 5= 0 in R/] any element a + bi + I of R/ is reduced to one
oftheelement/ /1 + 1 2+1 3+ 1or4+1

Also note that all this elements are distinct as additive order of / +/1is 5
Hence RZI={I, 1 + 2+ 3+ 4+1I}

b
Let R=M, (Z)and S :«Ua J ca,b,c,d e ZZ} then S is ideal of R.
c

Let we find R/S:

Take one example. Consider on element

3 —4
A= cS
1 7
A+S—3 _4+S—1+2 —4 +S
17 11 1+6

—4

since eS

_10+2 —4+S_10+S
11l o 6 1 ’
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m
n-p
are 0 and I Hence there total 2% =16 element in R/S, therefore |R/S|=16.

This means that it + S is element of R/S then the only choice of [, m ,n , p

5) Let R[x] denote the ring of polynomials with real coefficient and let

[=<x*+1>
R:RMNQQ+Qzﬁf@}%<ﬁ+d>;ﬂﬂeRhn
Let us see what quotient ring R is;

By Division algorithm, for any f (x) € R[x|, 3 p(x) and r(x)in R[x]
Such that f(x) = p(x)- (x> +1) + r(x) where r(x) =0
deg r(x) <deg (x> +1)=2 ie.r(x)=00r r(x)=ax+b,a,beR.

.'.f(x)—|—I:(p(x)<x2-I—l)—|—r(x)-|—l)

:<p(x)(x2—|-1)—|—l>—i—r(x)—|—l

=r(x)+1, (Since x* +1e1, therefore p(x)(x* +1)el, p(x)(x* +1)+ 1=,

S R=R[x)/ <x*+1>={ax+b+La,bcR}

5.3 Types of Ideal

Prime Ideal: Let R be a commutative ring. An ideal P of R is said to be prime ideal
if whenever a, b € P = eithera € Porb € P.

Maximal Ideal: Let R be a commutative ring An ideal M of R is said to be maximal
ideal if (1) M = R (i1) M C T CR then either M=I1orI=R.

Before we see example of prime and maximal ideal we just prove two theorems.
These theorem use to characterise ideal with the help of quotient ring.

Theorem 3: (P is prime = R/ P is integral domain)

Let R be a commutative ring. An ideal P of R is prime ideal if and only if R/P is
integral domain.
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Proof: Let R be commutative ring and P is prime ideal of R.

To prove R/P is Integral domain.
Let 5:a+Pand5:b+p€R/P

Such that a.b=Pin R/ P (P is zero element in R/P)
ie(a+P)(b+P)=PinR/Pieab+P=P=abcP

But P is prime ideal

Therefore abe P=acP orbe P=a+P=Porb+P=P

Hence if a.b=P=>a=Porb=P

Conversely let assume that R/P is integral domain To prove P is prime ideal.
Let a,b € R suchthat abe P = ab + P =P= (a+P) (b +P)=P

But R/P is integral domain.

(a+P).b+P)=P=a+P=Por b+P=P=acpor bep
sabeP=acPorbeP

.". P is Prime ideal.

Theorem 4: M is Maximal ideal < R/M is Field.

Let R be a commutative ring with unity. An ideal M of R is maximal ideal of R if
and only if R/M is field.

Proof:Let R be a commutative ring with unity and M is Maximal ideal of R.
To prove R/ M is field. Let a +M € R/ M suchthat a+M =M = a & M
Consider the ideal aR ={a:r:r€ R} ofR.

.. M isideal, aR is ideal.

Then N = M + aR is also ideal such that M CN C R

But M is maximal ideal and M = N.

Therefore N =R hence lER=1EN

c.dxeM, reR suchthat 1 =x + ar
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Sxdar)+M=14+M . (x+M)+ar+M=1+M
Sa+MYr+M)=1+M (- xeM . x+M=M)

Hence a + M has multiplicative inverse.

.". Every non zero element of R/M has multiplicative inverse.
.. R/M is field.

Conversely, let assume that R/M is field.

To prove M is Maximal ideal.

Let assume that N is any ideal of R such that M CN C R
then N/M is ideal in R/M

but R/M is field & hence the only ideals in R/M is zero ideal which M or R/M itself.
If N/ M=M=N=M

if N/M=R/M=N=R

1f MENCR eitherM=NorN=R

.". M 1s maximal ideal of R/M
Remark :

1) Since every field is integral domain therefore if M is maximal ideal = R/M is
field = R/M is integral domain = M is prime ideal

Hence every maximal ideal is prime ideal. But every prime ideal need not be
maximal ideal which we will see in the examples let see some examples of prime
and maximal ideals.

Examples:
1) Let R = Z[x] and I = <x> = set of all polynomial with constant term zero.

Claim : I is prime ideal.

Let f(x) : h(x) € <x>
c.there exist g(x) € Z[x]s.t. f(x) g(x)=x.g(x)
= f(0) h(O)zO-g(O): 0
= f(0)=00r h(0)=0 (. Z is integral domain)
= f(x)e <x> or h(x) e <x>

.. < x>is primeideal in Z[ x]
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2) Let R = Z[x] and M = <x, 2> = set of all polynomial with even constant term.
Note that M = <x, 2> = {x.f(x) + 2g(x) : f(x), g(x) € Z [x]}

Claim : M is maximal ideal in R

Clear M =R

Let N be any other ideal of R such that M C N C R

we will prove that M =N or N =R

Let assume that M = N

Therefore we prove that N =R
"M =N, .3 f(x)€ N suchthat f(x)gM

.". constant term of f(x) i.e. f(0) is not even

Let f(x)=a, x" +a, | x" ' +..+ax+a, where ayis odd.
=a,x"+.+ax+2b,+1(.a,isodd) =g(x)+1

where g(x)=a, x" +..+a, x+2b,e M CN

Sg(x)eEN, f(x)eN

Sl=f(x)—gx)eN
S foranyk(x)eR, 1-k(x)eN

S RCNBut NCR
SN=R

= M is maximal ideal of R
(1) Note that / = <x> CM= <x,2> .". <x> is not maximal ideal.
Hence prime ideal need not be maximal ideal.

(i1) By same argument we can show for any prime <x, p> is maximal ideal

of Z[x]

(ii1) Since there are infinitely many prime, hence there are infinitely many
maximal ideal in Z[x]

106



Chapter 5: Ideal and Quotient Ring

3) Let p is prime, then p Z is prime ideal of Z.

As Let x.ye pZ = x-y= pk for somek €Z
S.plxy..plxorply=x=pk,ory=pk,=x€plorycplZ
.. pZis primeideal.

Also note that Z/pZ is Zp which ring of residue modulo p. And as p is prime it
is field. Hence p Z is maximal ideal also. Thus in Z, prime and maximal ideal are
some.

4)  LetR=Z&7Z and I =1{(a,0):a€Z} consider R/,

Let (a,b)€ R then(a,b)+1 =((a,0)+(0,b))+1=(a,0)+1+(a,b)+1
=(0,0)+ 1 (Since (a,0)€l,". (a,0)+1=1)

S RIT=1{0,b)+1:beZ}

Let (x, y) + ). ((p, @) + ) = I (L is zero element in I)

= (p, yq) +1=1=(p,yg) €l = y.q.=0

= y=00rq=00C(. Zis Integral domain)
=2,00elor(p,0)cl

= x,0+I=1or(p,0)+1=1

Hence R/I is Integral domain

.. Lis prime ideal

(1, 1)isunity in Z B Z

and R/I={(0,b) +1:b € Z} does not contain unity hence it is not field.

.. I is not maximal ideal

5) Let us find maximal ideal of
(i) Zg (i) Zyy (i) Zyy

Let us see lattice of ideals for Zg
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1) Zy Zg

Clearly (2) is maximal ideal of Zg.

1 Z1o

o N
ANGY4

Cleary (3) and (5) is masimal ideal of Zy.

1)

"
<a>//@>/

/ _ _
\<°> Clearly <2> and <3> is maximal ideal of Z,.

Thus in general for any prime divisor p of n, <p> is maximal ideal of Z,,.

5.4 Unit and Exercises

1) LetS={a+bi:a, b €Z,biseven}. Show that S is subring of Z[i] but

not on ideal.
2) Check whether the following set I is ideal of ring R?

Nl={(a,a):acZ} R=7ZXZ ii)l={(a,—a):acZ} R=7ZXZ
i) [ ={(2a,2b):a,beZ} R=7ZXZ

(In all three problems R is ring under component wise addition and multiplication.)

108



Chapter 5: Ideal and Quotient Ring

3)

4)

5)

6)

7)

8)

(i) I={f(0)eZ[x]: f(x)=a,x" +..+ax+a, : 3|ay} R=7Z[x]
W I={f(x)eK=Z[x]: f(x)=a,x" +..+a x+a,:

a,+..+a+a,=0} and R=Z[x]

(vi) 1:{[0 ¢ :aER},R:{ ¢
0O O

0
(vii) I = {4a +bi:a,bEZ}, R =Z[i]

b
:a,b,dGR}
d

Determine the number of element in quotient ring
()3Z /9 Z (i) Z[i]/ (3+i)
Let / =(2+2i) Determine R = Z [i]/<2+2i>.

What is characteristic of R? Is R is Integral domain? Is I =<2 + 21> is prime
ideal.

Show that the following ideals are prime ideals in the given ring

(1) <x2 +x+ 1> inZ,[x]

(i) I={3x,y):x,y € Z} in Z x Z under component wise addition and
multiplication.

Show that <1 —i>is maximal ideal in Z[i]. (Show that Z[i]/<1-i> is field.
Note thati =/ and 2 =0 in Z[i]/<1-i>)

Let R be the ring of continuous functions from R fo0 R . Show that 4 = {f
€R/f(0) = 0} is a maximal ideal of R.

Prove that every prime ideal is maximal ideal.

O % % o%
0F 050 00 050
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UNIT 3

RING HOMOMORPHISM AND
ISOMORPHISM

Unit Structure

6.0 Objective

6.1 Ring homomorphism & isomorphism
6.2 Fundamental theorem of isomorphism
6.3 Ring of fraction, Quotient field

6.4 Summary

6.5 Unit and Exercises

6.0 Objective

After going through this unit you shall come to know about
e The concept of ring homomorphism and isomorphism.
e Fundamental Theorem of isomorphism and its application.

e Method to construct ring of fraction and Quotient field.

One way to study property of a ring is to examine its interaction with other ring by
finding some relation between them. This relation is something which must

preserve the operation of the respective ring. Such relation is called as ring

homomorphism.

6.1 Ring Homomorphism

Let R, S be any two ring. A map f°"R— > is said to be ring homomorphism from R
to Sifforanya,b € R f(a —|—b):f(a)—|—f(b) and f(ab):f(a)f(b) ie fis

operation preserving mapping.

Properties of Ring Homomorphisms :

Let @: R — § be aring homomorphism. Let A be a subring of R and B is an ideal

of S.
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4.

5.

. For any r€R and any positive integer n,@(nr)zn@(r) and

@(r”): (2(r)".

@(A)={@(a):ac A}is a subring of S.

If A is ideal and & onto S, then &(A) is an ideal.
o ' (B)={reR/a(r)€ B} is anideal of R.

If R is commutative, then @(R) 1S commutative.

Proof :

1))

2)

3)

G(nr)=2(r+r+..+r) (ntimes) =2(r)+...+2(r)=na(r)
@(r”):@(r.r...r) (n times) =@(r). 2(r)..& (r) = (@ (r))"

Let x, y € @ (A)

~.3a,be A4 suchthat x=2(a), y=2(b)
cx—y=0(a)-2(b)=2(a—b)ez(A) (a—beA)
. &(A) is subring

@:R— S isonto..". forany y€S,IxER such that &(x)=y

To prove: &(A) is ideal of S. From (2), &(A) is subring.

Hence it is enough to show that for any x € &(A4), y €S, x-y € &(A).

','xE@(A),',E!aEA such that @(a):x,yES,Q is onto, 3b € R such
that@(b):y.

Hence x.y= @(a) 1%} (b) = @(ab) %) (A) (Since in ideal A ideal,
therefore ab € A)

,',@(A) 1s ideal of S.
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4 o 'B)={reR/z()eS}
Let x,y €@ '(B)..2(x),2(y)€B asBisideal ... &(x)—2(y)€B
~.D(x—y)eB
Sx—y€eT (B)
Hence @~ '(B) is subring.
Let # € R be arbitrary. -, &(r)€ S
As B is ideal of S
.&(x)a(r)€ B therefore &(xr)cB

@(xr) € B, therefore xr e @~ (B)

Similarly we can show that r.x € o (B)

Hence @ '(B) is ideal of R.
V) Let R is commutative ring.

. forany x,yER, x.y=y.x

,',@(x.y):@(y-x)
~2(x)a(y)=2(y)a(x)

= O (R) is commutative ring.

Kernel of Ring homomorphism: Let &: R — S be a ring homomorphism then
Kernel of @, denoted as ker & and is defined as Ker &= {r ER/T (r) = 0} )

Note that ker & is ideal of R.
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Example:

{[a b
1) LetR =
b a

a b
b a

:a,bEZ}. Let ©:R—7Z be defined by

16} =a— b then & is ring homomorphism.

b

a

Xy
y X

, B=

a
Aslet A=
b

a—x b—y

then @(A—B)z@ =a—x—b+y

b—y a—x
=(@—-b)—(x—y)
=2 (A4)—2(B)

a b

b a

ax+by ay+bx
bx+ay ax+by

Xy
y x
@ (AB)=(ax+by)—(ay +bx)....ccc.ccu... (1)

AB=

a b
%)

Also &(A4)@ (B)=o b

Yy X
= (a—b)(x—y)=ax—ay—bx+by
= (ax +by) —(ay + bx) ......... 2)
From (1) and (2)
@(A4.B)=2(A)2(B)
Hence @ is homomorphism.

Let us find Ker &,

a b a b
Ker o= ER: O =0
b a a
a b a b
= ER/a—b=0}= €R/a=5b
b a b a

Sy

;aeR} :{a

a a
a a
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2) Define@:2 — 74, & (k) =kmodn. Then & is an homomorphism
known as natural homomorphism.

3) Let R be commutative ring of prime characteristic P.

Define @:R— R as & (x) = x? is ring homomorphism

as I(x+y)=(x+y)P=x"+ pclxp*1y+ pczxpfzyz +..+ pcpilxypfl +yP
Each of pC, 1<i< p—1 ismultiple of pand charR=p .. Clpxpfiyi =0 forall
L 1<i<p—1

B (x+y)=xf +yP =2 (x)+2(y)

2 (xy)=(xp)" =xP 3" =2 (x).2(y)

Therefore & is ring homomorphism, known as Frobenius homomorphism.

4) Let R be aring and A4 be its any ideal.

Define a map f:R— R/ A as f(r)=r-+ A, then f is ring homomorphism

known as a natural homomorphism.

Ring Isomorphism: A ring homomorphism & : R — § which is one-one and onto
is known as ring isomorphism.

If @:R— § isring isomorphism we say that ring R and § is isomorphic to each
other and this is denoted by R ~ S .

Isomorphic rings are exactly similar in terms of property of element and their
behavior. In Other words isomorphic rings are nothing but different way of looking
of same ring.

Theorem 1. First Isomorphism Theorem of Ring:

Statement: Let & : R — S be a onto ring homomorphism then R / ker @ ~ & (R).
Proof : Let Ker & =W.

To prove R/ W =~ @(R)

Clearly W = Ker & 1is ideal of R.

Define a map f:R/W—>@(R) as f(r+W)=9(r),reR.
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Claim :
1) is well defined one - one map.
Let assume that
r4+W=s+W, r,scRsr—seW =Kerd <:>®(r—s):0 (By
Definition of Ker &)
S 2] (r) - (s) =0 (By definition of homomorphism)
@@(P)Z@(S)@f(V—I—W):f(F—FW)
.". fis well defined one-one map.
2) fis onto.
Let ye I (R)

Therefore there exist x € R such that & (x) =r.

Therefore there exist x + W € R/ W such that f(x + W) = @(x) =y.

Therefore fis onto.

3)  fis homomorphism.
Consider f(x+W +y+W)=f(x+y+W)
=& (x+y) (By definition of )
= & (x)+ & (y)(@is homomorphism)
=fx+W)+ f(y+W)
fx+W)y+W)=f(xy+W) =2 (xy)=2(x)5(y)

=f(x+W). f(y+W)
*."f1s homomorphism
Hence fis isomorphism.

“.RIW ~&(R)
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Theorem 2. Second Isomorphism Theorem for Rings :

Statement: Let 4 be a subring and let B be an ideal of R. Then
A—l—Bz{d—{—b:dEA,bEB} is a subring of R, A\ B is an ideal of A and

(A+B)/B~ A/ ANB

Proof : Let we give sketch of the proof.

To prove this we use first isomorphism theorem of rings.
Let xc A+ B

. x=a+b,ac A, beB
~x+B=a+b+B=a+(b+B)=a+B(. beB)

Hence define a map @:A—>(A—|—B)/B such that J(a)=a+ B.

You prove this map & is onto homomorphism.

Then apply first isomorphism  theorem, according to  which
Alker@~(A+B)/B.

Now prove that ker @= A B.

Theorem 3. Third Isomorphism Theorem of Ring:

Statement : Let I and J be ideals of R with / CJ . Then J /I isanideal of R/ 1
and (R/1)/(J/I)~R/J.

Proof : This proof is also similar to proof of second isomorphism theorem.
Here define @:R/I—R/J as D(r+1)=r—+J.

Show that & is onto homomorphism.

Then by first isomorphism theorem R /[ |Ker x~R/J.

Show that Ker o=J /1.

The first isomorphism theorem has lot of application. One of the application is to
prove that a field contains 7Z p Oor Q. We prove this by following steps.
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Theorem 4: Let R be a ring with unity e. The mapping @:7Z — R given by

16} (n) = n.e is a ring homomorphism.
Proof : Let m,n€ Z,m,n>0
F(m—+n)=(m+n)e=e+e+..+e(m+ ntimes)

:(e—l—e—i—..—l—e)—l—(e—l—..—l—e) :me—l—ne:@(m)+®(n)

. « J

m times ntimes

Let assume m, n <0
Then Let m=— p,n=—¢q where p,q>0.
s D(m+n)=(m+n)e=(—p—q)e=(p+q)(—e)

=(p)(—e) +q(—e)
=(—p)e+(—q)e=me+ ne=a (m)+ A(n)

Similarly if m >0 n <0 we can prove J(m + n)=(m) + (n).
Also @(mn) = I(mn)e = (mn) (e.e) = (me)(ne) = (m)@(n)

.. is ring homomorphism.

Corollary 1: Let R is the ring with unity and the characteristic of R is n > 0, then
R contains a subring isomorphic to Z,. If the characteristic of R is 0, then R

contains a subring isomorphic to Z.

Proof: Let S = {ke ke Z}

Claim : S is subring of R.

Let a,be S

c.dn,m€EZ such that a=ne and b= me
S.a—b=ne—me=(n—m)ecs

a.b = (ne) (me) = n(em)e =nmee = (nm)e <€ S.

Hence S is subring of R.

Define @ :7 — S such that@(n) =ne.

Then & is onto and above theorem & is homomorphism.
Hence by first isomorphism theorem Z/ Ker @ = S.
IfCharR =n
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Then Ker @ ={m€Z/@(m)=0} ={meZ/me=0}
={meZ:n/m} (. char R=n)=(n)

.‘.Z/<n>%S

- S~Z,

Hence R contains subring isomorphic toZ, .

If char R = 0= There exist no integer n such ne=0.
KerQ:{mGZ/Q(m):O} z{mEZ/me:0}:{0} ( Since char R=0)
S Ll kerdx S

VS

Hence R contains a subring isomorphic to Z.

Corollary 2: A field contains Z ,orQ.

Proof: Characteristics of a field is either zero or prime. Let R be a field.

Case I: Char R = p, p is prime.

Then by previous corollary R contains a subring isomorphic to 7Z P 7 » is field,
as p is prime

Hence R contains Z p

Case II: Char R = 0

Then subring S of R is isomorphic to Z.
Let T:{a]f1 :a,bES,be}

The T is subfield of R and isomorphic to Q.

Hence a field contains Z p Or Q.
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6.3 Ring Of Fractions

The aim of this section is to prove that a commutative ring R is always a subring of
a larger ring Q in which every non zero zero divisor of R is unit in Q. In case of

integral domain such ring is field and called as field of fraction or Quotient field.
Construction of quotient field Q from ring R is exactly as construction of Q from

7.

Theorem 6 : Let D be an integral domain. Then there exists a field F' (called the
field of fraction of D) that contains a subring isomorphic to D.

Proof: Let S be the set of all formal symbols of the form a/b, where a,b € D and
b = 0. Define an equivalence relation = on Sby a/b=c/difad =bc . Let F

be the set of equivalence classes of § under the relation = and denote the
equivalence class that contains x/y by[x/ y]. We define addition and

multiplication ~on  F by [a/ b] + [C /d ] = [(ad + bc) / bd ] and
[a/b].[c/d]:[ac/bd}.
We will prove F is field with respect to the operation + and - define above.

To prove this first of all the operation + and - is well defined.

1 1

Let assume thatg:a— andgzc—.
1 1
Toproveg+£:a—+c—
a a
co="=ab =d'b
b b
c ¢
—:—1:>cd1:cld
d d
1 1 141 141
*." To prove g—|—£:a—+c—i.e. to prove ad—l—bc:ad +cd

i.e. to prove that (ad + bc)bla’1 = (ald1 + cldl) bd .

119



ALGEBRAII

i.e. to prove that adb'd' + beb'd' = a'd'bd + 'd'bd

In LHS put ab' =a'b and cd' =c'd we get RHS.
Hence + is well defined.

1 1 1 1

Similar To prove 22 C  Which is obvious as g:a—l and £:C—1
bd b g b b d d
ac a'c!

It is trivial to prove that (F, +) is abelian group with zero element as [%} and
o 4 —

additive inverse of [ A] as [ A ]

Multiplication is obviously distributive over addition and associative.

The unity element of F is [yJ and multiplicative inverse of non zero element

(94 ) is[2] for o b=0.

Hence F is field. Finally let we define a map &:D — F as &(x) = [%} then &

is ring isomorphism from D to @ (D) as,

D(x+y)=[(x+y)/1]=[x/1+y/ 1] =[x/1]+[y/1] =D (x)+ B (¥)

()=l /1] =[x /1] =[y/1]=D(x)D(»)

Ker @={xeD:D(x)=0}
={xeD:[x/1]=0}={xeD:x=0}={0}

.. By first isomorphism theorem,

D/ Kerid ~ @(D)
-.D~J(D)

Hence F' contains a subfield isomorphic to D.
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Examples :
1) Show that the ring Z[\/E] and H are isomorphic where

2b
H = {Z } ca,be Z} under addition and multiplication of 2x2 matrixes.

a

a

Solution:@:Z[\/ﬂeH as @(aﬂ,ﬁ):[z 2b}

Claim :

1) & is well defined, one-one map

{a Zb} {x 2y}

Let =

b a y X

Lo a=x&b=y

<:>a+b\/§:x+y\/§
@(a+b\/§):@(x+y\/§)<:>a+b\/§=x+y\/§

. 1s well defined one-one map.

2) & is onto
2y
For any EH,x—l—ﬁyEZ[\/ﬂ such that
y X
@(x—l—\/zy): * . Hence & is onto.
y X

3) & is homomorphism.

@[ a+b\/7 x+yx/§ﬂ:®(a+x+(b+y)«/§)
la+x+ (b+y)\/§ _{a Zb}_[x Zy}

- b+y at2 | |b a y X
:®(a+b\/§>+®(x+y\/§)

@[(a+bx/§)+(x+y\/§)}:®(ax+2by+(ay+bx)\/§)
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_|ax+2by 2ay+2bx
- ay+bx  ax+2by

b ally x ay+bx  ax+2by

@((wbﬁ)(ﬂyﬁ)){a Zb}{x 2y}:{ax+2by 2ay+2bx}

= @((a+bx/§)(x+y\/5))

Hence & is homomorphism.

- 1s isomorphism.

~Z[N2|~H.

b b
2) LetR:{[Z }:a,beZ}.Let@:R—)Z defined @[B D:a—b.Show
a a

that & is a ring homomorphism. Determine Ker & . Is Ker & a prime ideal? Is it a
maximal ideal? Justify.

. a b X y
Solution: Let 4= 5 and B= eR
a

a b

@(A+B>:@b Xy a+x b+y

y X b+y a+x
:(a—b)+(x—y):®(A)+®(B)
a b

a

+

= —_ b—
; a+x ( y)

ax+by ay+bx
ay+bx ax+by

Xy
y X

@ (AB)=2

:Q(ax—l—by—(ay—l—bx)):a(x—y)—l—b(y—x):(a—b)(x—y):Q(A).Q(B)
.".J 1s homomorphism

Ker@z{AGR:@(A)zO}

{ la b
={AcR:O
b a a

_0}—{AER:ab_O} :{Z

a
.an}
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.". First Isomorphism theorem

R/ Ker @ ~7 as Z is Integral domain, R/ Ker & is integral domain.
.. Ker @ is prime ideal.

Also as 7 is not field. .. R/ Ker @ is not field.

.". Ker & is not maximal ideal.

3)Prove that M, (R) contains a subring that is isomorphic to C.

a b
Solution : M, (R):{ ca,b,c,d GR}.
c
) a —b
Deﬁneamap@:CﬁMZ(R)as@(a—l—zb):lb .
a
Claim : & is homomorphism.
. . . atc —(b+d)
@ (a+ib d)=0 b+d)) =
(a+ib+c+id)=a(a+c+i(b+d)) bid atc
I L — & (a+ib)+ 2(c +id)
=, . PR b a+i c+i
a —bllc —d| |ac—bd —ad—bc
((a—l—z) (c—l—z >> b alld c ad +bc ac—bd

=2 ((a+ib)(c+id))
Hence & is homomorphism.
Ker @z{a+ib€¢:®<a+ib>:0}

0 0
0 0

o

) H:{a—l—ib€¢:a:0,b:0}:{0}

= {a +ibeg:
.". By First isomorphism theorem
(C ~ 1 ~
%(er ¢ NM2 (R)le C N@(MzR) .
Hence M, (R) contains a subring that is isomorphic to & .

4) Is 27 is isomorphic to 37
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Solution : No. Let @:27 — 37 is isomorphism & @(2): a.
- 2(4)=0(2+2)=2(2)+2(2)=22(2)=2a ....()

Also @(4)=2(22)=2(2).2(2)

I
—
Q
—
\S)
~—
~——
\S]
I
1N}
[\S}
.
(o)
—
A

Therefore From (I) & (II).

]
o

a’ =2a :>a2—2a:0:>a(a—2)
=a=0ora=2if a=0 then @(2.}1):@(2)@(11):0.

Hence & is zero map which is not isomorphism.

S.D=0 .. a=2 butthen a ¢37Z.

Hence 27 is not isomorphic to37Z .

5) TIs Z[J—_z} isomorphic to Z[\/—_S].

Solution : No, Z [J—_z } is not isomorphic to 7 [J—_s } As if
©:2|N=2|— Z[J/=5] is isomorphism & (1)=a.

S 0(0) = d(x ) =0(x). &(1) =a.d(x)

= d(x) = a.0(x)

= Hence a is multiplicative identity in Z [\/—_5 ]

ca=1

. forany a€Z,6(a)=a

Let assume d)(\/—_Z) =a+0 (\/—_5)

2

-2 =o[fE)= (o) (e VS

S —2=x> =53+ 2a8/-5
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Comparing we get a3 = o

= Q=0 or 3 =o0

if =0 =-2=-53"=3"=2/5
Butno such 3 in Z exists

if 3 =othen a*=—2

again so such Quexists.

Hence no such ¢ exists

b Z[\/—_z] 1s not isomorphic to Z [\/3}

6.4 Summary

1) First Isomorphism Theorem of Ring: Let @:R— Sbe a onto ring
homomorphism then R / ker & ~ & (R).

2) Second Isomorphism Theorem for Rings: Let 4 be a subring and let B be an
ideal of R. Then A+B:{a+b:a€A,b€B} is a subring of R, A(\ B is

anideal of A and (4+ B)/ B~ A/ ANB

3) Third Isomorphism Theorem of Ring: Statement : Let [ and J be ideals of R
with / CJ . Then J /I isanidealof R/ and (R/1)/(J/I)~R/J.

4) Let D be an integral domain. Then there exists a field F (called the field of
fraction of D) that contains a subring isomorphic to D.
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6.5 Unit and Exercises

Exercises :

a
1) Let R:{
—b a

:a,bGR]» under addition and multiplication of 2 x 2

matries. Prove that R is isomorphic to ¢ .

2) Show that the map ¢:R[x]— M, (IR) defined as

a

a
o(a, +a x+..+a,x") :[ ¢ ] is ring homomorphism. Find ker ¢ .
0

4,

a
3) Let R :{

0
d) [
4) Let ¢ be a ring homomorphism from a commutative ring R onto a commutative
ring S and let A be un ideal of S.

b
p :a,deZ} . Show that ¢: R — Z x 7 defined by

a b
o d

U =(a,d) is aring homomorphism. Find Ker ¢ .

(i) If A is prime in S, show that &~ '(4) = {x € R:d (x) € A} is pprime in R.
(i1) If A is maximal in S, show that (13_1(/1) is maximal in R.

5) Let Z [l] ={a+bi:a, b €Z}. Show that the field of quotients of Z [z] is ring
— isomorphic to Q [z] : {r +si/r,Se Q} (Hint: Let F is field containing Z and i,
then for any a € Z,a =0, % € I, Hence F contain Q and i. Also prove that for

a-+bi

any a+ bi,c+di = 0 € Z][i],
Y g c+di

e Q[].

O o0 0 0
Op® 00 00 00
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7

EUCLIDEAN DOMAIN, PRINCIPAL IDEAL

DOMAIN UNIQUE FACTORIZATION DOMAIN

Unit Structure

7.0 Objective

7.1  Introduction

7.2 Prime and irreducible element

7.3  Euclidean domain (ED)

7.4  Principal ideal domain (PID)

7.5 Unique factorization domain (UFD)
7.6 Summary

7.7  Unit and Exercises

7.0 Objective

The Objective this chapter is to make you understand

Prime and irreducible elements and difference between them.
Euclidean domain (ED)

Principal ideal domain (PID)

Unique factorization domain (UFD)

Difference between E D, PID, UFD
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7.1 Introduction

Primes plays central role in theory of integers. Lots of famous theorems are there
for prime. For example, there are infinite numbers of primes; there are infinite
numbers of prime of the type 4n-1 (or 4n+1). Euclid lemma which states that p is
the prime, plab then either pla or pla, etc.

There some conjectures which are simple to state but yet not proved. One of them
is twin prime theorem. Prime like 3 and 5, /7 and /3, 17 and 19 are called twin
prime. Twin prime theorem states that “there are infinitely many twin primes”. This
conjecture yet to be proved.

We want to introduce same notion of prime to general ring. That is we want find
element in general ring which has property similar to prime of integers.

Note that in case of integer we define prime as positive integers which are divisible
by I(unity) and itself but in case of general ring this definition may not be
appropriate. As if u is unit in ring R and a

a|b then ua|b. Hence in a ring if there more than one unit then definitely there more
than two divisors.

Hence we need different approach to define prime. One such approach given by
Euclid lemma.

7.2 Prime and Irreducible Element

Definition: Let R be an integral domain. A non zero non unit element p of R is said

to be prime element in R ifwheneverp‘a-b = p‘a or p‘b.

Definition: A non zero non unit element P of integral domain R is said to be
irreducible element if whenever p=a - b then either a is unit or b is unit.

Two elements a and b of integral domain R is said to be associates of each other if
they differ by unit (i.e., a=ub for some unit «). The other way to say same thing is
a/b and b/a.

Theorem 1: In an integral domain prime element are irreducible.

Proof: Let R be an integral domain and let p € R be prime element in R. To Prove

P is irreducible.

Letp=a-b
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Hence To prove either a or b is unit.

Since p‘p = p‘a.b = p|a or p|b (Since p is prime element)
If p|a then a = kp for some k € R

S.p=ab=p=kpb = kb=1=b isunitin R

Similarly if p|b then we can prove « is unit in R. Hence whenever p = a-b =
either a or b is unit.

Therefore p is irreducible.

Remark:

1. Incase ofZ, the prime and irreducible are same.

2. The above theorem say that prime and irreducible are same in an integral
domain. But converse need not be true.

That is there are integral domain in which irreducible need not be prime.

Let see one such example. Consider the ring Z [\/Z ] where d is square free integer.

(That is d 1s not divisible by square of any number).

We define a function N:Z[\/E]HZ define as N(a —I—b\/g) —a®> —b*d. this

function is called as norm function.

This function has some trivial property which is easy to prove (of course involve
some calculation)

1. N(xy):N(x).N(y) for all x,yEZ[\/g}.
2. Ifuisunitin Z[\/E ] if and only if N(w) = I
(This is clear because the only unit in Z[\/g ] are +1 and +1,+7 incased =)

3.1 x, y €Z|d | such that xly then N (x)|N ().
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4. If peZ [\/g ] is prime then N(p) is prime number (This can be proved from

IIT property and Euclid Lemma)

Now consider particular example Z[\/ —3]

Consider 1+ \/3 € Z[\/S]

Claim: 1+ +/—3 is irreducible element
Let I ++/—3 =xy for some x, yEZ[\/—_3]
A N(1+=3) = N(x)

s 1=1(=3)=N(x)N(y)

.'.N(x)=1, N(y)=40rN(x)=4,N(y)=1, 0rN(x)=2,N(y)=2
But in this case either x or y is unit in Z[\/—_ﬂ

Hence 1 ++/—3 become irreducible.
The other possible case is N(x) =2, N(y) =2

Let x=a+bJ-3¢€ Z[x/—3]then N(x) — a® +3b*> =2 but this is not possible
for any value of @, b € 7. Hence this case is not possible.

Thus we have shown that 1++/-3 is irreducible.
Also (1+43) (1-V3)=4=2.2
Thus (14+-3)[2.2 but 14-3 2 asif 1+v3 |2 then
2= (1+\/3) (a+b\/3)

= 2=a-3b+(a+b) V-3 =a-3b=2 and a+b=0
But the above equations have no integer solutionl ++/-3 1 2
Hence 1+v/-3 [2:2 but (14+-3) 1 2

1+\/3 is not prime
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3. Ifpisaprime element in an integral domain R < (p) is prime ideal.

aslet a-be(p) =a-b=kp=pla-b = plaor p|b [Sincep is prime clement]
=ac(p)orbe(p)

sa-be(py=ac(p)orbe(p)

~.(p) is prime ideal.

Conversely, let (p) is prime ideal.

Let pla-b=>a-be(p)=aec(p) or be(p) (Since (p) is prime ideal)

= plaor plb = p is prime element.

There are different classes of ring. Let we study them. In first year we study division
algorithm in Z and inR[x]. Actually they are Euclidean algorithm. The integral
domain having Euclidean algorithm is called Euclidean domain (ED). Similarly in
F.Y.B.S.c we study the fundamental theorem of Arithmetic (i.e. Unique
factorization theorem) applicable in Z and R[x].

The integral domain having this property is called unique factorization domain
(UFD). The class of integral domain in which every ideal is principal ideal is called
principal ideal domain (PID). We will study these class of ring one by one.

7.3 Euclidean Domain (ED)

An integral domain R is said to be Euclidean domain (ED). If there exist a function

d:R—7" U{O} such that
(i) d(a-b)>d(a) forall a,bER.

(i) Forany a,b€R,b= o0 there exist p,r € R such that a = bp+r with =0 or
d(r) < d(b).

Note: Such function d is called Euclidean function.
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Example:
1. 7Z is an Euclidean domain.

In Z , the Mod Function | | is an Euclidean Function and  division algorithm
is Euclidean algorithm.

2. R M , the ring of polynomial over R is Euclidean domain.

In R[x], the degree function, degree of polynomial is Euclidean Function and

division algorithm of polynomials are Euclidean algorithm.

3. Any Field is by default Euclidean domain. In a field multiplication is Euclidean
Function. If a,b€ F,b= 0 then a = b(b_la) this is nothing but Euclidean

algorithm.

4. Consider the ring of Gaussian integers Z[i| = {a+bi:a,b € Z}.
Then Z [i] is Euclidean domain,

Define the function N :Z[i]— NU {0} as .. N (a+ib)=a’ +b°.
Then for any x, y € Z[i]

N (x3)=N(x)N(y)

To See Euclidean algorithm.

Let x=a+ib and y:c—l—idGZ[i] such that c¢+1id =0. Consider the

) X
Quotient —.
y

X
Let —=s+ it where s,t€Q.
y

Let m, n be the integers closest to s and t respectively such that |m — S| < %and

=< )
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Then £:s+it:(m—m+s)+i(n—n+t)i
y

=(m+in)+|(s—m)+i(t—n)
Then x:(m—f-in)-l—[(é'—m)'i'i(t_n)]y

We claim thath the division algorithm of the definition of a Euclidean domain is
satisfied si satisfied with g = m + ni and r = (m + in) + [(S — m) + i(t — n)]

Clearly, q belongs to Z[i], and since » = x - qy, so does r. Finally

N(r)=N((s—m)+i(t—qn)i)- N&) =((s=m)*+(c=n) | N(»)
S PRRAORIIE)

Hence for any x,yEZ[i],yiOElq,reZ[i] Such that x=qy +r with
N(r)<N(y).

Hence Z [i ] has Euclidean algorithm. .- Z[i] is Euclidean domain.

These are some example of Euclidean domain. Let us understand the importance
of being Euclidean domain.

Theorem 2:In an Euclidean domain every ideal is principal ideal (i.e generated by
single element).

Proof: Let R be an Euclidean domain and let / be any non zero ideal of R.

Let d be an Euclidean function of R choose a € [ such that d(a) is minimum.
Claim: / = <a>.

Let b € I be arbitrary. Then by Euclidean algorithm there exist p, » € R . Such that
b =ap + rwithr =20 or dr)<d(a). If r=0 then r=b—apel
(since I is ideal ) but then d(r) < d(a) will contradiction as a is the element of I

such that d(a) is minimum.
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cr=0-b=aq =beca)
but b€ be arbitrary.
Hence 1 C(a)

s I1=(a)

-1 is principal ideal

The Integral domain in which every ideal is principal is known as Principal ideal
domain (PID). Thus above theorem says that every Euclidean domain is principal
ideal domain.

Now we see this class of ring in details.

7.4 Principal Ideal Domain

An Integral domain R is said to be principal ideal domain (PID) if every ideal of R
is Principal ideal.

Example:
1. Every field is by default Principal ideal domain.

Since only ideal in field F is zero ideal and F itself. (Since fields are simple
ring). The zero ideal is generated by zero elements and F is generated by unity.

2. 7 is PID.Since any ideal of Z are of the form mZ, m € 7Z.

3. R[x] is PID.One can argue like, as R[x] is Euclidean domain, every
Euclidean domain is PID, hence R[x] is PID. But we can prove directly that
RM is PID. Proof is exactly similar to the way we prove “In Euclidean
domain every ideal is principal”. We request the students to understand the
similarity between two proofs.

Proof: Let / be any nonzero ideal of R[x] Since Let f (x) € I such that f{x) is

monic and deg f(x) is minimum.
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Claim:-/ :<f<x)>
Let g(x) € [ be arbitrary.

Let R[x] is Euclidean domain, then by division algorithm, there exist p(x) and
r(x)eR[x] such that g(x)=p(x)f(x)+r(x) with r(x)=o0 or deg
r(x)(deg f(x).

If r(x)= O then r(x)=g(x)— p(x) f(x)€l (Sincelisideal)

But this is contradiction to minimality of deg f (x) as f (x) el, f (x) is monic &

deg f (x) is minimum.

Hence r (x) =0

Hence / is principal ideal.

.". Every ideal of ]R[x] is principal Hence ]RM is PID.
4. Z[x] is not PID.

Consider the ideal [z{f(x):f(O) is even} i.e. I is ideal of Z[x] with even

constant term.
I:{anx" +.+ax+a,:a,€Z,a,iseven }
= {x(anx"_l +o+ al) +2b,:a, = 2b0} =(x,2)
Let assume that <x, 2> = <f(x)> for some f(x) € Z[x].

x€<f(x)>

~.x=f(x)g(x)for some g(x)€ Z[x]|

. 1=deg x=deg (f(x)g(x)) =deg f(x)-i—deg g(x)

= deg f (x) + deg g(x) =1 but as degree is non negative number,
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Hence either deg f(x)=1, degg(x)=0

or degf(x):O, degg(x)zl.

If deg fix) = 1, then f(x) = ax + b, for some a,bEZ but then
2¢e <f(x)> =2€ <ax + b> is not possible. Hence deg f(x) = 1.

.deg f(x) =0= f(x) is constant polynomial.

Let 2:f(x)h(x) for some h(x)e Z(x)then 2 :f(])h(l)

= f(l) =+2 ( 1€ I) but = f(x) =+2 (As f(x) is constant polynomial but
then x=+2g (x) which is nonsense.

Hence <x, 2> = <f(x)> is not possible.

.". I is not principal ideal.

A ring being Principal ideal domain has lots of advantage. We see them one by one.
We already seen “In an integral domain primes are irreducible”. But we also seen
the example of integral domain where irreducible are not prime. The one advantage
of being PID is that irreducible are also prime.

Theorem 3: In Principal ideal domain irreducible are prime,
Proof: Let R be principal ideal domain, and let » be irreducible element of R.

To prove r is prime.

Let r|bc, c, bER.

Clearly r is non zero, non unit element.

To prove r|b or r|c consider the ideal 1 = {xr +by/x,y€ R} Since R is PID
,',I:<d> for some d € R
Since rEI:<d>

..r=ad for some a in R. (as r is irreducible )

.". either a or d is unit.
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Ifdisunitthen/ =Randas 1€ R ", Ja,3 € R such that 1=cr+3b
c.e=(ac)r+p(bc).. r‘(ow) r, r‘bc = r|Bbc
.‘.r‘cxcr+6bcir‘c

Now if ¢ is unit then <r>=<d > andas b € <d>:b €<r>:> r|b.
.7 1s prime

1. In short we say that in PID, prime and irreducible are same.

2. We had seen that in Z[\/—3}, irreducible are not prime from this and above

theorem we conclude that Z[\/ —3} is not PID.

3. One more advantage of being PID is existence of GCD. Before we see let recall
the definition.

Definition:

(i) Let R be a ring. We say that element a of R divides b € R or b is divisible by
a if there exist ¢ € R such that » = ac and this we denote by a |b.

(ii) Let R be a ring a,b € R. We say that d € R is greatest common divisior
(GCD) of a and b if (i) d|a and d|b (i) If d € R such that d'|a and d'|b

then d'|d . It is denoted by (a, b).

In short the greatest common divisor of a, b at is the largest among all common
divisor.

In school, even if in F.Y.B.Sc. we seen how to find GCD of two positive integer.
The Euclidean algorithm is powerful technique to find GCD. We also seen how to
GCD of two polynomial with the help of division algorithm.

Do you think GCD of any two number exists in all integral domain. To surprise
you the answer is no.

137



ALGEBRAII

Let see this example.

Let a=4 & b=2(1++-3) in Z|\-3|
as a=(2)(2)=(1+3)(1-3)
b= 2(1—\/—73) then 2‘61 and2‘b and <1+\/3> |a and <]+\/3)‘b

.".Both 2 and <I+\/§) are common divisor of @ & b. But 2T (1+/—3) and
(1 ++/-3 )TZ as both are irreducible.

Like this you can see so many example of non existence of GCD, Note that Z{\/E ]

is not PID.

So we hope you can guess the second advantage being yes. PID guarantees the
existing of GCD.

Theorem 4: Let R Principal ideal domain. Then for any a, b € R, greatest common

divisor of @ and b exists.

Proof: R is PID and a,b € R. Consider the ideal [ = {ax +by:x,y€ R} As R
is PID,
.". there exist d € R such that [=<d >.
Claim:d is ged of a_b.
(1) ~bacl={(d)
ca=ad&b=>hbd,a,bcR=d|a&d|p
cde(d)y=1
.dm, n € R such that d=am + bn.
Now let assume that d' € R such that d' ‘a and dl‘b.

=J oy BER such that a=aod and b=0d".

then d = am + bn = amd" + Bnd" :((xm—l—Bn)dl — g
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Hence d is GCD of g and 5.

1.

Note that the GCD d of a and b is generator of ideal generated by a and b. This
may the reason why GCD is denoted by (a,b).

Every Euclidean domain is PID. Hence in Euclidean domain also GCD of any
two elements exists. In fact Euclidean algorithm is best way to calculate the
GCD.

We have shown that Euclidean domain = PID but PID does not mean
Euclidean  domain. For example it shown that the ring

1+~+-19
2

R=qa+b0 [a,beZ 6= is PID but not Euclidean domain,

but detail is beyond the scope of syllabus. So we skip that.

Now let we move to next advantage of being PID. That is PID every ascending
chain of ideal is finite.

Theorem 5:Let R be PID and [, C/, C I;C---1, C-- be strictly increasing

chain of ideals. Then this chain must be at finite length.

Proof: Let I =U I,
n

Claim:/ is ideal of R.

IIC[ZC I3C"'ln C'”
Leta bel=U]I,
n

-.3p q suchthata, €1,,b€l,, bel,

if p=qletp<q thenl,Cl,

=abel,=a-bel, (. I isideal) =a-bel=UlI,

Letr € Rthenclearly arandra € [ »

carandracl=U1,.

Hence [ 1s ideal.
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But as R is PID, therefore there exist d € R such that / = <d >
Since d€<d>:I:Uln
n

.. there exist k such that d €/ A

butthen/=(d)C1I, =UI,CI,

Hence [,CI,C I;C---1, C---
.. chain of ideal is finite.

This is important theorem which helps us (in future) to prove that PIDs have
property called unique factorization as a product of irreducible. The class of ring
having this property is called as unique factorization domain (UFD). Let we study
this in details.

7.5 Unique Factorization Domain (UFD)

An integral domain R is said to be unique factorization domain (UFD) if

(1) Every non zero non unit element R can be expressed as a product of irreducible
of R.

(i1) The factorization into irreducible is unique up to associates and the order in
which the factors appear.

Now let we prove PID = UFD.

Theorem 5:Every principal ideal domain is Unique factorization domain.

Proof:Let R be a principal ideal domain and let @, be any non zero non unit

element of R.

We will prove that a, can be expressed as product of irreducible
Claim: a, has at least one irreducible factor.

If a, is itself irreducible, then we are done. So assume a, = a;b; where neither of

a,, b, are unitand a; is non zero.
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If a, is irreducible then @; become irreducible factor of a,, .

So assume a; = a,b, where neither of @, and b, are unit. It a, is irreducible
then we done otherwise we continue some step so that sequence of element a,,, b,

of R such that a, | =a,b,.

Thus we have <a0> - <a1> - <a2> C....
= =

=

Thus we have strictly increasing sequence of ideal in R. But R PID. There for this
Chain must be finite.

That is there exist a, € R such that <a1 > - <a2> C... <ar>

In particular a, is irreducible factor of a,,.

Thus every non zero non unit element of R has irreducible factor.

Let ay = p; q where pj is irreducible if g;1s also irreducible we get @ as product

of irreducible.

Let assume g is not irreducible. clearly ¢ is not unit otherwise a,become

irreducible which is not the case.

Hence let g, = p, g, where p, where ¢, is irreducible & @, is not unit. If g, 1s
also irreducible then ay = pyq; = pP»9>, product of irreducible and we done. If

not we continue same process. Thus again getting ascending chain of ideal
<a0> C <‘11> ¢ C ... Being PID this chain must be finite. Hence 3¢, € R such that

<a0> c <q1> c..C <qm > , q,, being irreducible as product of irreducible.

Thus every non zero non unit element of R can be written as product uniqueness.
Let a=p\py ... by =495 ---q, where p;and g jare irreducible in R for all i and
-

S PP Pk =992 - Pr

D ‘P1 P2 - Pk
S |¢]1 qz --- 4,
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And as irreducible are prime in PID.

P for some j. Without loss of generality let p; |g,

..q1 = p1a; butboth pjand g, are irreducible = @y is a unit.

.". pyis associate of ¢.

S P2 P =992 9y = P2 Pk =192 -4y = P2 P =192 -4,
Similarly canceling p,, p3 ...and if K <r we get

l=aja,...a; q;,...q, = 1 asproduct of irreducible.

This is contradiction.

Hence » =k and p;'s are associate of ¢ j 's . Hence proved.

Example :

1) Afield F,Z,R M as being PID, there are UFD.

One can prove directly. In case of field, there is no non zero non unit element.
Hence by default field are UFD.

In case of Z(and R[x]) we can prove unique factorization in prime

(irreducible polynomial) as in F.Y.B.Sc.
2) A part from this one can show that it D is UFD then D [x] also.

Thus as Z is UFD, there fore Z [x] also.

This theorem is proved in next chapter.
Remark : Since PID = UFD but converse need not be true that is UFD £ PID .
For example we seen that 7Z [x] is not PID but it is UFD as Z is UFD.

Being UFD will also has lots of benefit. One such benefit is given in following
theorem.

Theorem : In unique factorization domain irreducibles are primes.
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Proof :

Let R be a UFD and a € R be irreducible.
To show that a is prime.

As a is irreducible. .". @ is non zero non unit.

Let a |bc for some b,cER.

.".bc =ka for some k€ R.
As R is UFD, therefore b,c,k can be written as product of irreducible.

Let b=bbyb;...b;, c=c|c; .. k=k ky ..k, where b;,c;and k,are

'Cjn’ J

irreducibles in R for all 7, j and p then
bc=ka ib] b2 bg 06y Gy :kl k2 kl’l a.
As factorization is unique upto associates. Hence @ must be associates of some b,

or c;if a is associate of b; then a‘bl- and hence a|b if a is associate of some ¢

then a ‘cj and hencea|c.

.'.a|bc:> a|b0ra|c

.".a 1is prime.

Thus we see in case of PID and UFD primes and irreducibles are essentially same.
This is the one reason why interval domain like Z[\/g } is no UFD (Note that

7 [\/3 } , 1+ \/3 is irreducible but not prime).

One more advantage of being UFD is that it also guarantees the existence of GCD
of any two element of UFD. This is given as an exercise.
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7.6 Summary

1) Let R be an integral domain. A non zero non unit element p of R is said to be

prime element in R ifwheneverp‘a b= p‘a or p‘b.

2) In an integral domain prime element are irreducible.
3) An integral domain R is said to be Euclidean domain (ED). If there exist a
function d : R —Z U {O} such that
(i) d(a-b)>d(a) forall a,bER.
(i) Forany a,b€R,b== o0 there exist p,r € R

such that a = bp+r with r=0 or d (r) <d (b)

4) In an Euclidean domain every ideal is principal ideal (i.e generated by single
element).

5) An Integral domain R is said to be principal ideal domain (PID) if every ideal
of R is Principal ideal.

6) Let R be PID and [, C1, C I;C---I, C--- be strictly increasing chain of

ideals. Then this chain must be at finite length.
7) An integral domain R is said to be unique factorization domain (UFD) if

(1) Every non zero non unit element R can be expressed as a product of
irreducible of R.

(i) The factorization into irreducible is unique up to associates and the order
in which the factors appear.

8) Every principal ideal domain is Unique factorization domain.

9) In unique factorization domain irreducibles are primes.
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7.7 Unit and Exercises

10.

11.

12.

13.

Define
(1) Euclidean domain

(i) Principal ideal domain. Show that a Euclidean domain is a
principal ideal domain.

Show that the following rings are Euclidean domain:
(1) The ring Z[i], ring of Gaussian integer

(i1) The polynomial ring F/x/, where F is a Field.
Show the polynomial ring R[x] is OID.

Prove or disprove
If F is PID then F/x] is also PID.
Show that every ascending chain of ideals

Lclhc..cl, ClI,,.. naPID R is finite.

Prove that in a PID R, an element a € R is prime

ifand only if  a is irreducible.

Show that a PID is a UFD.

Show that any prime element in integral domain is irreducible.

Is converse true? Justify your answer.
Explain why Z[\/S } is not PID.

Show that any two elements a & b in a PID R have a GCD which can be
expressed in the form \a + pb where \, i, €, R.

Show that every irreducible element in a UFD is prime.

Is Z[\/—S} is UFD? Justify your answer.

Show that Z is PID but Z [x] is not.

(Hint : show that (2, x) is not principal ideal)
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14. Let Rbe an integral domain in which every non zero, non unit
element can be expressed as a product of irreducible and every
irreducible element is prime. Show that R is UFD.

15. (Hint : Note that factorization is unique upto associate.

Take two factorization of an element & use the fact that irreducible
is prime.)

16. Let R be an UFD. Show that for any a,b, € R, gcd of aand b exist.

. ‘i pt ¢
(Hint:let a=p, 'R 2 ..p' %, b=p" p,"* —.. p,"* whereall (;andm;,

need not be non zero then take d = p," p,".... p;,"* where n, =max {¢;, m,}

then show that d is gcd of a and b.

o O O 0
0’0 0’0 0’0 0’0
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3

IRREDUCIBILITY IN POLYNOMIAL RING

Unit Structure

8.0 Objective

8.1 Introduction

8.2 Definition and example of irreducible and reducible polynomial.
8.3 Gauss lemma.

8.4 FEisenstein’s Criterion.

8.5 Summary

8.6  Unit and Exercises

8.0 Objective

This chapter makes you to understand
e Irreducible, reducible polynomials
e Classification of irreducible polynomials in R [x] and ¢ [x]
e Various criteria to check irreducibility.

e (QGauss lemma and Eisenstein’s criteria.

8.1 Introduction

In the chapter of ring we had deals with polynomial ring in detail. In high school
students spend much time factoring polynomials and finding their roots. This is
what we going to learn in this chapter but in abstract manner. Let us understand
FIRST which polynomial we can factorize and which cannot. We start with
definition.
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8.2 Definition and Example of Irreducible and Reducible
Polynomial

Definition: Let D be an integral domain. A polynomial p(x) in D/x] is said to
be irreducible polynomial if whenever p(x) = f(x) g(x) then either f{x) or g(x) is unit
(i.e. constant polynomial) in D/x].

Definition: A non zero — non unit polynomial of D/x]/ which is not irreducible
is said to reducible.

Example:

1. The polynomial 2x% —3 is irreducible in Q[x] but reducible in R [x].

2. The polynomial x* +1 is irreducible over R but reducible overC .

3. The polynomial x> +1 is irreducible over Z 4 but reducible over Z

Note thatZ, :{6,1,5 } f(x):x2 +1 then
f(6):1,f(i):§, f(i):émod3:§.

but if we take element from Z
F0)=1/1)=2f(2)=4+1=5=0(mod5)

. f(2)=0
Hence x = 2is root x* +1in 7

- x> +1 isreducible.

4. The only irreducible polynomial in R [x] are linear polynomial or the

polynomial x> + bx + ¢ such that > —4c <o.

Proof: Clearly the linear polynomial ax + b, a,b € R are irreducible polynomial

because they cannot be factorize.

Similarly for polynomial x* —bx+c, if b* —4c <o then it has complex root

hence cannot be factorize. Now we will prove polynomial of any other degree must
be reducible. Let f(x) is any polynomial of degree n, n>2.
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Case I: deg f(x) is odd.

As complex roots are always come with conjugate pair and number of roots is equal
to degree of polynomial, therefore a polynomial of odd degree must have one real
root.

Let « be real root of f(x).
f(x) = (X—OL) g(x) where degree of g(x) =n—1

.. f is reducible.

Case II: deg f(x) is even.
In worst case let assume all roots of f(x) are complex.

Let a + ib be one root of f{x) then a—ib must be other roots.

- f(x)=(x—(a+ib))(2—(a—ib)) g(x).
=((x=a)=ib)((x—a)+ib) g(x) =((x—a) +b*) g(x)
(x—a)’ +b*and g(x) are two factors of f(x)in R[]

o f (X) is reducible.

5. The only irreducible polynomial in C are linear polynomials.
The other way of saying this is every polynomial over

One of important problem in mathematics is to find root of polynomials. These
roots have different meaning and application in different context. Lots of
techniques are developed in order to find the root of polynomial.

Suppose we had applied one technique to find root. But we haven’t got, then
we apply second technique to find root but we havn’t got, then third, and so on.
And then we came to know that this polynomial has no solution.

If in advance we get to know that the polynomial has no root or in other word
it is irreducible then lots of our efforts can be saved. So we are going to see
some test to check whether given polynomial are reducible or not.
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Reducibility test for Degrees 2 and 3.

Theorem 1:Let F be a field. If f(x) € F[x] and degf(x) =2 or 3 then f(x) is

reducible over F if and only if f(x) has a zero in F.

Proof :Suppose that f'(x)=g(x)h(x)
Where g(x),h(x)€ F[x].

as .. deg f(x)=deg g(x)+deg/ (x)
as deg /'(x)=2o0r3

.". one of the polynomial g(x) or i(x) must be of degree one.

Let assume deg g(x) = 1.

.'.g(x):ax—l—b, a=0

then clearly x=1— ba ' € Fis root of g(x) and hence of f{x).
.".Conversely let assume that f has root a in F' then f(x) = (x-a) g(x)

where deg g(x) = 1 or 2 .". f(x) is reducible.

The above theorem is particularly used when the underlying Field is Z p- because

in this case, we can check for reducibility of f{x) by simply checking that f(a) = 0
ornotfora=20, I, ..., p-1.

Note that the polynomials of degree larger than 3 may be reducible over a field,
even though they do not have zeros in field. For example in

2
Q [x], the polynomial xt2x% +1is equal to (xz —H) , but has no zeros in
Q.
To see next tests for inedibility we need following definition.

Content of Polynomial

Definition: The content of a non zero polynomial a,x" +a, x" 4+ a,,

where a; € Z is the greatest common divisor of a,,a, i,..a,;,a,.

Definition: A polynomial a, x" +..+ax+a,,a;, €Z is said to be primitive

polynomial if its content is one.
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8.3 Gauss Lemma

Theorem 1: The product of two primitive polynomials is Primitive.

Proof: Let f{x) and g(x) be primitive polynomials and suppose that f{x)g(x) is not
primitive. Let p is prime divisor of content of f(x) g(x). Let 7(x),§(x) and
f (x) g(x) be the polynomials obtained from f{x), g(x) and f(x) g(x) by reducing
the coefficient modulo p

then f(x),g(x)€Z,[x] and f(x),g(x)=0inZ [x]

( *." Each coefficient of f{(x) g(x) is divisible by p)

:>f(x) g(x)=0in Zp[x]

— (x) —0 or g(x) —¢. (. pisprime, .'.Zp is integral domain and hence
Z, [x] is integral domain.)

= Either p divides coefficient of f{x) or p divides coefficient of g(x).

Which is contradiction as f(x) and g(x) is primitive.

,',f(x)g(x) is primitive.

Theorem 2: Let [ (x) S ZM. If f{x) is reducible over Q ,

then it is reducible over Z.

Proof: Suppose that f(x) = g(x) h(x), where g(x) and h(x) € Q[x]

We may assume that f(x) is primitive because we can divide both f{x) and g(x) h(x)
by content of f(x). Let a and b be the least common multiple of the denominators
of the coefficients of g(x) and /(x) respectively.

Then ab fix) = ag(x) bh(x) ~ where ag(x),bh(x) €€ Z[x].
Let ¢; and ¢, be the content of ag(x) and bh(x) respectively.

.'.ag(x):clgl (x) and bh(x):cz hy (x).where g (x) and hi(x) are primitive

polynomial in Z [x]

~ab f(x)=c ¢, g (x). b (x).

Note that f(x) is of content 1, Hence content abf(x) is ab.
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By Gauss lemma g; (x) hy (x) is also primitive.

-.contentatc, ¢, g (x) g, (x)is ¢ c,.

cabf (x)=c ¢, g (x). by (x)=ab=¢ c,

o S (x) =g (x). by (x) where g, (x), by (x) € Z]x]
. f(x)is reducible over Z|x|.

Theorem 3: Let P be a prime and suppose that f° (x) € Z[x] with deg f (x) >1.
Let 7(x) be a polynomial in Z » [x] obtained from f(x) by reducing all coefficients

of f(x) modulo p. If f{x) is irreducible over Z p and deg?(x) =deg f (x) then f(x)

is irreducible over Q .

Proof: Since by previous theorem we know that if f(x) is reducible over Q then it

is reducible overZ.

Hence let assume f{x) = g(x). h(x) where g(x), h(x) € Z|x|.

Let f(x), g(x)and /(x) be the polynomials obtained from f{x), g(x) and h(x) by
reducing all the coefficients modulo p. And f (x) is irreducible over Z ,.

Since deg f{x) = deg £ (x)

~.deg g(x)< deg g(x) <deg f(x) and deg /r(x)< deg h(x)< deg f(x)

But 7 (x)= g (x). i (x)

This means that g(x) and Z(x) are proper factor 7()6) , but this is contradiction

to our assumption that F(x) is irreducible over Z »

Hence our assumption that f{x) reducible over (Q is wrong.

.. f(x) is irreducible over Q .
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Example:

Let f(x)=21x" —3x> +2x+7
Then over Z,, f(x)=x"+x+1
Since £ (0)=1= f(1)

then f (x)isirreducible over 7,

and as deg f= deg 7

f(x) is irreducible over Q .

8.4 Eisenstein’s Criterion

Theorem 4: Let f(x) =a,x" +a, X a,c 7 [x] if there is a prime p

such that Pfa,, P a,but P? ta, thenf(x) is irreducible over Q .

A, _qsees P

Proof: Let assume that f(x) is reducible over QQ . Then by previous theorem f(x) is

reducible over Z also.

Let assume that f{x) = g(x) h(x) where 1 <deg g(x) ,deg h(x) <n.
Let g(x)=b.x"+.+bx+b,and h(x)= ox + . fex+e,.

Since f(x) = g(x). h(x)

c.a,=bc anda, =bc,.

Since P

a,= p\b,.c, = p|b, or p‘co (Since P is prime)

but p* ta,, p does not divide both b, & ¢,. Hence Let assume p |b0 but pTc,
Also p

a,= plb..c, =>p

b, &p‘ck.

pTan = prer = prr and pTCk

...prr
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Therefore there exist least integer t such that pTb, but the

a,=bc,+b,_c,+..+ by,

as p|at
Now by choice of 7, p must divide each term of right hand side except the first one.
p‘(at _ (bt_lcl +....b,c, )) ie. p‘bt. c¢,. Which is not possible as p‘bt, p‘co.

Hence f(x) is irreducible over Q .
Example: Irreducibility of pth Cyclotomic polynomial for any prime p,

The plh Cyclotomic polynomial.

p_
o, (x): i 11 =xP 14 xP 24 + x+1 is irreducible over Q .
x_

As consider the polynomial

(x+1)P 1 (xp +pxP e px41) -1
(x+1)-1 x

f(x)=2,(x+1)= =xP Ty P 4 p

Note that p divides all coefficient of f(x) except for leading coefficient 1 and also

p2 does not divide constant term which p.
Hence by Eisenstein’s criteria f(x) is irreducible over Q.

But if ﬁ (x) = g(x).h(x) were a non trivial factorization of d)p (x) over Q then
f (x) = $p (x+1)=g(x+1Dh(x+1) will we a non trivial factorization of f{x).

Since this is impossible, hence we conclude that $p (x) is irreducible over Q .

Let us understand the importance of irreducible polynomials.

1. The irreducible polynomial plays exactly same role as prime plays in case of
integer. For example the fundamental theorem of arithmetic (or unique
factorization theorem) irreducible polynomial are treated as prime.

2. One more reason which makes irreducible polynomial important, which is
given in terms of next theorem.
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Theorem 5: Let F'be a field and letp(x) S F[x]. Then <p (x)> 1s a maximal ideal
in F/x] if and only if p(x) is irreducible over F.

Proof: Let assume that ( p(x)) is maximal ideal in F/x].

Let assume that p(x) is reducible  then p(x) = fix) . g(x)

= p(x)€(f (%)) = (p(x))e{/ (%)

but { p(x)) is maximal ideal.

Hence it either (p(x))=(f(x)) or (f(x))="F|x] if (p(x))=(f(x)) then

p(x) and f (x) are associate of each that therefore p(x) =f (x) g(x) implies
g(x) 1s unit.

And if ( f (x)) = F [x] this implies ffx) is unit.

. p(x) is irreducible.

Conversely, let p(x) is irreducible.

Let assume [ is ideal of F/x/] such that {p(x)) C I C F [x]

As F[x] is PID,

Therefore there exists g(x) € F[x] such that

I=(g(x)) = p(x)e(g(x))= p(x)=f(x).g(x)for some f(x)€ F[x]
Now as p(x) irreducible.

- p(x)= f(x) g(x) implies either f{x) is unit or g(x) is unit.

If f(x) 1s unit p(x) and g(x) are associates of each other.

Ap(x)y=(g(x)=1
If g(x) is unit then [ = <g(x)> = F(x)

Hence <p (x)> 1s maximal.
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Corollary 1: Let F be a field and 1etp<x>,a(x),b(x>€F[x]. If p(x) is

irreducible over F and p(x)‘a(x)b(x),then p(x)‘a(x) or p(x)‘b(x).

. . : F [x] :
Proof: Let since p(x) is irreducible, .. % p(x)>ls a field and therefore

integral domain.

Let E(x) and l;(x) be the images of a(x) and b(x) under the natural

homomorphism from F/x] to F [%p(x) - Sincep(x)‘a (x)b(x) :

.'.a(x).l_)(x)zﬁ in F[%p(x) >,but then Z(x):6 or

. Flx .. :
b(x) =0 [Slnce [%p(x) s 1ntegrald0ma1n] .
Therefore it follows that p(x)‘a(x) or p(x)‘b (x)

Now we conclude this chapter by proving Z[x] is unique factorization domain.

Theorem 5: Every non zero non unit polynomial in Z[x] can be written as
bb,.b,p, (x) e Dy (x) where b, s are irreducible polynomials of degree zero and

pi's are irreducible polynomials of positive degree.

More over if bb,..b, p, (x) D (x) = (C.-C G (x)..q(x) where b,s and ¢ j'S
are irreducible polynomial of degree zero and p, (x)s and ¢ f (x)‘s are irreducible

polynomial of positive degree then s = k, m=t and after renumbering
pi(x):iqj(x)andbi =c;
Proof: Let [ (x) be a nonzero non unit polynomial from Z[x]. Ifdeg f (x) =0,

then f (x ) is constant and we are through, by Fundamental Theorem of Arithmetic.

If deg f(x)>0, let b denote the content of /'(x), and let bb,..h; be the
factorization of b as a product of primes. Then f (x) =bb,...b.f, (x), where
A (x) belongs to Z[x], is primitive and deg f, (x) =deg f (x)
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Thus to prove the existence portion of the theorem it suffices to show that a

primitive polynomial f’ (x) of positive degree can be written as a product of
irreducible polynomials of positive degree. We proceed by induction on deg [ (x)

Ifdeg f (x) =1, then f (x) is already irreducible and we are done.

Now suppose that every primitive polynomial of degrees less than deg [ (x) can
be written as product or irreducible of positive degree. If f (x) is irreducibles,
there is nothing to prove. Otherwise Let f (x) = g(x).h(x) where both g(x)
and h(x) are primitive and have degree less than that of f (x) Thus by induction
both g (x) and A (x) can be written as a product of irreducibles of positive degree.

Clearly then f (x) is also such a product.
To prove the uniqueness portion of the theorem, suppose that
f(x):b1b2 ..b, p (x)...pm (x) =¢C,C,...C (x) g, (x)

where b,'s and ¢;'s are irreducible polynomial of zero and p; (x)'s and

q; (x)'s are irreducible polynomials of positive degree.
Since p; (x) sand q; (x) s are primitive therefore by Gauss Lemmas

)2 (x) D> (x) Ny 7 (x) and ¢, (x) e q; (x) are primitive.

Hence both b and ¢ must equal plus or minus the content of f (x) and therefore

are equal in absolute value. It their follows from the fundamental Theorem of
Arithmetic that s = k and after renumbering b, ==£c¢; and1 <1<k

Thus by cancelling the constant terms in the two factorizations for we get,

D (x) )2 (x)...pm (x) =+q (x) v, (x)

By viewing p; (x) and g, (x) as element of Q[x] & noting that
P (x)|p1 (%) 2y (x) oo P (X)
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Therefore  p, (x)|, (x)....q,(x), and by corollary of previous theorem
pi(x)|a;(x) for some j. by renumbering we get. p(x)|g(x)
= ¢ (x)=f(x)p,(x) but as both ¢,(x) and p;(x) are irreducible therefore
£ (x) is unit in Q[x]say f;

~.q(x)=f;, p(x) but both ¢ (x)and p(x)are primitive which implies
fi=%1,50 ¢(x)=%p,(x).

Also after canceling we get

)2 (x) D3 (x) D (x) =+gq, (x) e q, (x) After repeating above argument if m
< t then we get 1 on left side and non constant polynomial in right which leads to

contradiction. Hence m = t and p, (x) =—+gq; (x) .

8.5 Summary

1) LetD be an integral domain. A polynomial p(x) in D/x] is said to be irreducible
polynomial if whenever p(x) = f(x) g(x) then either f(x) or g(x) is unit (i.e.
constant polynomial) in D/x].

2) A non zero — non unit polynomial of D/x] which is not irreducible is said to
reducible.

3) The content of a non zero polynomial a,x”" —kan_l)c"*1 +..+a,, where

a; € 7 is the greatest common divisor of a,,a, |,..a;,a,.
4) Gauss Lemma: The product of two primitive polynomials is Primitive.
5) Eisenstein’s Criterion: Let f(x) =a,x" +a,_, DAL +a, c Z[x] if

there is a prime p such that Pta,, P|a,_,, ..., P|a,but P? Ta, then f{x) is

irreducible over Q .

6) Let F be a field and letp(x) S F[x] Then <p (x)> is a maximal ideal in F/x/
if and only if p(x) is irreducible over F.
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8.6 Unit and Exercises

1) Show that x’+1 and x*+x+4 are irreducible polynomial in Z;,/X] .

Zyy | X] Zy|X]

(X2 +7) and

Show that (XZ x s 4)

are fields having 121 elements.

Solution :- Let f (x)=x+1
SO0)=1.f(1)=2./(2)=5./(3)=
f(4)=17=6 (mod 11), f(5)=26=4(mod 11),
f(6)=37=4 (mod 11), f(7)=50=6 (mod 11),
f(8) =170 (mod 11), f(9)=5 (mod 11),
f(10)=2 (mod 11).

Hence f{x) is irreducible over Z,[x]

. <f<x)> is maximal ideal in le[x]

Now for anyh(x) €Ly, [x] , by division algorithm
h(x) = g(x) (x2 +]> + r(x)
where r(x) =oordeg I”(x) =1

r(x)=ax+b,a,b€Z,, .'.h(x)zg(x)(x2 +])+ax+b

h(x)+<x2 +1>:(g(x)(x2 ~|—1)—|—ax+b)+<x2 ~|—1>:ax+b+<x2+l>

/f( )= ax+b+<x +1> : a,bEZ“[x]}
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.". There are 11 choice for @ and 11 choice for . Hence total 121 polynomials are
there of the form ax + b.

Similarly we can prove that Zii [x] < 5 4> =121.
X" +x+

2) Show that (3x2+4x+3)EZ5[x] factors as <3x+2)<x+4) and

(4x+1)(2x+3). Is Zs|x] a UFD?

Justify your answer. Is the above factorization is unique upto multiplication by a
unit?

Solution: f'(x)=3x" +4x+3
£(0)=3 f(1)=10=0
S (3x+2)(x+4)=3x" +2x +12x +8=3x" +14x+8 =3x" +4x +3 (mod 5)

Similarly (4x +1)(2x +3)=8x" +14x +3=3x" +4x +3 (mod 5)
Hence (3x” +4x+3) = (3x+2) (x +4) = (4x+1)(2x+3)

.".Since <3x+2>(x+4) and (4x+1) (2x+3) are two factors of 3x°> +4x +3.

. 4=—1(mod5)
l=—4(mod)5)

S A4x+1=—x—4 (mod))
=—(x+4)(mod 5)

..4x+1 is associate of (x +4> ins [x] Similarly 2x+3 = - (3x+2) (mod 5).

Hence 2x+3 is associate of (3x+2) in Zs [x]

.". Hence the above factorization is unique upto multiplication by a unit.

" Ls is field .'.Zs[x] us UFD.
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Determine which of the following polynomials are irreducible in the indicated
rings.

i) x> +x+1inZ,|x|

(i) x*+xinZs[2]

(i) x* +10x° +1in Z[x]

Show that if ( /'(x)) is maximal ideal in R|[x], then fx) is irreducible.

Let F be a field. Show that the F[x]/(f(x)) is field if and only if fix) is

irreducible over F.

Show that the only maximal ideals of R[x} are of the form

(x-a), acRor x* +bx—+c¢ where be €R with b* +4ac<o.
Show that maximal ideals of (C[x] are x-& where o € C.

Show that if D is UFD then D[x] is also (Proof is on similar line of proving
Z|x] is UFD)
o, O O O

0’0 0‘0 0’0 0’0
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