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MODULE 1

1
THE CONCEPT OF A RANDOM VARIABLE

Unit Structure:

1.0 Objectives

1.1 Introduction

1.2 Types of Random Variables

1.3 Mean of a random variable

1.4 Variance of a random variable

1.5 Basic Laws of probability

1.6 Types of Discrete random variables

1.7 Continuous distribution

1.8 Reference

1.0 OBJECTIVES

After going to this module you will be able :
 To understand concept of random variable
 To understand various types of random variable
 To understand the meaning of covariance and correlation

1.1 INTRODUCTION

A random variable is a variable whose value is not known or
a function that assigns values to each of an experiment’s outcome.
Random variables are oflenly used in econometric or regression
analysis to determine statistical relationships between two or more
variables.

Random variables are associated with random processes
where a random process is an event or experiment that has a
random outcome. For e.g. rolling a die, tossing a coin, choosing a
card or any one of the other possibilities. It is something which we
would guess but cannot predict the exact outcomes. So we have to
calculate the probability of a particular outcome.

Random variables are denoted by capital letters for e.g. ‘X’,
‘Y’ where it usually refers to the probability of getting a certain
outcome. Random variables give numbers to outcomes of random
events. It means though an event is random but its outcome is
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quantifiable. For e.g. rolling a die. Let’s say we wanted to know how
many sixes we will get if we roll a die for a certain number of times.
In this case random variable X could be equal to 1 if we get a six &
O if we get any other number.

Let us discuss another example of a random variable i.e. the
outcome of a coin toss. Let us assume that the probability
distribution in which the outcomes of a random event are not
equally likely to happen. If random variable, Y, is the number of
heads we get from tossing two coins, then Y could be 0, 1 or 2.
This means that we could have no heads, one head or both heads
on a two - coin toss. However, the two coins land in four different

ways. TT, HT, TH and HH. Therefore, the  
1

0
4

P Y   .

Since we have one chance of getting no heads (i.e. two fails
(TT) when the coins are tossed. Similarly, the probability of getting
two heads (HH) is also 1/4 . So getting one head has a likelihood of

occurring two times : HT and TH. In this case,  1 2 / 4 1 / 2P Y    .

1.2 TYPES OF RANDOM VARIABLES

There are two types of random variables :
A) Discrete random variables
B) Continuous random variables

Discrete random variables take into account a countable
number of distinct values. For e.g. an experiment of a coin tossed
for three times. If X represents the number of times that the
outcome will come up heads, then X is a discrete random variable
that can only have values 0, 1, 2, 3 (from no heads in thee
successive coin tosses to all heads). No other value is possible for
X.

Continuous random variables can represent any value within
a specified range or interval and can take on an infinite number of
possible values. E.g. an experiment that involves measuring the
amount of rainfall in a city over a year or overage height or weight
of a random group of 100 people.

1.3 MEAN OF A RANDOM VARIABLE

The mean of a discrete random variable X is a weighted
average of the possible values that the random variable can take.
The mean of a random variable weights each outcome xi
according to its probability, pi . Therefore expected value of X is 

and formula is
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.............1 1 2 2x p x p x pk k

x pi i

    



The mean of a random variable provides the long-run
average of the variable, or the expected average outcome over
many observations.

For a continuous random variable, the mean is defined by
the density curve of the distribution. For a symmetric density curve,
such as normal distribution, the mean lies at the center of the
curve.

1.4 VARIANCE OF A RANDOM VARIABLE

The variance of a discrete random variable X measures the
spread, or variability of the distribution and is defined by

 22 x pi x iX  

The standard deviation  is the square root of the variance.

1.5 BASIC LAWS OF PROBABILITY

Probability is defined as a number between 0 and 1
representing the likelihood of an event happening. A probability of 0
indicates no chance of that event occurring, whereas a probability
of 1 means the event will occur.

Basic Properties of Probability Rules:
 Every probability is between 1 and 1. In other words, if AA is an

event, then    0 10 1P A P A    .

 The sum of the probabilities of all the outcomes is one. For e.g.
if all the outcomes in the sample space are denoted by A Ai i

then 1A Ai i   .

 Impossible events have probability zero. If event AA is

impossible, then     0P A OP A  .

 Certain events have probability 1. If event AA is certain to occur,

then     1P A IP A  .

The Probability Rules:
1) Rule 1 : Whenever an event is the union of two other events,
the Addition Rule will apply. If AA & BB are two events, then

               P A B P A P B P A and B P A or B P A P B P A and B           U
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If can be written as :

               P A B P A P B P A B P A B P A P B P A B          U I U I

2) Rule 2 : Whenever an event is complement of another event,
the complementary rule will apply. If AA is an event then we have
the following rule.

       1 1P not A P A P not A P A     

This is also written as

       1 1P A P A P A P A    

3) Rule 3 : Whenever partial knowledge of an event is available,
then the condition rule will be applied. If event AA is already known
to have occurred and probability of event BB is desired, then we will
have the following rule.

           P B given A P A and B P A P B given A P A and B P A         

Where it is further written as :

           P B A P A B P A P B A P A B P A I I

4) Rule 4 : Whenever an event is the intersection of two other
events, the Multiplication rule will apply. If events AA and BB need
to occur simultaneously then, we have the following rule.

           P A and B P A P B given A P A and B P A P B given A         

It is also written as :

           P A B P A P B A P A B P A P B A I I

Let us discuss these rules with the help of an example of
rolling a dice. Suppose we roll two dice.

1) The probability that both dice are 5 is:
P (both are 5) = P(first is a 5 and second is a 5) P(both are 5) =
P (first is a 5 and second is a 5) 12

= P(first is a 5) P(second is a 5, given first is a 5) = 1.6.16 = 136 =
P(first is a 5) P(second is a 5, given first is a 5) = 16.16 = 136

Here the word ‘both’ indicates two events had to happen at
the same time, i.e. the first event and the second event. We used
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the multiplication rule because of the key word ‘and’. The first factor
resulted from the Basic Rule on a single die.

2) The probability that at least one die is a 5 is :
P(at least one is a 5) = P(first is a 5 or second is a 5) P(at least one
is a 5) = P(first is a 5 or second is a 5) 12

= P(first is a 5) + P(second is a 5) - P(first is a 5 and second is a 5)
= 16 + 16 - 136 = 1136 = P(first is a 5) + P(second is a 5) - P(first is
a 5 and second is a 5) = 16 + 16 - 136 = 1136

“First we had to recognize that the event at least one” could
be fulfilled by one or the other of two separate cases. We used
‘Addition rule’ because of the word ‘or’. The first two terms come
from the Basic Rule on a single die, while the third term resulted
from only one outcome where both dice will be 5.

3) The probability that neither die is a 5 is :
P(neither is a 5) = 1 - P(at least one is a 5) = 1 - 1136 = 2536
P(neither is a 5) = 1 - P(at least one is a 5) = 1 - 1136 = 2536.

In this case, the word “neither” is complementary to the word “at
least one” so we used the Complementary rule.

4) Given that at least one of the dice is a 5, the probability that
the other is a 5 is:
P(other is a 5 / at least one is a 5) = P(both are 5) P(at least one is
a 5) = 1361136 = 111P(other is a 5 / at least one is a 5) = P(both
are 5) P(at least one is a 5) = 1361136 = 111.

The partial knowledge required the conditional rule.

1.6 TYPES OF DISCRETE RANDOM VARIABLES

When solving problems. we should be able to recognize a
random variable which fits one of the formats of Discrete random
variables.

1) Bernoulli Random Variable: Is the simple kind of random
variable. It can take on two values 1 and 0. If an experiment with
probability P resulted in success then it takes on a 1 and 0 if the
result is failed. For e.g. If the shooter hits the target, we call it a
‘success’ and he misses it then we call it a ‘failure’. Let us assume
that whether the shooter hits or misses the particular target on any
particular attempt has nothing to do with his success or failure on
any other attempts. In this case we are ruling out the possibility of
improvement by the shooter with practise. Assuming probability of a
success is P and that of failure is 1- p, where p is a constant
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between values 1 and 0. A random variable that take value 1 in
case of success and 0 in case of failure is called Bernoulli random
variable.

The Bernoulli distribution with parameter P if its probability

mass function (pmf) is    11 , 0,1xxP x P X p x  

Where,  0, 1x P x p   and

if  1,x P x p  .

Conditions for Bernoulli trials
1) A finite number of trials.
2) Each trial should have exactly two outcomes success or failure.
3) Trials should be independent.
4) The probability of success or failure should be the same in each
trial.

For e.g. - Tossing a coin. Suppose, for a Bernoulli random
variable, 0.4p  . Then

   0 0.6, 1 0.4p p  .

Suppose the coin is tossed for four times. The event that the
outcome will be Head on the first trial, and Tail on the next two and
again Head on the last can be represented as :

 1,0,0,1S 

The probability with which the outcome is Head is P,
whereas the probability with which Tail will occur is 1 - p. The event
‘H’ or ‘T’ on each trial are independent events, in the sense that
whether the outcomes is H or T on any trial is independent of the
chance of ‘Head’ or ‘Tail’ on any previous or subsequent trials. If A
and B are independent events, the probability of observing A and B
equals the probability of A multiplied by the probability of B.
Therefore, the probability of observing 1,0,0,1 together is :

     21 1 1p p p p p       

2) The Binomial Random Variable:
A binomial distribution can be thought of as simply the

probability of a success or failure outcome in an experiment or
survey that is repeated multiple times. It has only two possible
outcome (the prefix “bi” means two) for e.g. a coin toss has only
two outcomes heads or fails or taking a test could have two
outcomes pass or fail.
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A binomial random variable is the number of successes X in
n repeated trials of a binomial experiment. The probability
distribution of a binomial random variable is called a binomial
distribution.

For a variable to be classified as a binomial random variable,
the following conditions must be satisfied:

1) There must be a fixed sample size (a certain number of trials)
2) For each trial, the success must either happen or it must not.
3) The probability for each event must be exactly the same.
4) Each trial must be an independent event.

The binomial probability refers to the probability that a
binomial experiment results in exactly X successes. Given

, &X n p  , we can compute the binomial probability based on the

binomial formula :

Suppose a binomial consists of n trials & results in X
successes and if the probability of success on an individual trial is
P, then the binomial probability is :

   , , 1 n xxb X n p C XP X pn r
    

OR

      , , !/ ! ! 1 n xxb X n p X n x P X pn
        

Where
X  The number of successes that result from the binomial

experiment.
n  The number of trials
p  The probability of success on an individual trial

Q  The probability of failure on an individual trial  1C p 

!n  The factoral of n.

 , ,b X n p    binomial probability

Cn r  the number of combinations of n things, taken r at a time.

For e.g. Suppose a die is tossed or 5 times. What is the
probability of getting exactly 2 fours?
Solution :

This is a binomial experiment in which the number of trials is
equal to 5, the number of successes is equal to 2 and the
probability of success on a single trial is 1/6 or about 0.167.
Therefore, the binomial probability is :
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2 32;5,0.167 0.167 0.8335 2

2;5,0.167 0.161

b C

b

  



3) The Poisson Distribution :
A poisson distribution is the discrete probability distribution

that results from a Poisson experiment. It has the following
properties.

 The experiment results in outcomes as successes or failures.

 The average number of successes   that occurs in a

specified known region.
 The probability that a success will occur is proportional to the

size of the region.
 The probability that the success will occur in an extremely small

region is virtually zero.

For e.g. A certain restaurant gets an average of 4 customers
per minute for takeaway orders. In this case, a poisson distribution
can be used to analyze the probability of various events, regarding
total number of customers visiting for takeaway orders. It helps a
manager of the restaurant to plan for such events with staffing &
scheduling.

Likewise the poisson distribution can also be applied in
subjects like biology, disaster management, finance where the
events are time dependent.

A Poisson random variable is the number of success that
result from a Poisson experiment. The probability distribution of a
Poisson random variable is called a Poisson distribution.

Suppose the average number of successes within a given
region is  , then the Poisson probability is :

 
   

,
!

xe
P X

X

 


 
 

Where e : a constant equal to approximately 2.71828 (e is the
base of the natural logarithm system)

 : the mean number of successes that occur in a specified

region.
X : the actual number of successes that occur in a

specified region.

 ,P X  : The Poisson probability



9

For e.g.
The average number of high end cars are sold by the dealer

of a Luxury Motor Company is 2 cars per day. What is the
probability that exactly 3 high end cars will be sold tomorrow?

Solution : We have the values of
 = 2, the average number of high end car are sold per day

X = 3, probability that 3 high end cars will be sold tomorrow
e = 2.71828, a constant

By using the Poisson Formula we get :

 
   

 
   

 
   

 

,
!

2 32.71828 2
3;2

3!

0.13534 8
3;2

6

3;2 0.180

xe
P X

X

P

P

P

 


 
 

 







Thus, the probability of selling 3 high end cars by tomorrow
is 0.180.

1.7 CONTINUOUS DISTRIBUTION : THE NORMAL
DISTRIBUTION

The normal distribution refers to a family of continuous
probability distribution. It is also known as the Goussian distribution
& the bell curve. It is a probability function that describes how the
values of a variable are distributed. It is a symmetric distribution
where most of the observations cluster around the central peak and
the probabilities for values further away from the mean taper off
equally in both directions. Extreme values in both tails of the
distribution are similarly unlikely.

The normal equation for the normal distribution when the
value of the random variable X is :

      2 21 / 2 exp / 2f X x    

X  normal random variable, X   
 mean

 standard deviation
  approximately 3.14159
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e  approximately 2.71828

The normal equation is the probability density function for
the normal distribution.

The Normal curve: The normal distribution depends on two factors
- the mean and the standard deviation. The mean of the distribution
determines the location of the centre of the graph, and the standard
deviation determines the height and width of the graph. All normal
distributions look like a symmetric, bell-shaped curve as show
below:

Figure No. 1.1

When the standard deviation is small, the curve is tall and
narrow and when the standard deviation is big, the curve is short
and wide.

Probability and Normal curve

The normal distribution is a continuous probability
distribution, where

 the total area under the normal curve is equal to 1

 the probability that a normal random variable X equals any
particular value is 0

 the probability that X is greater than a equals the area under the
normal curve bounded by a and plus infinity (indicated by non-
shaded area in the figure below)

 the probability that X is less than a equals the area under the
normal curve bounded by a and minus infinity (indicated by the
shaded area in the figure below)
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Figure No. 1.2

There are some important features of the normal distribution
as follows:

1. The distribution is symmetrical about the mean, which equals
the median and the mode.

2. About 68% of the area under the curve falls within 1 standard
deviation of the mean.

3. About 95% of the area under the curve falls within 2 standard
deviation of the mean.

4. About 99.7% of the area under the curve falls within 3 standard
deviations of the mean.

These last 3 points are collectively known as the empirical
rule or the 68 - 95 - 99.7 rules. Let us discuss it with an example of
an express food delivery by a Restaurant. Assuming that a mean
delivery time of 30 minutes and a standard deviation of 5 minutes.
Using the Empirical Rule. We can determine that 68% of the
delivery times are between 25-35 minutes (30 + / - 5), 95% are
between 20 - 40 minutes (30 + / - 2 x 5), 99.7% are between 15 -
45 minutes (30 + / - 3 x 5).

Suppose, an average tubelight manufactured by ABC
Corporation lasts 300 days with a standard deviation of 50 days.
Assuming that tubelight life is normally distributed, what is the
probability that ABC corporation’s tubelight will last at most 365
days?

Solution : Given a mean score of 300 days & a standard deviation
of 50 days, we want to find the cumulative probability that tubelight
life is less than or equal to 365 days. Thus,
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 the value of the normal random variable is 365 days.
 the mean is equal to 300 days.
 the standard deviation is equal to 50 days.

By entering these values to find out cumulative probability
we get

 365 0.90P X  

Hence, there is a 90% chance that a tubelight will burn out
within 365 days.

1.8 REFERENCE

 S-Shyamala and Navdeep Kaur, ‘Introduce too y Econometrics’.
 Neeraj R, Hatekar, ‘Principles of Econometrics : An Introduction

us in, R’
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2
COVARIANCE AND CORRELATION

Unit Structure:

2.0 Objectives
2.1 Introduction
2.2 Covariance
2.3 Correlation Analysis
2.4 Methods of Studying Correlation
2.5 The Law of Large Numbers
2.6 References

2.0 OBJECTIVES

After going to this module you will be able :
 To understand the meaning of covariance and correlation.
 To understand the method of studying correlation.
 To understand the law of large numbers.

2.1 INTRODUCTION

Covariance is a measure used to determine how much two random
variables differ by its respective mean and Correlation is a
statistical method which helps in analysing the relationship between
two or more variables. The value of the covariance coefficient lies
between  and and the value of correlation coefficient lies
between -1 and +1.

2.2 COVARIANCE

Covariance is a measure used to determine how much two random
variables differ by its respective mean. In other words, the prefix
‘Co’ refers to a joint action and variance refers to the change. In
covariance, two variables are related based on how these variables
change in relation with each other. The value of the covariance
coefficient lies between  and  .

For population,

 

    
1,

n
X X Y Yi i

iCOV X Y
n

 







14

Where ,X Y  two random variables

X  mean of random variable X

Y  mean of random variable Y
n  length of random variable X, Y

For sample

 

    
1,

1

n
X X Y Yi i

iCOV X Y
n

 






&X Y   mean of given sample set
n  total number of sample
X and Yi i  individual sample of set

2.3 CORRELATION ANALYSIS

Correlation is a statistical method which helps in analyzing
the relationship between two or more variables. The study of
correlation is useful due to following reasons:

1) Since most of the variables have some kind of relationship,
quantification of it is necessary to learn more about them.

2) Correlation is a first step towards estimation or prediction of
unknown values of the variables.

3) An understanding of the degree and nature of correlation
between two or more variables helps in reducing uncertainties
about the economic behaviour of important variables like price level
and money supply, interest rate and investment, taxation and
willingness to work, etc.

Correlation is classified into three ways:
1) Positive and Negative correlation (Depends upon the
direction of change) : When both the variables change in the
same direction, (i.e. they increase or decrease together) it is
positive correlation. For example when price rises, supply also
increases, when income falls, consumption also declines. When
increase in one variable is accompanied by a fall in other, it is
negative correlation. For example, increase in price leads to fall in
demand; increase in interest rate is accompanied by a fall in
investment.

2) Simple and Multiple correlation (Depends upon number of
variables under study) : Simple correlation is the relationship
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between two variables like height and weight of a person, or wage
rate and employment in the economy. Multiple correlations, on the
other hand, examines relationship between three or more variables.
For example a relationship between production of rice per acre,
rainfall and use of fertilizers is multiple in nature.

3) Linear and non-linear (Depends on the ratio of change
between two variables) : When a change in one variable is in
constant ratio with a change in other, it is linear relationship. For
example doubling the amount of fertilizers used exactly doubles the
yield per acre, it is linear relationship. Non-linear relationship exists
when a change in one variable is not in constant ratio with a
change in other. In this case doubling the amount of fertilizers may
not exactly double the output per acre.

2.4 METHODS OF STUDYING CORRELATION

Following important method of studying correlation between
two variable will be discussed in this unit.

 Scatter diagram method.
 Karl Pearson‟s Coefficient of Correlation.
 Rank Correlation Coefficient.

2.4.1 Scatter diagram
It is the simplest method of studying correlation, by using

graphical method. Under this method, a given data about two
variables is plotted in terms of dots. By looking at the spread or
scatter of these dots, a quick idea about the degree and nature of
correlation between the two variables can be obtained. Greater the
spread of the plotted points, lesser is an association between two
variables. That is, if the two variable are closely related, the scatter
of the points representing them will be less and vice versa.

Following are different scatter diagrams explaining the
correlation of different degrees and directions.
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1) Figure 1 represents positive perfect correlation where coefficient
of correlation (r) = 1.

2) Figure 2 represents perfect negative correlation where
coefficient of correlation (r) = -1

3) Figure 3 indicates high degree positive correlation where r = +
0.5 or more.

4) Figure 4 indicates high degree negative correlation where r = -
0.5 or more.

5) Figure 5 represents low degree positive correlation where the
scatter of the points is more.

6) Figure 6 represents low degree negative correlation where the
scatter for the points is more in negative direction.

7) Figure 7 indicates that there is no correlation between two
variables. Here r = 0.

Thus, the closeness and direction of points representing the
values of two variables determine the correlation between the
same.

Advantages and Limitations of this method.

 It is a simple method giving very quick idea about the nature of
correlation.

 It does not involve any mathematical calculations.

 It is not influenced by the extreme values of variables.

 This method, however, does not give exact value of
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 coefficient of correlation and hence is less useful for further

 statistical treatment.

2.4.2 Karl Pearson’s Coefficient of Correlation (r) :
This is the most widely used method of studying a bi-variate

correlation. Under this method, value of r can be obtained by using
any of the following three ways.

I) Direct Method of finding correlation coefficient

Ex.1 Calculate Karl Pearson‟s coefficient of correlation using direct
method.
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Ex. 2 Calculate Karl Pearson‟s coefficient of correlation by taking
deviations from actual mean.
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Ex.3 Compute Karl Pearson‟s coefficient of correlation by taking
deviations from assumed mean.

(This method is used when the actual means are in fractions)

For the above data, actual means X and Y will be in fraction. So
we can take assumed means for both the variables and then find
the deviations dx and dy .

Let assumed means for X = 9
Let assumed mean for Y = 29
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Since r = 0.89, there is high degree positive correlation between
Xand Y.

Check your progress
1) Find correlation coefficient for the following data.

3)

2.4.3 Rank Correlation:
For certain categories like beauty, honestry, etc quantitative

measurement is not possible. Also sometimes the population under
study may not be normally distributed. In such cases, instead of
Karl Pearson‟s co-efficient of correlation, Spearman‟s Rank
correlation coefficient is calculated. This method is used to the
determine the level of agreement or disagreement between two
judges. The calculations involved in this method are much simpler
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than the earlier method. Rank correlation is calculated using the
following formula.

Rank correlation is computed in following two ways:
1) When ranks are given.
2) When ranks are not given.

Rank correlation when ranks are given:
Ex.4 Following are the ranks given by two judges in a beauty
contest. Find rank correlation coefficient.

Since rank correlation co-efficient is -0.5, there is a moderate
negative correlation between the ranking by two judges.

Calculation of rank correlation co-efficient, when the ranks
are not given:

Ex.4 Calculate rank correlation for the following data.
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When the ranks are not given, we have to assign ranks to
the given data. The ranks can be assigned in ascending (Rank 1 to
the lowest value) or descending (Rank 1 to the highest value)
order.

In this example, ranks are given in descending order.
The highest value gets rank 1 and so one.

Since rank correlation coefficient is -0.167, the relationship
between X and Y is low degree negative.

Check your progress
Find rank correlation coefficient for the following data

1)

2)
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2.5 THE LAW OF LARGE NUMBERS

The law of large numbers is one of the most important
theorems in probability theory. It stales that, as a probabilistic
process is repeated a large number of times, the relative
frequencies of its possible outcomes will get closer and closer to
their respective probabilities. The law demonstrates and proves the
fundamental relationship between the concepts of probability and
frequency.

In 1713, Swiss mathematician Jakob Bernoulli proved this
theorem in this book. It was later refined by other noted
mathematicians, such as Pafnuty Chebyshev.

The law of large numbers shows that if you take an
unpredictable experiment & repeat it enough times, you will end up
with its average. In technical terms, if you have repeated,
independent trials, with a probability of success P for each trial, the
percentage of successes that differ from P converge to 0 as the
number of trials n tends to infinity. In more simple words, if you
repeated an experiments many times you will start to see a pattern
and you will be able to figure out probabilities.

For e.g. throw a die and then we will get a random number
(1, 2, 3, 4, 5, 6). If we throw if for 100,000 times and we will get an
average of 3.5 - which is the expected value.

Another example is of tossing a coin 1, 2, 4, 10, etc. times,
the relative frequency of heads can easily happen to be away from
the expected 50%. That is because 1, 2, 4, 10,… are al small
number. On the other hand, if we tossed a coin for 1000 or 100000
times, then the relative frequency will be very close to 50% since
1000 and 100000 are large numbers.

Weak Law of large numbers :
The Law of Large number is sometimes called the Weak

Law of Large numbers to distinguish it from the Strong Law of
Large numbers. The two versions of the Law are different
depending on the mode of convergence. The weak law is weaker
than the sample mean converges to the expected mean in mean
square and in probability. The strong law of large numbers is where
the sample mean M converges to the expected mean  with

probability.

2.6 REFERENCE

 S-Shyamala and Navdeep Kaur, ‘Introduce too y Econometrics’.
 Neeraj R, Hatekar, ‘Principles of Econometrics : An Introduction

us in, R’
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MODULE 2

3
TEST OF HYPOTHESIS: BASIC
CONCEPTS AND PROCEDURE

Unit Structure:

3.0 Objectives

3.1 Introduction

3.2 Hypothesis Testing

3.3 Basic Concepts in Hypothesis Testing

3.4 Procession of Hypotheses Testing

3.5 Procedure for Testing of Hypotheses

3.6 Reference

3.0 OBJECTIVES

 To understand the meaning of hypothesis testing.

 To understand the basic concepts of hypothesis testing.

 To understand the procession and procedure of hypothesis
testing.

3.1 INTRODUCTION

Hypothesis is the proposed assumption explanation,
supposition or solution to be proved or disproved. It is considered
as main instrument in research. It stands for the midpoint in the
research. If hypothesis is not formulated researcher cannot
progress effectively. The main task in research is to test its record
with facts. If hypothesis is proved the solution can be formed and if
it is not proved then alternative hypotheses needs to be formulated
and tested.

So, with hypothesis formulated it will help up to decide the
type of data require to be collected.

The important function in research is formulation of
hypothesis. The entire research activity is directed towards making
of hypothesis. Research can begin with well formulated hypothesis
or if may be the end product in research work. Hypothesis gives us
guidelines for an investigation to the basis of previous available
information. In absence of this research will called underquired data
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and may eliminate required one. Thus hypothesis is an assumption
which can be put to test to decide its validity.

3.2 HYPOTHESIS TESTING

In business research and social science research, different
approaches are used to study variety issues. This type of research
may be format or informal, all research begins with generalized
idea in form of hypothesis. A research question is usually there. In
the beginning research effort are made for area of study or it may
take form of question abut relationship between two or more
variable. For example do good working conditions improve
employee productivity or another question might be now working
conditions influence the employees work.

3.3 BASIC CONCEPTS IN HYPOTHESIS TESTING

Basic concepts in the context of testing of hypotheses need
to be explained. Those are:

3.3.1 Null and Alternative hypotheses:
In the context of statistical analysis, we often talk about null

hypothesis and alternative hypothesis. If we are to compare method
A with method B about its superiority and if we proceed on the
assumption that both methods are equally good, then this
assumption is termed as the null hypothesis. As against this, we
may think that the method A is superior or the method B is inferior,
we are then stating what is termed as alternative hypothesis. The
null hypothesis is generally symbolized as H0 and the alternative
hypothesis as Ha. Suppose we want to test the hypothesis that the
population mean (μ) is equal to the hypothesized mean (μH0) =
100. Then we would say that the null hypothesis is that the
population mean is equal to the hypothesized mean 100 and
symbolically we can express as:

100 : 0 0 H H
If our sample results do not support this null hypothesis; we

should conclude that something else is true. What we conclude
rejecting the null hypothesis is known as alternative hypothesis. In
other words, the set of alternatives to the null hypothesis is referred
to as the alternative hypothesis. If we accept H0, then we are
rejecting Ha and if we reject H0, then we are accepting Ha. For
100: 0 0 H H , we may consider three possible alternative
hypotheses as follows:

If a hypothesis is of the type 0 H , then we call such a
hypothesis as simple (for specific) hypothesis but if it is of the type
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0 H or 0 H or 0 H then we call it a composite (or nonspecific)
hypothesis.

The null hypothesis and the alternative hypothesis are chose
before the sample is drawn (the researcher must avoid the error of
deriving hypotheses from the data that he collects and then testing
the hypotheses from the same data.) In the choice of null
hypothesis, the following considerations are usually kept in view:
1) Alternative hypothesis is usually the one which one wishes to
prove and the null hypothesis is the one which one wishes to
disprove. Thus, a null hypothesis represents the hypothesis we are
trying to reject and alternative hypothesis represents all other
possibilities.

2) If the rejection of a certain hypothesis when it is actually true
involves great risk, it is taken as null hypothesis because then the
probability of rejecting it when it is true is a (the level of
significance) which is chosen very small.

3) Null hypothesis should always be specific hypothesis i.e., it
should not state about or approximately a certain value.

Generally, in hypothesis testing we proceed on the basis of
null hypothesis, keeping the alternative hypothesis in view. Why
so? The answer is that on the assumption that null hypothesis is
true, one can assign the probabilities to different possible sample
results, but this cannot be done if we proceed with the alternative
hypothesis. Hence, the use of null hypothesis (at times also known
as statistical hypothesis) is quite frequent.

3.3.2 Parameter and Statistic:
The main objective of sampling is to draw inference about

the characteristics of the population on the basis of a study made
on the units of a sample. The statistical measures calculated from
the numerical data obtained from population units are known as
Parameters. Thus, a parameter may be defined as a characteristic
of a population based on all the units of the population. While the
statistical measures calculated from the numerical data obtained
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from sample units are known as Statistics. Thus a statistic may be
defined as a statistical measure of sample observation and as such
it is a function of sample observations. If the sample observations
are denoted by x1, x2, x3, ………, xn. Then, a statistic T may be
expressed as T = f (x1, x2, x3, ………, xn).

3.3.3 Type I and Type II errors:
In the context of testing of hypothesis, there are basically

two types of errors we can make. We may reject H0 when H0 is
true and we may accept H0 when in fact H0 is not true. The former
is known as Type I error and the latter as Type II error. In other
words, Type I error means rejection of hypothesis which should
have been accepted and Type II error means accepting the
hypothesis which should have been rejected. Type I error is
denoted by (alpha) known as error, also called the level of
significance of test; and Type II error is denoted by (beta) known as
error. In a tabular form the said two errors can be presented as
follows:

The probability of Type I error is usually determined in
advance and is understood as the level of significance of testing the
hypothesis. If type I error is fixed at 5 per cent, it means that there
are about 5 chances in 100 that we will reject H0 when H0 is true.

We can control Type I error just by fixing it at a lower level.
For instance, if we fix it at 1 per cent, we will say that the maximum
probability of committing Type I error would only be 0.01.

But with a fixed sample size, n, when we try to reduce Type I
error, the probability of committing Type II error increases. Both
types of errors cannot be reduced simultaneously. There is a trade-
off between these two types of errors which means that the
probability of making one type of error can only be reduced if we
are willing to increase the probability of making the other type of
error. To deal with this trade-off in business situations, decision
makers decide the appropriate level of Type I error by examining
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the costs or penalties attached to both types of errors. If Type I
error involves the time and trouble of reworking a batch of
chemicals that should have been accepted, whereas Type II error
means taking a chance that an entire group of users of this
chemical compound will be poisoned, then in such a situation one
should prefer a Type I error to a Type II error. As a result one must
set very high level for Type I error in one's testing technique of a
given hypothesis. Hence, in the testing of hypothesis, one must
make all possible effort to strike an adequate balance between
Type I and Type II errors.

3.3.4 The level of significance:
It is a very important concept in the context of hypothesis

testing. We reject a null hypothesis on the basis of the results
obtained from the sample. When is such a rejection justifiable?

Obviously, when it is not a chance outcome. Statisticians
generally consider that an event is improbable, only if it is among
the extreme 5 per cent or 1 per cent of the possible outcomes. To
illustrate, supposing we are studying the problem of non attendance
in lecture among college students. Then, the entire number of
college students is our population and the number is very large.
The study is conducted by selecting a sample from this population
and it gives some result (outcome). Now, it is possible to draw a
large number of different samples of a given size from this
population and each sample will give some result called statistic.
These statistics have a probability distribution if the sampling is
based on probability. The distribution of statistic is called a
‘sampling distribution’. This distribution is normal, if the population
is normal and sample size is large i.e. greater than 30. When we
reject a null hypothesis at say 5 per cent level, it implies that only 5
per cent of sample values are extreme or highly improbable and our
results are probable to the extent of 95 per cent (i.e. 1 – .05 = 0.95).

Figure No. 3.1

For example, above Figure shows a normal probability
curve. The total area under this curve is one. The shaded areas at
both extremes show the improbable outcomes. This area together
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is 0.05 or 5 per cent. It is called the region of rejection. The other
area is the acceptance region. The percentage that divides the
entire area into region of rejection and region of acceptance is
called the level of significance. The acceptance region, which is
0.95 or 95 per cent of the total area, is called the level of
confidence. These are probability levels. The level indicates the
confidence with which the null hypothesis is rejected. It is common
to use 1 per cent or 5 per cent levels of significance. Thus, the
decision rule is specified in terms of a specific level of significance.
If the sample result falls within the specified region of rejection, the
null hypothesis is rejected at that level of significance. It implies that
there is only a specified chance or probability (say, 1 per cent or 5
per cent) that we are rejecting H0, even when it is true. i.e. a
researcher is taking the risk of rejecting a true hypothesis with a
probability 0.05 or 0.01 only. The level of significance is usually
determined in advance of testing the hypothesis.

3.3.5 Critical region:
As shown in the above figure, the shaded areas at both

extremes called the Critical Region, because this is the region of
rejection of the null hypothesis H0, according to the testing
procedure specified.

Check your progress:

1. Which basic concepts regarding hypothesis testing have you
studied?

2. Define:

i. Null Hypothesis

ii. Alternative Hypothesis

3. What do you mean by parameter and statistic?

4. What are the Type I and Type II errors?

5. What are level of significance and level of confidence?

6. What is Critical Region?

3.4 PROCESSION OF HYPOTHESES TESTING:

Hypotheses testing is a systematic method. It is used to
evaluate the data collected. This serve as aid in the process of
decision making, the testing of hypotheses conducted through
several steps which are given below.
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a. State the hypotheses of interest
b. Determine the appropriate test statistic
c. Specify the level of statistical significance.
d. Determine the decision rule for rejecting or not rejecting null

hypotheses.
e. Collect the data and perform the needed calculations.
f. Decide to reject or not to reject the null hypotheses.

In order to provide more details on the above steps in the
process of hypotheses testing each of test will be explained here
with suitable example to make steps easy to understand.

1. Stating the Hypotheses
In statistical analysis of any research study if includes at

least two hypotheses one is null hypotheses and another is
alternative hypotheses.

The hypotheses being tested is referred as the null
hypotheses and it is designated as HO. It is also referred as
hypotheses of difference. It should include a statement which has
to be proved wrong.

The alternative hypotheses present the alternative to null
hypotheses. It includes the statement of inequality. The null
hypotheses are and alternative hypotheses are complimentary.

The null hypothesis is the statement that is believed to be
correct through analysis which is based on this null hypotheses. For
example, the null hypotheses might state the average are for
entering management institute is 20 years. So average age for
institute entry = 20 years

2. Determining Appropriate Test Statistic
The appropriate test statistic which is to be used in statistic,

which is to be used in statistical hypotheses testing, is based on
various characteristics of sample population of interest including
sample size and distribution.

The test statistic can assume many numerical values. As the
value of test statistic has significant on decision one must use the
appropriate statistic in order to obtain meaningful results. The
formula to be used while testing population means is.

Z - test statistic, x - mean of sample  - mean of population,

 - standard deviation, n – number of sample.

3. The Significance Level
As already explain, null hypothesis can be rejected or fail to

reject null hypotheses. A null hypothesis that is rejected may in
really be true or false.
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A null hypothesis that fails to be rejected may in reality be
true or false. The outcome that a researcher desires is to reject
false null hypotheses or fail to reject true null hypotheses. However
there is always possibility of rejecting a true hypotheses or failing to
reject false hypotheses.

Type I and Type II Errors
Type I: error is rejecting a null hypotheses that is true

Type II: Error is failing to rejected a false null hypotheses

The probability of committing a type I error is termed as a A
and Type II error is termed as B.

4. Decision Rule
Before collection and analyses of data it is necessary to

decide under which conditions the null hy7potheses will be rejected
or fail to he rejected. The decision rule can be stated in terms of
computed test statistics or in probabilistic terms. The same decision
will he applicable any of the method so selected.

5. Data Collection and Calculation Performance
In research process at early stage method of data collection

is decided. Once the research problem is decided that immediately
decision in respect of type and sources of data should be taken. It
must clear that fact that, which type of data will be needed for the
purpose of the study and now researcher has a plan to collect
required data.

The decision will provide base for processing and analysing
of data. It is advisable to make use of approved methods of
research for collecting and analysing of data.

6. Decision on Null Hypotheses
The decision regarding null hypotheses in an important step

in the process of the decision rule.

Under the said decision rule one has to reject or fail to reject
the null hypotheses. If null hypotheses is rejected than alternative
hypotheses can be accepted. If one fails to reject null hypotheses
one can only suggest that null hypotheses may be true.
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7. Two Failed and One Failed Tests
In the case of testing of hypotheses, above referred both

terms are quite important and they must be clearly understood. A
two failed test rejects the null hypotheses.

a. if sample mean is significantly
b. higher or lower than the
c. hypothesized value of mean of the population
d. such a test is appropriate, when the null hypotheses is some

specified value and the alternate hypotheses is a value not
equal to the specified value and the alternative hypotheses is
value not equal to the specified value of null hypotheses.

3.5 PROCEDURE FOR TESTING OF HYPOTHESES:

Testing of hypotheses mean to decide the validity of the
hypotheses on the basis of the data collected by researcher. In
testing procedure we have to decide weather null hypotheses is
accepted or not accepted.

This requirement conducted through several steps between
the cause of two action i.e. relation or acceptance of null
hypothesis. The steps involved in testing of hypotheses are given
below.

1. Setting up of Hypotheses
This step consist of hypotheses setting. In this step format

statement in relation to hypotheses in made. In traditional practice
instead of one, two hypotheses are set. In case if one hypotheses
is rejected than other hypotheses is accepted. Hypotheses should
be clearly stated in respect of the nature of the research problem.

There are hypotheses are.
a. Null hypotheses and
b. Alternative hypotheses.

Acceptance or rejection of hypotheses is based on the
sampling information. Any sample which we draw from the
population will vary from it therefore it is necessary to judge
whether there difference are statistically significant or insignificant.

The formulation of hypotheses is an important step which
must be accomplished and necessary care should be taken as per
the requirement and object of the research problem under
construction.

This should also specify the whether one failed or two failed
test will be used.
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2. Selecting Statistical Technique
In this stage we will make selection of statistical technique

which are going to he used. There are various statistical test which
are being used in testing of hypotheses. There tests are

Z – Test
T – Test
F – Test
X2

It is the job of the researcher to make proper selection of the
test.

Z- Test is used when hypotheses is related to a large
sample. (30 or more)

T- Test is used when hypotheses is related to small sample
(Less than 30)

The selection of test will be dependent on various
consideration like, variable involved, sample size, type of data and
whether samples are related or independent.

3. Selecting Level of Significance
This stage consists of making selection of desired level of

significance. The researcher should specify level of significance
because testing of hypotheses is based on pre-determined level of
significance. The rejection or retention of hypothesis by the
researcher is also based on the significance level.

The level of significance is generally expressed in
percentage from such as 5% or 1%, 5% level of significance is
accepted by the researcher, it means he will be making wrong
decision about 5% of time. In case if hypotheses is reject at this
level of 5% he will be entering risk hypotheses rejection ???out of
100 occasions.

The following factors may affect the level of significance.
- The magnitude difference between sample mean
- The size of sample
- The validity of measurement

4. Determining Sampling Distribution
The next step after deciding significance level in testing of

hypothesis is to determine the appropriate sampling distribution. It
is, normal distribution and ‘t’ – distribution in which choice can be
excised.
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5. Selecting Sample and Value
In this step random sample is selected and appropriate value

is computed from the sample data relating to the test statistic by
utilizing the relevant distribution.

6. Performance Computation
In this step calculation of performance is done. The

calculation includes testing statistics and standard error.

A hypothesis is tested for the following four possibilities, that
the hypotheses is

a- True, but test lead to its rejection
b- False, but test lead to its acceptance
c- True, but test lead to its acceptance
d- False, but test lead to its rejection

Out of the above four possibilities a and b lends to wrong
decision. In this case a lends to Type I error and, b lends to Type II
error.

7. Statistical Decision
Thus is the step in which we have to draw statistical decision

involving the acceptance or rejection of hypotheses.
This will be dependent on whether the calculated value of

the test falls in the region of acceptance or in the region of rejection
at given significance level.

If hypotheses is tested at 5% level and observed set
recorded the possibilities less than 5% level than we considered
difference between hypothetical parameter and sample statistics is
significant.

3.6 REFERENCE

 S-Shyamala and Navdeep Kaur, ‘Introduce too y Econometrics’.
 Neeraj R, Hatekar, ‘Principles of Econometrics : An Introduction

us in, R’
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4
TEST OF HYPOTHESIS: VARIOUS

DISTRIBUTION TEST

Unit Structure:

4.0 Objectives

4.1 Introduction

4.2 Testing of Hypotheses using various distribution test

4.3 Standardization: Calculating Z - scores

4.4 Uses of t-Test

4.5 F-Test

4.6 Chi-square Test

4.7 Reference

4.0 OBJECTIVES

 To understand the various distribution tests of hypothesis
testing.

 To understand the uses of t – test.
 To understand the uses of F test and Chi-square test.

4.1 INTRODUCTION

The test of significance used for hypothesis testing is of two types
the parametric and non-parametric test.

The parametric test is more powerful, but they depend on
the parameters or characteristics of the population. They are based
on the following assumptions.

1. The observations or values must be independent.
2. The population from which the sample is drawn on a random

basis should be normally distributed.
3. The population should have equal variances.
4. The data should be measured at least at interval level so that
arithmetic operations can be used.
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4.2 TESTING OF HYPOTHESIS USING VARIOUS
DISTRIBUTION TEST

A. The Parametric Tests:
a) The Z – Test

Prof. R.A. fisher has develop the Z Test. It is based on the
normal distribution. It is widely used for testing the significance of
several statistics such as mean, median, mode, coefficient of
correlation and others. This test is used even when binominal
distribution or t distribution is applicable on the presumption that
such a distribution lends to approximate normal distribution as the
sample size (n) become larger.

b) The T – Test
The T – Test was developed by W.S. Gossel around 1915

since he published his finding under a bon name ‘student’, it is
known as student’s t – test. It is suitable for testing the significance
of a sample man or for judging the significance of difference
between the mams of two samples, when the samples are less
than 30 in number and when the population variance is not known.
When two samples are related, the paired t – test is used. The t –
test can also be used for testing the significance of the coefficient of
simple and partial correlation.

In determining whether the mean of a sample drawn from a
normal population deviates significantly from a stated value when
variance of population is unknown, we calculate the statistic.

Where,
x  the mean of sample
  the actually or hypothetical mean of population

n  the sample size
s = standard deviation of the samples

Example
Ten oil tins are taken at random from an automatic filling

machine the mean weight of the 10 tins is 15.8 kg and standard
deviation 0.5 kg. Does the sample mean differ significantly from the
intended weight of 16 kg?
(given for  , to 0.05 – 2.26)
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Solution:
Let us make the hypothesis tat the sample mean does not

differ significantly from the intended weight of 16 kg applying t –
test .

For
The calculated value of t is less than the table value. The

hypothesis is accepted.

3. The f- test
The f – test is based on f – distribution (which is a

distribution skewed to the right, and tends to be more symmetrical,
as the number of degrees of freedom in the numerator and
denominator increases)

The f- test is used to compare the variances of two
independent sample means at a time. It is also used for judging the
significance of multiple correlation coefficients.

B The Non-parametric Tests
The non-parametric tests are population free tests, as they

are not based on the characteristics of population. They do not
specify normally distributed population or equal variances. They are
easy to understand and to use.

The important non parametric tests are:
- The chi-square test
- The median test
- The Mann-Whitney U test
- The sign test
- The Wilcoxin matched –Paris test
- The Kolmogorow Smornov test.
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The Chi-Square Test (x2)
The Chi-Square test is the most popular non-parametric test

of significance in social science research. It is used to make
comparisons between two or more nominal variables. Unlike the
other test of significance, the chi-square is used to make
comparisons between frequencies rather than between mean
scares. This test evaluated whether the difference between the
observed frequencies and the expected frequencies under the null
hypothesis can be attributed to chance or actual population
differences. A chi-square value is obtained by formula.

Where,
2k  chi-square

f A observed or actual frequency

fe  expected frequency

2k  can also determined with the help of the following formula.

N = total of frequencies

Example,
Weight of 7 persons is given as below:

In this information we can say, variance of distribution of
sample of 7 persons was drawn is equal to weight of 30 kg.

Test this at 5% of 1% level of significance.



39

Solution:
Above information we will workout variance of sample data.

Degree of freedom is (n-1) = (7-1) = 6

At 5% Ye level of significance x2 =12.592
1% level = 16.812

Value are greater than x2 =8.6

So we accept null hypotheses and variance at both 5 and 1
pe level is significant. So sample of 30 kg is taken from the
population.

The standard normal distribution and its application:

Normal distributions do not necessarily have the same
means and standard deviations. A normal distribution with a mean
of 0 and a standard deviation of 1 is called a standard normal
distribution. It is centred at zero and the degree to which a given
measurement deviates from the mean is given by the standard
deviation. This distribution is also known as the Z - distribution.

A value on the standard normal distribution is known as a
standard deviations above or below the mean that specific
observation falls. For example, a standard score of 1.5 indicates
that the observation is 1.5 standard deviation above the mean. On
the other hand, a negative score represents a value below the
average. The mean has a Z-score of 0.
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4.3 STANDARDIZATION : CALCULATING Z - scores

The process of standardization allows to compare
observations and calculate probabilities across different
populations. i.e. it allows to take observations drawn from normally
distributed populations that have different means and standard
deviations and place then on a standard scale. To standardize the
data, we need to convert the raw measurements into Z-scores.

To calculate the standard score for an observation, following
formula can be used.

X
Z








X  raw value of the measurement of interest

 and  parameters for the population from which the

observations is drawn.

Let us discuss it with an example of mangoes and Apples.
Let’s compare their weights. Mangoes weights 110 grams and an
Apples weights 100 grams. By comparing mere their raw value we
can observe that the mango weights more than the Apple. Now we
will compare their standard scores. Assuming that the weights of
mangoes and Apples follow a normal distribution with the following
parameter values :

Mangoes Apples

Mean weight grams 100 140

Standard deviation 15 25

We will use these value to get Z - score :

Mangoes = (110 - 100) / 15 = 0.667
Apples = (100 - 140) / 25 = -1.6

The Z - score for the Mangoes is (0.667) positive which
means that Mangoes weight more than the average Apple. It is not
an extreme value by any means, but it is above average for
mangoes. On the other hand the Apples has fairly negative Z -
score (- 1.6). It is much below the mean weight for apples.

To find areas under the curve of a normal distribution for it,
we will use Z - score table.

Let’s take the Z-score for mango (0.667) and use it to
determine its weight percentile. A percentile is a proportion of a
population that falls below a specific value. To determine percentile,
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we need to find the area that corresponds to the range of Z scores
that are less than 0.667. The closet value in Z - score table to it is
0.65. The table value indicates that the are of the curve between -
0.65 and +0.65 is 48.43%. But we want the area that is less than a
Z-score of 0.65.

The two halves of the normal distribution are mirror images
of each other. So if the area for the interval from -0.65 and +0.65 is
48.43%, then the range from 0 to +0.65 must be half of that

48.43
24.215%

2
 .

We also know that the area for all scores less than zero is
half (50%) of the distribution.

Therefore the area for all scores upto 0.65, 0.65 = 50% +
24.215% = 74.215%

So, the Mango is at approximately the 74th percentile.

Students t distribution:
In case of large sample test Z - test is

 0,1
2 /

X
Z N

n






 :

If 2  population variance is unknown then sample
variance S2 is used and normal test is applied. But when sample is
small, the unbiased estimate of the population variance is used i.e.

Unbiased Variance of sample
 22

1

X X
S

n








Biased Variance
 22 X X

S
n





In small samples 2 is replaced by 2S and not by 2S .

Student t : If , ,...........1 2x x xn is a random sample of size n from a

normal population with mean  and variance 2 then students t

statistic is given by

Where X = Sample mean
 Population mean
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2

X
t

S

n




 22
1

X X
S

n








4.4 USES OF T - TEST

1) t - test for single Mean:
It is used to test the hypothesis that the population mean 

has specified value of 0 when population standard deviation  
is not known and 30n  we use t - Test.

2

X
t

S

n




If follows t - distribution with (n - 1) degree of freedom

 22
1

X X
S

n








Steps for applying t - Test :
a) Set up the null hypothesis :0 0H  

alternative hypothesis :1 0H   (Two tailed test)

:1 0H   or 0  (one failed test)

b) Find
 22

1

X X
S

n







or    2 21X X n S   where 2S 

unbiased variance.

Biased Variance
 22 X X

S
n





or  2 2X X nS 

where 2S  biased variance.

Since    2 21X X n S   2nS

or
2 2

1

S S

n n



2 2

1

n
S S

n
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c) Use the values in t - Test and compare calculated value with
table value for 1V n  degree of freedom.

d) If calculated value is greater than table value accept 1H and

vice versa.

Suppose a group of 5 students has weight 42, 39, 48, 60
and 41 kg. Can it be said that this sample has come from the
population whose mean weight is 48 kg?

Solution :

Weight (X)  X X

1 42 16 (42 - 46)2

2 39 49 (39 - 46)2

3 48 4 (48 - 46)2

4 60 196 (60 - 46)2

5 41 25 (41 - 46)2

5n  230X   2 290X X 

 

230
46

5

2
290 2902 72.5

1 5 1 4

X
X

n

X X
S

n

  


   

 





Where : 480H   (No significant difference between sample

mean and population mean)
: 481H   (Significant difference between sample and

population mean)

146 48

2 72.5

5

X
t

S

n

   

2 2
0.525

3.8114.5
t    

Table value of t at 5% level of significance for two tailed
test for V = 5 - 1 = 4 is 2.776.

0.05
, 4

2
t V   we accept 0H and conclude that the mean

weight of the population is 48 kg.
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ii) t - Test for difference of means:
Suppose two independent samples have been taken from

two normal population having the same mean, the population
variance are also equal & hypothesis :0H x y  where two

samples have come from the normal population with the same
means.

1 1

1 2

X Y
t

S
n n




 

   2 2
2, ,

21 2

X X Y YX Y
X Y S

n n n n

  
  

 

  

Let us discuss this with the help of the following example.

In an examination 12 students in Class A had a mean score
of 78 and standard deviation is 6 whereas 15 students in Class B
had a mean score of 74 with standard deviation 8. Is the significant
difference between the means of the two classes?

Solution :

212 78 61

215 74 82

n X Sx

n Y S y

   

   

:0H x y  (no significant difference between the means of the

two classes)
:1H x y  (Significant difference between the means of the two

classes)

   

 
 

1 1

1 2

2 2
2

21 2

2
22 2

1
1

X Y
t

S
n n

X X Y Y
S

n n

X X
S or X X n Sx x

n

 



  


 


    

 




Similarly  2 2
2Y Y n Sx 
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2 2 2 2
1 22

1 1

2

12 6 15 8

2 12 15 2

432 960 1392
55.68

25 25

7.46

78 74 4

7.46 0.151 1
7.46

12 15

4
3.48

1.15

x yn S n S
S

n n

S

S

t

t

 
 

   


  




 



 

Table value of t for 1 2 2 25V n n    at 5% level of

significance for 2 tailed tests is 2.064.

7 0.05
25

2

t

t v 

i.e. 3.48 2.064

Therefore Accept H1 and conclude that there is significant
difference between the sample mean.

iii) t - Test for difference of means with dependent samples
(paired t - Test):

This test is applicable when two samples are dependent.
Following are the conditions to apply this test :

 Two samples should be of equal size 1 2n n

 Sample observations of X and Y are dependent in pairs.
The formula for paired t - Test is

2

2
2 21

,
1

i i
i

d
t

S

n

d d
d S d

n n n

 

  
          

 

id x y  ( &x y  sample observations) i.e. difference

between each matched pair.

Suppose, a test is conducted for 5 students in a coaching
centre to know the subject knowledge of the students before and
after tutoring for one month.
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Students 1 2 3 4 5

Results before test 110 120 123 132 125

Result after test 120 118 125 126 121

Is there any change in result after tutoring?

Solution :

X iY id X Y  2
id

110 120 - 10 100

120 118 2 4

123 125 - 2 4

132 136 - 4 16

125 121 4 16

10id   2 140id 

 

2
2 2

2

10
2

5

1

1

101
140

5 1 5

30

i

i
i

d
d

n

d
S d

n n


   

  
        

 
  

   







0 : x yH   (mean score before and after tutoring are same)

1 : x yH   (mean score before & after tutoring are not same)

2

2
0.816

30

5

d
t

S

n

  

Table value of t at 5% level of significance (2 tailed test) for
1 5 1 4n v     is 2.776.

* 0.05
, 4

2

t

t v 

i.e. 0.816 2.776
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Therefore 0H is accepted and conclude that there is no

significant difference in score of the students after one month of
tutoring.

iv) t - Test for significance of an observed sample correlation
coefficient:

When r is a sample correlation & P is correlation for the
population which is unknown, t - Test is applied to test the
significance of correlation coefficient.

2

.

1
.

2

r

r

r
t

S E

r
S E

n

 






Let us assume that a coefficient of correlation of sample of
27 pair of observation is 0.42. Is it likely that variables in the
population are not correlated?

Solution :
In our example,

Let 0 : 0H P  (the variables in the population are

uncorrelated)

1 : 0H P  (variables in the population are correlated)

 

2

2

2
. . 1

0.42
27 2

1 0.42

0.42
25

.8236

2.315

2 25

r r
t n

S E r r

t

t

t

V n









  


 


 



  

Table value of t for 25 degree of freedom is 2.06

0.25 25t t for V    

Therefore 1H is accepted & conclude that variables in the

population are correlated.
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4.5 F - TEST

F statistic is ratio of two independents chisquare variate
divided by their respective degree of freedom. Critical values of F
test are based on right tailed test which depends on 1V (degree of

freedom for numerator) and 2V (degree of freedom for

denominator)

 1 2,F V V

F - Test is used to test the equality of population variances.
Where

2 2 2
0 1 2:H     (population variances are same)

2
1
2
2

Larger estimate of population variance

Smaller estimate of population variance

S
F

S
 

Where 2
1S and 2

2S are unbiased estimates of common population

variance 2 and are gives by

 22
1

1 1

X X
S

n







and

 22
2

2 1

Y Y
S

n








Where 1 1 1V n  and 2 2 1V n  .

This test is also called variance ratio test

 22
1

1 1

X X
S

n







and

 22
2

X X
S

n





   

   

22
1 1

22
1 1

1S n X X

n S X X

  

   





R.H.S. are equal. Hence L.H.S. are also equal  2 2
1 1 1 21S n n S 

Similarly we can find relation between 2
2S and 2

2S .

Assumption of F - Test
 Sample should be random
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 Sample observations should be independent
 Sample should be taken from normal population

Let us discuss F-test with the help of the following example.

Suppose Two samples gave the following results.

Sample Size Mean Sum of the squares of deviation from mean

1 10 15 90

2 12 14 108

Test the equality of sample variance.

Solution :

Let 2 2
0 1 2:H   (Difference in variances of two samples is not

significant)

Given    2 2
1 210, 12 90 108n n X X Y Y       

 

 

2
2
1

1

2
2
2

2

90 90
10

1 10 1 9

108 108
9.82

1 12 1 11

X X
S

n

Y Y
S

n


  

 


  

 





Apply F - Test,

2
1
2
2

10
1.02

9.82

S
F

S

   

For 1 1 1 9V n   and 2 2 1 11V n  

0.05 2.90F 

Since .05F F 

There 0H is accepted and conclude that there is no

significant difference in the variance.
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4.6 CHI-SQUARE TEST

Properties of 2x distribution.

1) Moment Generating function 2x distribution is

   2
/2

1 2
n

x t t


  with parameters
1

2
and

2

n
.

2) Mean of 2x distribution is ‘n’.

3) Variance of 2x distribution is ‘2n’

4) Skewness of 2 distribution is 1
8

0
n

   i.e. 2 distribution is

positively skewed. But as 1, 0n   , the distribution

becomes normal.

5) Kurtosis of 2 distribution is 2 12
0

n
   i.e. 2 distribution is

Leptokurtic.
But as 2, 0n   , the distribution tends to Mesokurtic.

6) 2 distribution tends to normal distribution n  .

7) The sum of independent Chi-square variate is also a chi-square
variate.

Application of Chi-square distribution
i) Goodness to fit :

This test is used to test if the experimental results support a
particular hypothesis or theory.

Assuming Null hypothesis that there is no significant
difference between the observed and expected frequencies. Chi-
square distribution with 1V n  degree of freedom.

 22 i i

i

O E

E





Where iO  observed frequency

iE  expected or theoretical frequency.

Steps to compute 2 test : -

 Consider null hypothesis 0H that the theory fits the data well.

 Compute the expected frequencies  iE corresponding to the

observed frequencies  iO under the considered hypothesis.

 Compute  2i iO E
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 Divide the square of the deviation  2i iO E by the

corresponding expected frequencies i.e.  2i i iO E E

 Add the values obtained in the above step to

Calculate:

 22 i i

i

O E

E


 
 
 
 



 Calculate degree of freedom i.e. 1V n 

 Find the table value of 2 for 1n  degree of freedom at certain

level of significance.

 Compare the calculated value of 2 to the table value, if
2

0.05t  then accept the null hypothesis and conclude that

there is good fit between theory and experiment.

 If calculated value of 2
0.05t  then reject the null hypothesis &

conclude that the experiment does not support the theory.

Chi-square test can be used under following condition :

1) The sample observations should be independent.

2) i iO E N  
3) The total frequency N should be greater than 50 i.e. N > 50
4) No expected frequency should be less than 5. If any expected

cell frequency is less than 5 then we cannot use 2 test. In that

case, we use pooling techniques where we add the frequencies
which are less than 5 with succeeding or preceding frequency
so that sum process more than 5 and adjust - degree of
freedom accordingly.

5) The given distribution should not be replaced by relative
frequencies or proportions but the data should be given in
original units.

Let us discuss this with the help of an example.

A sample analysis of examination results of 450 final year
degree students was made. It is found in the analysis that 200
students have failed, 160 have got pass class, 75 got second class
and only 15 students have got first class. Find out whether these
figures are consistent with the general final year degree
examination result which is in the ratio of 4:2:2:1 for the above
mentioned categories respectively.
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Solution :
Assuming null hypothesis 0H that the figure are consistent

with the general examination result.

Category Observed
frequency

 iO

Expected
frequencies

 iE

 2i iO E  2i i

i

O E

E



Fail 200 180 400 2.22

Pass 160 135 625 4.63

Second 75 90 225 2.5

First 15 45 900 20

450iO  450iE  29.35

Expected frequencies :
Failed : 4 /10 450 180 
Pass : 3 /10 450 135 
Second : 2 /10 450 90 
First : 1/10 450 45 

 22 29.35i i

i

O E

E


 
  
 
 



d.f. = 4 - 1 =3

Table value of 2 at 5% level of significance for df 3 =

7.815. Since calculated 2 value is greater than the table value i.e.
2

0.05t 

29.35 > 7.815

0H is rejected at 5% level of significance and conclude that

the figures are not consistent with the general final year degree
examination result.

ii) Chi - square test for independence of Attributes suppose the
given population has N items, divided into ‘p’ mutually disjoint and
exhaustive classes. 1 2, ,.......... PA A A with respect to the attribute A.

So that randomly selected item belongs to one and only one of the
attributes 1 2, ,.......... PA A A . Similarly suppose the population is

divided into ‘q’ mutually disjoint and exhaustive B. So that randomly
selected items posseses one and only one of the attributes

1 2, ,.......... qB B B . The frequency distribution of the items belonging to



53

the classes 1 2, ,.......... PA A A and 1 2, ,.......... qB B B can be represented

as  p q .

Steps for the test -
 Consider null hypothesis that two attributes A and B are

independent.

 Compute the expected frequencies  iE Corresponding to the

observed frequencies  iO Expected frequency for  i jA B

 
  i j

i j

A B
F A B

n
 where

1, 2,.....,

1,2,.....,

i p

j q

 
  

 Computer  2.....i iO E

 Divide the square of the deviations  2i iO E by the

corresponding expected frequency i.e.  2i i iO E E

 Add the values obtained in the above step to calculate

 22 .....i i

i

O E

E


 
 
 
 



 Calculate degree of freedom   1 1r C  

r  No. of rows C = No. of columns

 Compute the calculated value 2 with the table value for

  1 1r C  degree of freedom at certain level of significance. If

the calculated value of 2 is greater than the table value of 2

the null hypothesis is accepted and vice versa.

Let us discuss this with the help of following example.

The following data on vaccination is collected in a
government hospital to find out whether vaccination reduces the
severity of attack of influenza.

Degree of Severity

Very Severe Severe Mild

Vaccinated 10 150 240

Not Vaccinated 60 30 10

Use 2 - test, to test the association between the attributes.
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Solution :

Observed frequencies

Very Severe Severe Mild Total

Vaccinated 10 150 240 400

Not Vaccinated 60 30 10 100

Total 70 180 250 N = 500

Assume the null hypothesis that the two attributes are
independent i.e. Vaccine is not effective in controlling the severity
of attack of influenza. The expected frequencies are as follows :

Expected Frequencies

Degree of Severity

Very Severe Severe Mild Total

Vaccinated 70 400

500

56





180 400

500

144





250 400

500

200





400

Not Vaccinated 70 - 56 = 14 180 - 144
= 36

250 - 200
= 50

100

Total 70 180 250 N =
500

Compution of Chi square

iO iE  2i iO E  2i i iO E E

10 56 2116 37.786

60 14 2116 151.143

150 144 36 0.25

30 36 36 1

240 200 1600 8

10 50 1600 32

500iO  500iE  500 230.179

   

  

. 1 1

2 1 3 1 1 2 2

d f r c  
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Table value of 2 for 2 d.f. at 5% level of significance is 5.99

Computed value of 2 is greater than the table value of 2 ,

it is highly significant and hence the null hypothesis the rejected.
Hence we conclude that both attributes are not independent ant
vaccination helps to reduce the severity of attack of influenza.

iii) 2 - test for the population variance

To test if the given normal population has a specified

variance 2 2  , we assume the null hypothesis.

2 2
0 0:H  

If 1 2 3, , ,......., nX X X X is a random sample of size ‘n’ from the

given population, then under the null hypothesis 0H , the statistic

 22
2

2 2
0 0

X Xns


 


 


follows 2 distribution with  1n 

d.f. where

 2
2 1

n

i

X X

S
n








denotes the sample variance.

By comparing the calculated value of 2 with the table value

for  1n  d.f. at certain level of significance null hypothesis can be

accepted or rejected.

Let us discuss this with the help of following example.

Weight in kgs. Of 10 members in a Gym are given below :
36, 40, 45, 55, 47, 44, 56, 48, 53, 46

Can it be said that population variance is 20 square kg?

Solution :

Assume null hypothesis 2
0 : 20H   against the alternative

hypothesis 2
1 : 20H  

Weight (in kg)  1X  iX X  2iX X

36 - 11 121

40 - 7 49



56

45 - 2 4

55 8 64

47 - 0 0

44 - 3 9

56 9 81

48 1 1

53 6 36

46 - 1 1

470X   2 366iX X 

 

 

2
2

22

2
2

2
0

470
47

10

366

366
18.3

20

i

i

X
X

n

X X
S

m

nS X X

nS




  




  

  







Degree of freedom 1 10 1 9n    

Table value of 2 for 9 .d.f. at 5% level of significance is

16.92.

Since calculated 2 is greater than table value of 2 at 5%

level of significance, null hypothesis is rejected and conclude that
the population variance is not 20 sq.km.
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MODULE 3

5
ESTIMATED LINEAR REGRESSION
EQUATION AND PROPERTIES OF

ESTIMATORS

Unit Structure:

5.0 Objectives

5.1 Introduction

5.2 The Estimated Linear Regression Equation

5.3 Properties of estimators

5.4 References

5.0 OBJECTIVES

 To understand the concepts of simple linear regression model.
 To understand the various test in regression.

5.1 INTRODUCTION

Linear regression models are used to predict the relationship
between two variables. The factors which is being predicted is
called the dependent variable and the factors which are used to
predict the value of the dependent variable are called the
independent variables. So in this simple linear regression model, a
straight line approximates the relationship between the dependent
variable and the independent variable.

Assuming the two factors that are involved in simple linear
regression analysis are X and Y then the equation that describes
how Y is related to X is represented in the following formula for a
simple Linear Regression Model.

0Y X    

Where, 0 and 1 , are parameters

This equation contains an error term which is represented by
 . It is used to account for the variability in Y that cannot be

explained by the linear relationship between X and Y.
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For e.g. In economic theory, Consumption (C) is determined
by income (Y)

  0 0C f Y Y    

Here we assume that consumption depends only on income
(other determinants of consumption taken to be constant). But in
real world such exact relationship between C and Y never exists.

Therefore we add ‘ ’ an error term in the equation where 

is a random variable called residual error. The error arises from the
measurement errors in Y or imperfections in the specification of the

function  f Y .

So the standard form of the simple linear regression model is

 i i iY f X   ………………… (1)

0 1i i iY X     ………………(2)

where iY  dependent variable

iX explanatory or independent variable

1 slope parameter

0  intercept

It is based on the assumption that
a) the relationship between X & Y is linear
b) Assumption about the random disturbance ( ).

A regression line can show a positive linear relationship, a
negative linear relationship and no relationship.

i) No relationship - The line in the graph in a simple linear
regression is flat (not sloped). There is no relationship between
the two variables.

ii) Positive relationship - Exists when the regression line slopes
upward with the lower end of the line at the y-intercept (axis) of
the graph and the upper end of the line extending upward into
the graph, away from the X-intercept (axis). There is a positive
linear relationship between the two variables representing that
as the value of one variable increases, the value of the other
also increases.

iii) Negative relationship - The regression line slopes downwards
with the upper end of the line at the y-intercept (axis) of the
graph and the lower end of the line extending downward into the
graph field, toward the X intercept (axis). There is a negative
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linear relationship between the two variables i.e. as the value of
one variable increases, the value of the other decreases.

5.2 THE ESTIMATED LINEAR REGRESSION
EQUATION

If the parameters of the population were unknown, the
simple linear regression equation could be used to compute the
mean value of y for a known value of X.

  0 1E Y X    

In practice, however parameter values are generally
unknown so they must be estimated by using data from a sample of
the population. The population parameters are estimated by using
sample statistics. They are represented by 0 and 1 when these

sample statistics are substituted for the population parameters, the
estimated regression equation is formed as following.

  0 1Ŷ X    

(note  Ŷ is pronounced y hat)

The graph of the estimated simple regression equation is
called the estimated regression line.

where 0 y-intercept of the regression line.

1 slope

 Ŷ estimated value of y for a given value of X.

5.3 PROPERTIES OF ESTIMATORS

There are different econometric methods with the help of
which estimates of the parameters are obtained. We have to
choose a good estimator which is close to the population
parameter. This closeness is determined on the basis of following
properties.

A) Estimator Properties for small sample are :
i) Unbiased :

The bias of an estimator is defined as the difference
between its expected value and the true parameter.

Bias =  ˆE  
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If bias is O, an estimator is said to be unbiased i.e.  ˆE  

A biased and an unbiased estimator of the true  is

explained in the following figure.

Figure No. 3.1

Unbiasedness is a desirable property and becomes
important only when it is combined with a small variance.

ii) Least Variance:
An estimator is best when it has the smallest variance as

compared with any other estimate obtained from other econometric

methods. Symbolically, ̂ is best if.

   
2 2

* *ˆ ˆE E E E          

var  ̂ < var  *

where *  any other estimate of the true parameter  .

iii) Efficiency :
An estimator is efficient when it possesses the various

properties as compared with any other unbiased estimator.

̂ is efficient if

 ˆE   and    
2 2

* *ˆ ˆE E E E          
iv) Best, Linear Unbiased Estinator (BLUE) :

An estimator ̂ is BLU if it is linear, unbiased and has

smallest variance as compared with all the other linear unbiased
estimator of the true  .
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v) Least mean square Error estimator (LMSE):
An estimator is a minimum / least MSE if it has the smallest

mean square error defined as the expected value of the squared
difference of the estimator around the true population parameter  .

MSE    
2

ˆ ˆE   

vi)Sufficiency:
An estimator is said to be sufficient estimator that utilise all

the information a sample contains about the true parameter. It must
use all the observations of the sample. Arithmetic mean (A.M.) is
sufficient estimator because it give more information than any other
measures.

B) Estimator Properties for Large Sample:
They are required when the sample is infinitely large. These

properties therefore are also called as asymptotic

i) Asymptotic Unbaisedness :
An estimator is an asymptotically unbiased estimator of the

true population parameter  , if the asymptotic mean of ̂ is equal

to  .

 ˆlimit
n

E  




Asymptotic bias is an estimator is the difference between its
asymptotic mean and true parameter.

(Asymptotic bias of ̂ ) =   ˆlimit
n

E  




If an estimator is unbiased in small samples it is also
asymptotically unbiased.

ii) Consistency :

An estimator ̂ is said to be consistent estimator of the true

population of  if it satisfies two conditions.

a) ̂ must be asymptotically unbiased

 ˆlimit
n

E  




b) the variance of ̂ must approach zero as n tends to infinity.

 ˆlimit 0
n

Variance
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If the variance is zero, the distribution collapses on the value
of the true population parameter . Both the bias and variance

should decrease as n increases.

iii) Asymptotic Efficiency:

An estimator ̂ is said to be asymptotically efficient

estimator of the true population parameter, if :

a) ̂ is consistent and

b) ̂ has smaller asymptotic variance as compared with any other

consistent estimator.

Statistical properties of Least Square Estimators :
Least square estimators are BLUE i.e. Best, Linear and Unbiased
estimator provided error term Ui satisfies some assumption. The
BLU properties of OLS (Ordinary Least Square) estimators are also
called Gauss Markov.

Theorem :
The BLU properties are shown in the following diagram.

Figure No. 3.2

The properties of the OLS estimates of simple linear
regression of the equation 0 1i i iY X U    is based on the

following assumptions :
1) iU is a random real variable.

2) The mean value of U in any particular period is zero. i.e. iU O

i.e.  iE U O

3) Assumption of Homo - scedasficity : i.e. the probability
distribution of U remains the same over all observations of X. i.e.

Variance of iU is constant i.e.  2 2
i UE U   constant.
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4) The random terms of different observation of iU are

independent. i.e.  ,i jE U U O

5) X’s are assumed to be fixed.

In a group of linear, unbiased estimators the OLS estimator.

1̂ has smallest variance i.e. they are best.

1) Linearity : The OLS estimators 0̂ and 1̂ , are linear functions

of the observed values of iY . Given the assumption that X’s appear

always with same values in repeated sampling process.

1
ˆ i i

i

x y

x
 




Where, x & y are in deviation form i.e. ix X X y Y Y   

Let i
i

i

x
K

x



1
ˆ

i ik y 

Put the value of i iy Y Y 

 1
ˆ

i i i i ik Y Y k Y Y k       ……… (1)

But
 

2 2 2

ii
i

i i i

X Xx O
k O

x x x


   


  

 iX X O Q

Put the value of ik in equation (1) we get

 1
ˆ

i i i i i i i ik Y O k Y Y Y k Y Y k          ……… (2)

Where 1 1 2 2i i n nk Y k Y k Y k Y        

This implies that 1̂ is a linear function of iY . Because

ik depends upon 1
sX and 1

sX are assumed to be fixed.

Similarly 0
ˆ ,Y X  
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Putting the value of 1̂ from equation (2)

0
ˆ , i i

i
i i

Y X Y k Y X

Y
X k Y

n

    

 


 

0

1ˆ
i iXk Y

n


 
   
 ……….. (3)

Thus both 0̂ and 1̂ are the linear functions of the 1
sY .

2) Unbiased: Both 0̂ and 1̂ are unbiased estimators.

i.e.  1 1̂  and  0 0̂ 

Proof : 1
ˆ

i ik Y  …………… (From 2)

 0 1i i ik X U   
= 0 1i i i i ik k X k U      ………….. (4)

 

2

2
0

i
i

i

i
i i

i

x
k

X

x
k x X X

x



     
 


  


Q

Q

2

2

0

0

i

i

i

i
i i i

i

k
X

k

x
k X X

x














Putting the value of i iX x X 

 

 

2

2 2 2

2

0
1

0

1

i i i i
i i

i i i

i

i

i i

x x X x X x
k X

X x x

X

x

x

k X


  

 

 



  
  






Substituting the value 0, 1i i ik k X   in equation (4)
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   1 0 1
ˆ 0 1 i ik U    
1 1
ˆ

i ik U   ……………………….. (5)

Take expectations on both sides.

   

 

 

1 1

1 1

ˆ

0

ˆ

i i

i

E k E U

E U

E

 

 

 






Q

This is known as unbiasedness of the estimated parameter. Thus

1̂ is an unbiased estimator of 1 .

It is known that 0̂ from OLS is

0

1ˆ
i iXk Y

n


 
    
 ……………. (from 3)

 0 1

1
i i iXk X U

n
 

 
      


0 1 0 1
i i

i i i i i

X U
X k X k X X k U

n n
        

     ………. (6)

It is proved that 0, 1i i ik k X  
By substituting these values in equation (6)

0 0
ˆ i

i i

U
X k U

n
   

 

Taking expectation on both sides

   
 

 

 

0 0

0 0

ˆ

0

ˆ

i
i i

i

E U
E X k E U

n

E U

E

 

 

  





 

Q

This implies that 0̂ is an unbiased estimator of 0 .

3) Minimum variance property:

Var    
2

1 1 1
ˆ ˆ ˆE E    
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1 1 1 1
ˆ ˆE E         Q

 
2

i iE k U  since 1 1
ˆ

i ik U   
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1 1 2 2 ........ n nE k U k U k U    …….. (see equation 5)
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Var  
2

2
0 2
ˆ i

u

i

x

n x
  



We are interested in the least square estimators which have
the smallest variance.

Let *
1 be another estimator of 1 .
*

i iWY  where constant i iW K but i i iW K C 

 

 

*
1 0 1

0 1

*
1 0 1

i ii

i ii i i

ii i
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W W X W U
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  0iE U   Q Assumption.

 *
1 1E   if and only if

0
i

W  and 1ii
W X 

  0i i i ii
W K C K C       

But 0iK 
0 0i iW C   

Hence 0iC  and 0iW 
  1

1

i i i i i

i i i i

W X K C X

K X C X

  

  

 
 

But i iK X =1
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1 1 0
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C X
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Hence 0iC  and 0i iC X 

Var  
2

* * *
1 1 1E E     

 
2*

1 1E   

Var  
2* *

1 1 1i i i iE WU WU      Q
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Var  * 2 2
1 2i i i j i jE W U WW U U   

   2 2 2i i i j i jW E U WW E U U  

Since  2 2
10,i j uEU U U    (Assumptions)

Var * 2 2
1 0u iw  

Putting the values of 2
iw

Var  
2* 2

1 u i ik C  
Var  * 2 2 2

1 2u i i i ik C k C     

Var
2

* 2 2
1 2

0 0u
u i i i

i

C k C
x


      


Q

Var *
1  1̂ + constant

2
0

i
C Q

Var *
1  1̂

It implies that OLS estimator has the minimum variance.

Similarly, let us take a new estimator *
0 , which is assumed

to be a linear function of the iY and unbiased.

i i iw k C 

Let *
0

1
i iX w Y

n


 
   

 
 where  * *

0 0i iw k     only if 0iw 

and i iw X z .

It implies that 0iC  and 0i iC X 
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1
u iX w
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1 10i i ik C w K kC    
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Var  *
0 Var  0̂ + a positive constants

Var  *
0 > Var  0̂

Thus it is proved that the OLS estimators are BLU.

The standard error test of the estimators 0 and 1 .

The least square estimates are obtained from a sample of
observations. So sampling errors are inevitable to occur in all
estimates. Therefore to measure the size of the error it becomes
necessary to apply test of significance. Let us discuss the standard
error test. It helps us to decide whether the estimates are
statistically reliable or not. To test the null hypothesis.

0 1: 0H   against the alternative hypothesis.

1 1: 0H  

where

   

   

2
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1 1 2

2 2
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ˆ ˆ
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When the standard error is less than half of the numerical value of

the parameter estimate    1 1

1ˆ ˆ
2

S  
 

   
, we conclude that the

estimate is statistically significant. Therefore we reject the hull
hypothesis & accept the alternative hypothesis i.e. the true
population parameter 1 is different from zero.

If the standard error is greater than half of the numerical

value of the parameter estimate    1 1

1ˆ ˆ
2

S  
 

   
, we conclude

that the null hypothesis is accepted and the estimate is not
statistically significant.
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The acceptance of null hypothesis implies the explanatory
variable to which the estimate relates does not effect the dependent
variable. i.e. there is no relationship between Y and X variables.

5.4 REFERENCE

 S-Shyamala and Navdeep Kaur, ‘Introduce too y Econometrics’.
 Neeraj R, Hatekar, ‘Principles of Econometrics : An Introduction

us in, R’
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6
TESTS IN REGRESSION AND INTERPRETING

REGRESSION COEFFICIENTS

Unit Structure:

6.0 Objectives

6.1 Introduction

6.2 Z - Test

6.3 t - Test

6.4 Goodness of fit  2R

6.5 Adjusted R squared

6.6 The F-test in regression

6.7 Interpreting Regression Coefficients

6.8 Questions

6.9 References

6.0 OBJECTIVES

 To understand the meaning of adjusted R squared.
 To use the F- test in regression.
 To interpret the regression coefficients.

6.1 INTRODUCTION

Regression coefficients are a statistical tool or measure of
the average functional relationship between two or more than two
variables. In the regression analysis, one variable is dependent and
other variables are independent. In short, it measures the degree of
dependence of one variable on another variable.

Regression coefficient was used first to estimate the
relationship between the heights of father’s and their sons.
Regression coefficient denoted by b.

6.2 Z - TEST:

The Z test of the least squares estimates is based on
standard normal distribution and is applicable when the population
variance is known or the population variance is unknown if the
sample is sufficiently large i.e. 30n  .
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Assuming The null hypothesis 0 : 0H  

Alternative hypothesis 1 : 0H   Then the least square

estimates 0̂ and 1̂ have the following normal distribution.

0

1

2
2

ˆ0 0 2

2
ˆ1 1 2

ˆ ,

1ˆ ,

u

i

u

i

X
N

n x

N
x





   

   

 
 
  

 
 

  






:

:

After transforming it into  0,1Z N:

 0,1i
i

X
Z N






 :

iX  value of the variable which is to be normalise

 mean of the distribution

 standard deviation

 

 

0

1

* 0 0 0 0

2 2
ˆ

* 1 1 1 1

2 2
ˆ

ˆ ˆ
0,1

/

ˆ ˆ
0,1

/

u i i

u i

Z N
x n x

Z N
n x





   

 

   

 

 
 

 
 

 



:

:

Given the calculated value of *Z , we select the level of
significance to decide the acceptance or rejection of null
hypothesis. Generally speaking, in econometrics we choose 5% or
1% level of significance. i.e. we tolerate / consider 5 times out of
100 to be wrong while making decisions.

We perform a two tail test i.e. critical region for both tails of
standard normal distribution. For i.e. for 5% level of significance,
each tail will include area 0.25 probability. The table value of Z
corresponding to probability 0.25 at each end of the curve or both
the tails is 1 1.96Z   and 2 1.96Z 

To conclude we compare the observed value *Z with the

table value of Z. If it falls in the critical regions. i.e. if * 1.96Z  or
* 1.96Z   , we reject the hull hypothesis. In case if it is outside of

the critical region, i.e. *1.96 1.96Z   , we accept the hull
hypothesis.
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in econometrics, it is customarily to test the hypothesis that
true population parameter is zero.

0 1: 0H   and is tested against the alternative hypothesis.

1 1: 0H   .

To test the above null hypothesis, 0  in the Z transformed

formula.

1 1 1

* 1 1 1 1

ˆ ˆ ˆ

ˆ ˆ ˆ0
Z

  

   

  

 
  

If * 1.96Z  we accept 1H and reject 0H .

Given the 5% level of significance the critical value of Z is
1.96 which is approximately equal to 2.0. In standard error test we

reject null hypothesis if
1

1
ˆ

2


  . In case of 2 test it * 2Z  we reject

null hypothesis. The two statements are identical because

1

* 1

ˆ

ˆ
2Z






  (if we accept 1H ) or

1

1
ˆ

ˆ

2


  .

Thus standard error test and 2 tests give the same result.

6.3 T TEST -

t Test includes the variance estimates 2
XS instead of true

variance 2
X . So the formula is as following :

i

X

X u
t

S


 with (n - 1) degrees of freedom

u value of population mean
2
XS  sample estimate of the population variance

   2 2 / 1X iS X X n   n sample size.

The sampling distribution in  2, XX N u S: and the

transformation statistic is   2/ /XX u S n and has t distribution

with  1n  degrees of freedom.

We have least square estimates as :
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2
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0 0 2
ˆ ˆ, i

u

i

X
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: and
1

2 2
ˆ1 1 2

1ˆ ˆ ˆ, u

i

N
X

   
 

 
  

:

From this the t statistic for 0̂ and 1̂ are obtained from a

sample reduces to
*

* 0 0

0

ˆ

ˆˆ
t

 




 and

*
* 1 1

1

ˆ

ˆˆ
t

 




 with n k degrees

of freedom.

0̂ and 1̂  least squares estimates of 0 and 1 respectively.

*
0 and *

1  hypothesised value of 0 and  .

0

2
ˆˆ  estimated variance of 0 (from the regression)

1

2
ˆˆ  estimated variance of 1

n sample size
K  total number of estimated parameters

(in oure case of K = 2)

Assuming The null hypothesis is 0 0: 0H  

The alternative hypothesis 1 0: 0H  

0

* 0

ˆ

ˆ
t

S







Then the calculated *t value is compared to the table values
of t with n - K degrees of freedom.

If *
0.025t t , we reject the null hypothesis, i.e. we accept that

the estimate 0̂ is statistically significant.

When *
0.025t t , we accept the null hypothesis, that is, the

estimate 0̂ is not statistically significant at the 5% level of

significance.

Similarly for the estimate 1̂ .

Null hypothesis 0 1: 0H   and Alternative hypothesis

1 1: 0H  
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1

* 1

ˆ

ˆ
t

S







If *
0.025t t we reject the null hypothesis and we conclude that

the estimate 1̂ is statistically significant at 5% level of significance.

If *
0.025t t we accept the null hypothesis that is, we conclude

that the estimate 1̂ is not statistically significant at 5% level of

significance.

Confidence intervals for 0̂ and 1̂

The t statistic for 0̂ is

 0

*
* 0 0

ˆ

ˆ
t

S


 



with n - k degrees of freedom.

First we choose the 95 percent confidence level or and find t values
of 0.025t from t table with n - K degrees of freedom. This implies

that the probability of t lying between 0.025t and 0.025t is 0.95.

Thus the 95 percent confident interval for 0 , small sample

for its estimation is 0̂ 0.025t
 0
ˆS



 0

0 0 0.025 ˆ
ˆ t S


     with n - K

degrees of freedom or
 0

0 0 0.025 ˆ
ˆ t S


    with n - K degrees of

freedom.

Similarly, for the estimates of 1̂ ,
 

*
ˆ

ˆ
t

S

 







with n - K degrees of

freedom.

The confidence interval 95 percent level is 1̂ 0.025t

 1
ˆS



 1

1 1 0.025 ˆ
ˆ t S


     with n - K degrees of freedom or

 1
1 1 0.025 ˆ

ˆ t S


    with n - k degrees of freedom.

6.4 GOODNESS OF FIT  2R

A measure of goodness of fit is the square of the correlation

coefficient  2R , which shows the percentage of the total variation

of the dependent variable that can be explained by the independent
variable (X).
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Since,
TSS = RSS + ESS

TSS Total sum of squares = 2
iy

RSS Residual sum of squares = 2
ie

ESS Explained sum of squares = 2
1
ˆ

ix  and iy Y Y  and

ix X X  .

The decomposition of the total variations in Y leads to a
measure of goodness of fit, also called the coefficient of
determination which is represented by :

2

2 2
12

2

ˆ
i

i

ESS
R

TSS

x
R

y





 


As ESS TSS RSS 

2 TSS RSS
R

TSS




2 2
2

2

2

2
1

i i

i

i

i

y e
R

y

e

y


 

 

 




Properties of 2R

i) It is a non-negative quantity i.e. it is always positive 2 0R  . It is
calculated with the assumption that there is an intercept term in the
regression equation of Y on 1X

ii) Its limits ranges from 2 1O R  when 2 0R  , it implies no
relationship between dependent and explanatory variables.

When 2 1R  , there is a perfect fit.

iii) 2 2R r
From definition, r can be written as

2 2

i i

i i

x y
r

x y
 
 

where ix X X 
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2
2 2

1 2
ˆ i
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x
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1 2
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R
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2 2R r

Correlation coefficient 2r R 

While 2R varies between 0 and 1 i.e. 2 1O R  r varies between - 1
and + 1 i.e. 1 1r    , indicating negative correlation and positive
linear correlation respectively, at the two extreme values.

6.5 ADJUSTED R SQUARED

The R squared statistic suffers from a major drawback. No
matter the number of variables we add to our regression model the
value of R square never decreases.

If either remains same or increases with the new
independent variable even though the variable is redundant. In
reality, its result can not be accepted since the new independent
variable might not be necessary to determine the target variable.
So the adjusted R square deals with this problem.

Adjusted R squared measures the proportion of variation
explained by only those independent variables which are really
helpful in determining the dependent variable. It is represented with
the help of the following formula

Adjusted
   
 

2

2
1 1

1
1

R n
R

n k

    
    

     

Where n  sample size
k  number of independent variable
R  R squared values determined by the model

To conclude the difference between R square and adjusted
R square we may say that
i) When we add a new independent variable to a regression
model, the R-squared increase, even though the new independent
variable is not useful indeteming the dependent variable. Whereas
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adjusted R squared increases only when new independent
variables is useful and affect the dependent variable.

ii) Adjusted R - squared can be negative when R-squared is close
to zero.

iii) Adjusted R-squared value always be less than or equal to R-
squared value.

6.6 THE F-TEST IN REGRESSION

F - test is a type of statistical test which is very flexible. It can
be used in a wide variety of settings. In this unit we will discuss the
F-test of overall significance. It indicates whether our regression
modd provides a better fit to the data than a model that contains no
independent variables. So here we will explain how the F-test of
overall significance fits in with other regression statistics, such as R
-square. R-square provides an estimate of the strength of the
relationship between regression model and the response variable.
It does not provide any formal hypothesis test for this relationship.
Whereas the overall significance F-test determines whether this
relationship is statistically significant or not. If the P value for the
overall F-test is less than the level of significance, we conclude that
the R-square value is significantly different from zero.

The overall F-test compares the model with the model with
no independent variables such type of model is known as intercept
only model. It has the following two hypothesis.

a) The null hypothesis - The fit of the intercept only model and our
model are equal.

b) Alternative hypothesis - The fit of the intercept - only model is
significantly reduced compared to our model.

We can find the overall F - test in the ANOVA table.

Table : ANOVA

Source DF Adj SS Adj MS F - Value P - Value

Regression 3 12833.9 4278.0 57.87 0.000

East 1 226.3 226.3 3.06 0.092

South 1 2255.1 2255.1 30.51 0.000

North 1 12330.6 12330.6 166.80 0.000

Error 25 1848.1 73.9

Total 28 14681.9
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In the above table, compare the p-value for the F-test our
significance level. If the p-value is less than the significance level,
our sample data provide sufficient evidence to conclude that our
regression model fits the data better than the model with no
independent variables.

6.7 INTERPRETING REGRESSION COEFFICIENTS

Regression coefficients are a statistical tool or measure of
the average functional relationship between two or more than two
variables. In the regression analysis, one variable is dependent and
other variables are independent. In short, it measures the degree of
dependence of one variable on another variable.

Regression coefficient was used first to estimate the
relationship between the heights of father’s and their sons.
Regression coefficient denoted by b.

Basically, there are two types of regression coefficients, i.e.

regression coefficient of regression y on X  byx and regression

coefficients of regression X on Y  bxy .

Properties of Regression Coefficient:
Some important properties of regression coefficient are as

follows:

1) The both regression coefficients have the same sign. If byx is

positive, bxy will be also positive and if byx is negative, bxy will be

also negative.
If, byx > 0, bxy > 0

byx < 0, bxy < 0

2) If a regression coefficient is more than unity, the other
regression coefficient must be less than unity. If a regression
coefficient is more than - 1, other regression coefficient must be
less than - 1.

If, byx > 1, bxy < 1

byx > -1, byx < -1

3) The geometric mean (GM) of two regression coefficients is
equal to the correlation coefficient.

r b byx xy 

Where,
r = correlation coefficient
byx = Regression coefficient of regression y on x.
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bxy = Regression coefficient of regression x on y.

4) Correlation coefficient and regression coefficient have the same
sign.

If, 0, 0 & 0r b byx xy     

0, 0 & 0r b byx xy     

5) Arithmetic mean of two regression coefficients is equal to or
greater than correlation coefficient.

 
r

r

b byx xy


6) Two regression lines intersects to each other on arithmetic

means of these variables.  ,X Y

Computation of Regression Coefficients:
Regression coefficients can be calculated from following

formulas.
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xy x y
yx

y y

xy x y
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x x

b
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Steps:
For the calculation of regression coefficients have to follow

the following steps.

1) Take the sums of all observations of X and Y variables

 ,x y  .

2) Take the sums of squares of X and Y variables  2 2,x y 

3) Take the sum of products of all observations of X and Y
variables  xy .

4) Use the following formulas for calculating the regression
coefficients.



81

 

 
 

 

22

22

xy x y
yx

y y

xy x y
xy

x x

b

b

 




 




  

 

  

 

Example :

X 2 4 1 5 6 7 8 1 0

Y 3 1 5 7 8 9 0 5 4

Calculate the byx and bxy from above information.

Solution :

X Y XY X2 Y2

2 3 6 4 9

4 1 4 16 1

1 5 5 1 25

5 7 35 25 49

6 8 48 36 64

7 9 63 49 81

8 0 0 64 0

1 5 5 1 25

0 4 0 0 16

First take the sums of all observations of X and Y variables

 &x y 
2 4 1 5 6 7 8 1 0

34

3 1 5 7 8 9 0 5 4

42

x

x

y

y

        



        











Then, take sums of squares of X and Y variables

 2 2&x y  
2 4 16 1 25 36 49 64 1 0

2
196

2 9 1 25 49 64 81 0 25 16

2
270

x

x

y

y
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Now take the sum of products of all observations of X and Y
variables  xy .

6 4 5 35 48 63 0 5 0

166

xy

xy

        







Now keep the above values in following equations and
calculate the regression coefficients.

Regression coefficient of Regression Y on X -

 

 

.

22

xy x y

y y
byx




  

 
 

 

 
 

    

166 34 42
2270 42

166 1428

270 1764

1262
1494

1262
1494
0.845

 













      



0.85byx 

Regression coefficient of Regression X on Y -

 

 

.

22

xy x y

x x
bxy




  

 
 

 

 

960

166 34 42
2196 34

166 1428
196 1156

1262
960

1262

 













 

1.32bxy 

So, 0.85byx 

1.32bxy 



83

6.8 QUESTIONS

Q.1

X 2 4 6 5 3 9 10

Y 4 2 5 7 8 0 4

Calculate regression coefficients (byx and bxy )

Q.2

X 4 5 6 8 9 10 7 6

Y 4 1 5 4 10 12 7 8

Calculate regression coefficients (byx and bxy )

6.9 REFERENCE

 S-Shyamala and Navdeep Kaur, ‘Introduce too y Econometrics’.
 Neeraj R, Hatekar, ‘Principles of Econometrics : An Introduction

us in, R’
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MODULE 4

7
PROBLEMS IN SIMPLE LINEAR

REGRESSION MODEL:
HETEROSCEDASTICITY

Unit Structure:

7.0 Objectives

7.1 Introduction

7.2 Assumptions of OLS Method

7.3 Heteroscedasticity

7.4 Sources of Heteroscedasticity

7.5 Detection of Heteroscedasticity

7.6 Consequences of Heteroscedasticity

7.7 Questions

7.8 References

7.0 OBJECTIVES :

1. To understand the causes of Heteroscedasticity.
2. To understand the detection of Heteroscedasticity.
3. To understand the consequences of Heteroscedasticity.

7.1 INTRODUCTION :

In the previous unit, you learnt about simple linear
regression as meaning, estimation of simple linear regression
model etc. In this unit you learn about the problems in simple linear
regression model.

Simple regression model includes only two variables, so
simple regression model is also known as ‘Two Variables
Regression Model. When we consider the linear relationship
between two variables in the simple regression model, then it is
called as simple linear regression model. There are two methods
for the estimation of simple linear regression model which are
namely ordinary least square method (OLS) and maximum
likelihood principle. When OLS method is unable to use for the
estimation of simple linear regression model, maximum likelihood
principle is being used. But because of the following factors, OLS
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method is appropriate for estimation of simple linear regression
model.

Merits of Ordinary Least Square (OLS) Method









Simple Linear Regression model has been written as follows:

1 2 i iY X ui     

Where, Yi = Dependent Variable

1 = Intercept

2 = Slope

Xi = Independent Variable

ui = Random Variable

For the estimation of above simple linear regression if we
have to use the OLS method, then the study of assumptions of OLS
method become necessary.

7.2 ASSUMPTIONS OF ORDINARY LEAST SQUARE
(OLS) METHOD

Least Square principle is developed by German
mathematician Gaurs.

There are ten assumptions of OLS method. In short, we
discuss as below –

1. The regression model is linear in the parameters.

1 2 i iY X ui     

It is a simple linear regression model and this model is linear

in both (X, Y) Variables and parameters (1, 2). In short, linearly

OLS Method is easy to understand

It is always used

Satisfied results

In the all methods it is important method
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in the parameters is crucial for the use or application of least
square principle.

2. X values are fixed in repeated sampling:

Values taken by the regression X are assumed or
considered to be fixed in repeated sampling:

1 1 i iY X ui     

Where Xi = Fixed / Constant

Yi = Varies

Because of this assumption the regression analysis becomes the
conditional regression analysis.

3. Zero mean value of disturbance ui :

It means, expected value of the disturbance ui is zero.

Given the values of X, the mean or expected value of the

disturbance term (ui) is zero.

Symbolically,

E (ui) = O Or E = (ui / Xi ) = O

4. Homoscedasticity or equal variance of ui : Homo means

equal and scedasticity means spread. So Homoscedasticity means

equal spread. Given the values of X, the variance of ui is the same

for all observations

Symbolically,

Var (ui / Xi ) = 6
2
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In the above figure, AB is the spread of ui for X1, CD is the spread

of ui for X2 and EF is the spread of ui for X3,

So,

AB = CD = EF

It means, ui is Heteroscedastic – In this case, var (ui / X1) ≠ 6
2

5. No autocorrelation between the disturbance terms :

Given any two X values, Xi and Xj , ( i ≠ j ) the correlation between

any two ui and uj ( i ≠ j ) is zero.

Symbolically,

Cov ( ui uj / Xi Xj ) = E [(ui – E (ui)/Xi (uj – E(uj)/Xj)]

= E [(ui/Xi (ujXj)]

Here, E (ui) = O

E (uj) = O

= O

Here, E (ui/Xi) = O

E (uj/Xj) = O

6. Zero covariance between ui and Xi :

Cov (ui , Xi) = E [(ui – E(ui) (Xi – E(Xi)]

Here, E(ui) = O

= E [(ui (Xi – E(Xi)]

= E [(ui Xi – E(Xi)ui ]

= E (ui Xi) - E(Xi) E(ui)

Here, E(ui) = O

= E (ui Xi)

Here, Xi = non stochastic

= Xi E (ui)

Here, E (ui) ) = O

Cov (ui , Xi) = O
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7. The number of observation ‘n’ is greater than the number of
parameters (to be estimated).

8. Variability in X values:
The X variable is a given sample must not all be the same.

9. The regression model is correctly specified.

10.There is no perfect multicolinearity: It means that there is no
perfect linear relationship among the explanatory variables.

These are the ten important assumption of OLS method.

While using the OLS method for the estimation of simple
linear regression model, if assumption no. 4, 5 and 10 do not fulfil,
problems create in the simple linear regression model which are
namely heteroscedasticity, autocorrelation and multicolinearity.

Check your progress:

1. What are the ten principles of ordinary least square (OLS)
method?

7.3 HETEROSCEDASTICITY

The term Heteroscedasticity is the opposite term of
homoscedasticity; heteroscedasticity means unequal variance of

disturbance term (ui).

E (ui
2) = 62  Homoscedasticity

E (ui
2) ≠ 62  Heteroscedasticity

Given the values of X, the variance of ui (Expected or mean

value of ui) that E (ui), is the same for all observations. This as
assumption of OLS, principle which is useful for the estimation of
simple linear regression model.

E (ui
2
) = Var (ui) = 6

2

If above assumption does not fulfil, then the problem of
heteroscedasticity arises in the estimation of simple linear
regression.
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Ex. If Income of individual increases, has saving increases but
the variance of saving will be the same, it is known as
homoscedasticity

Y  S  Var (S) = same  Homoscedasticity

If the variance of saving will be variable, it is known as
heteroscedasticity.

Y  S  Var (S) ≠ same  Heteroscedasticity

7.4 SOURCES OF HETEROSCEDASTICITY

The problem of heteroscedasticity in the simple linear
regression model is arisen because of the following reasons.

1. The old technique of data collection:
While estimating the simple linear regression model by OLS

method, the old technique has been used for collecting the data or
information then the problem of heteroscedasticity creates in the
simple linear regression model.

2. Presence of Outliners:
The problem of heteroscedasticity creates because of the

presence of outliners. Because of it the variance of disturbance
term does not fix on same.

3. Incorrect Specification of the model:
If the model (Simple linear regression model specified

incorrect, the problem of heteroscedasticity arises in it.

7.5 DETECTION OF HETEROSCEDASTICITY

There are mainly five methods on tests of the detection of
the problem of heteroscedasticity in the simple linear regression
model. With the help of these detecting methods of
heteroscedasticity, you will be able to find the problem of
heteroscedasticity in the simple linear regression model.

 Graphical method
 Park Test
 Glejser Test
 Spearman’s Rank Correlation Test
 Goldfeld - Quandt Test.
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1. GRAPHICAL METHOD:

For the detection of heteroscedasticity problem in the simple

linear regression model, in this method squared residuals ( 2
ui
 ) are

plotted against the estimated value of the independent variance

( iY
 ).

In the graphical method, there are mainly following four
patterns.

i) No Systematic Pattern:

2
ui


O

iY
 / iX

In the above graph, there is no systematic relationship

between iY
 / iX and

2
ui


so, there is no heteroscedasticity.

ii) Linear Pattern :

2
ui


O

iY
 / iX

Above graph indicates the linear relationship between

iY
 / iX and

2
ui


which showed the presence of the problem of

heteroscedasticity.
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iii) Quadratic Pattern:

2
ui


O

iY
 / iX

Above graph also shows, the presence of heteroscedasticity
in simple linear regression model.

iv) Quadratic Pattern:

2
ui


O

iY
 / iX

Above graph indicates that there is the present of problem of
heteroscedasticity. In short, when there is the systematic

relationship between iY
 / iX and

2
ui


then there is the presence of

heteroscedasticity.

2. PARK TEST:
R. E. Park developed the test for the detection of

heteroscedasticity in the regression model which is known as Park
Test. R. E. Park developed this test in Econometrica in article
entitled ‘Estimation with Heteroscedastic Error Terms’ in 1976.

Park said that, 6i
2

is the heteroscedastic variance of ui which
varies and the relationship between heteroscedastic variance of

residuals (6i
2
) and explanatory variable (Xi).

6i
2

= 6
2

Xi


e
vi - (1)

In 6i
2

= In 6
2

+ ln Xi + Vi - (2)
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Where,

6i
2

= Heteroscedastic Variance of ui

6
2

= Homoscedastic Variance of ui

X = explanatory variable

Vi = Stochastic term

If, 6i
2

is unknownm Park suggeted
2

ui


(squared regression

residuals) instead of 6i
2
.

In
2

ui


= In 6
2

+  ln Xi + Vi - (3)

where, In 6
2

- 

In
2

ui


=  +  ln Xi + Vi - (4)

Criticisms on Park Test:

Goldfeld and Quandt criticized that Park used the, Vi
Stochastic term in the process of detection of the problem of
heteroscedasticity which is or can be already heteroscedastic.

But Park has shown, Vi is a stochastic term which is
homoscedastic.

3. GLEJSER TEST:
H. Glejser developed the test for the detecting the

heteroscedasticity in 1969 in the article entitled ‘A New Test for
Heteroscedasticity’ in Journal of the American Statistical
Association.

Glejser suggested that get the residuals value while
regressing on the data and the regress on residual value, while
regressing, Glejser used the following six types of functional form.

u i

  = 1 + 2 Xi + Vi - (i)

u i

  = 1 + 2 Xi + Vi - (ii)

u i

  = 1 + 2

1

Xi
+ Vi - (iii)

u i

  = 1 + 2

1

Xi
+ Vi - (iv)

u i

  = 1 2

Xi  
 + Vi - (v)

u i

  = 2

1 2
Xi  
 + Vi - (vi)
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Above first 4 equations are linear in parameters and last 2
equations are non - linear in parameters.

Glejser suggested above 6 functional forms for testing the
relationship between the stochastic term (Vi) and explanatory
variable (X).

According Glejser, first four equations (1, 2, 3, 4) give the satisfied
results because these are linear in parameter and last two
equations (5, 6) give non - satisfied result, because these are non -
linear in parameters.

Criticisms on Glejser Test :

Goldfeld and Quandt criticized on Glejser test as below –

1. Glejser suggested six functional forms, in the last two
functional forms get the non – linear estimates while taking
variance of ordinary least square (OLS) estimates.

2. Vi is a stochastic term which can be heteroscedastic and
multicolinears and the expected value of Vi is non – zero.

E (Vi) ≠ O 

4. SPEARMAN’S RANK CORRELATION TEST:

This test is based on the rank correlation coefficient. That is
why this test is known as Spearman’s Rank Correlation Test.

Spearman’s Rank Correlation Test indicates the absolute

value of u i

 and Xi. Spearman’s Rank Correlation is denoted by

rs.
Symbolically,

rs = 1 – 6
di

2 )( 1n n

 
 
  





Where,

rs = Spearman’s Rank Correlation Coefficient.

n = no. of pairs of observation ranked

di = the difference in the ranks assigned to two different
characteristics of the 9th.

For detecting the heteroscedasticity in the simple linear regression
model, following steps has been suggested by spearman.

Yi = 1 + 2 Xi + ui
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This is the simple linear regression model
Steps :

i) Fit the regression to the data obtains residuals (ui).

ii) Ignoring the sign of u i

 ranku i


 in ascending

/descending form and compute.

t = 2

s - n 2

7

r

rs

   
 
  

df = n - 2

If computed value of t is greater than critical t value, there is the
presence of heteroscedasticity in the simple linear regression
model.
If the computed value of t is less than critical t value, there is the
absence of heteroscedasticity in the simple linear regression
model.

5. GOLDFELD - QUANDT TEST :

Goldfeld and Quandt developed a test to detect the problem
of heteroscedasticity which is known as Goldfeld - Quandt test.

This test is depends on ‘there is positive relationship

between heteroscedasticity ( 6i
2

) and explanatory variable (Xi).

Steps :

There are mainly following 4 steps for detecting the problem
of heteroscedasticity.

1) Order or rank the observations according to the value of Xi
beginning with the lowest X value.

Ex.

Yi Xi



Yi Xi

20

30

40

50

60

18

15

17

25

30

30

40

20

50

60

15

17

18

25

30
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2) Omit central observations and divide the remaining (n - c)
observations into two groups

Yi Xi

} A

} B

ignored

Yi Xi

30

40

20

50

60

15

17

18

25

30

30

40

50

60

15

17

25

30

iii) Fit separate OLS regressions to the first observation and the
last observation (B) and obtain the respective residual sums of

squares RSS1 and RSS2.

iv) Compute the ration -

F =
2 2

1 1

RSS /df RSS

RSS /df RSS
 

Calculated value of F ration at the given level of significance
() is greater or more than given critical F value, the homoscedastic
hypothesis is rejected sand heteroscedastic hypothesis is
decepted.

Calculated
F value >

Critical
F value 

Presence of the
Heteroscedasticity

6. Other Tests for detecting the problem of Heteroscedasticity
i) Breush - Pagan - Godfrey Test
ii) White’s General Heteroscedasticity Test
iii) Koenker - Bassett (KB) Test.

7.6 CONSEQUENCES OF HETEROSCEDASTICITY

Consequences of using OLS for estimation of simple linear
regression model in the presence of the problem of
heteroscedasticity are as follows -
1. In the presence of heteroscedasticity, values of OLS estimators
do not change, but it affect on variance of estimators.
2. The properties of OLS estimators which are Linearity and
Unbiasedness do not change or vary in the presence of
heteroscedasticity, but there is lack of minimum variance, that is
why the estimators are not efficient.
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3. Get the more confidence interval.
4. There is impossibility to test the statistics significant of
parameter estimates because of the presence of
heteroscedasticity.

7.7 QUESTIONS

1. Explain any two tests in detection of heteroscedasticity.
2. Explain the assumptions of OLS method of estimation of

simple linear regression model.
3. What is heteroscedasticity? Explain the causes and

consequences of heteroscedasticity.

7.8 REFERENCES
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 Hatekar Neeraj R. ‘Principles of Econometrics : An Introduction
(Using R) SAGE Publications, 2010

 Kennedy P, ‘A Guide to Econometrics’, Sixth Edition, Wiley
Blackwell Edition, 2008
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8
PROBLEMS IN SIMPLE LINEAR

REGRESSION MODEL:
AUTOCORRELATION

Unit Structure:

8.0 Objectives

8.1 Introduction

8.2 Autocorrelation

8.3 Sources of Autocorrelation

8.4 Detection of Autocorrelation

8.5 Consequences of Autocorrelation

8.6 Questions

8.7 References

8.0 OBJECTIVES :

1. To understand the causes of Autocorrelation.
2. To understand the detection of Autocorrelation.
3. To understand the consequences of Autocorrelation.

8.1 INTRODUCTION :

While using the OLS method for the estimation of simple linear
regression model, if assumption 5 which is no autocorrelation
between the disturbance terms does not fulfil, the problem of
autocorrelation in the simple linear regression model arises.

8.2 AUTOCORRELATION

The autocorrelation may be defined as ‘correlation between

residuals disturbances (ui, uj).

The OLS method of estimation of linear regression model
assumes that such autocorrelation does not exist in disturbances

(ui, uj).
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Symbolically,

E (ui, uj) = 0

Here, i  j

In short, autocorrelation is a problem which creates while
using the OLS method to estimate the simple linear regression
model.

According to Tinmer ‘autocorrelation is tag correlation
between two different series.’

8.3 SOURCES OF AUTOCORRELATION

The problem of autocorrelation arises while estimating the
simple linear regression model by OLS method because of the
following reasons.

1. Time series that varies or changes slowly has a problem of
autocorrelation.

2. If some important independent variables are omitted from the
regression model, the problem of autocorrelation arises.

3. If the regression paradigm is framed in the wrong mathematical
form, then the successive values of the residual become
interdependent.

4. While taking averages of data, it becomes slow, that is why the
disturbance term indicates the problem of autocorrelation.

5. It the calculation process is done while searching for the missing
figure of the compound, this creates a problem of interdependence
between them.

6. In the regression model, when is disturbance term is incorrectly
arranged autocorrelation is formed.

8.4 DETECTION OF AUTOCORRELATION

There are mainly three methods to detect the problem of
autocorrelation as follows -

 Graphical Method
 The Runs Test
 Durbin - Watson & Test

1. Graphical Method :

Whether is there the problem of autocorrelation? the answer
of this question will be got by the examining the residuals.
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There are various ways of examining the residuals :

1) We can simply plot the residuals against time which known as
the time sequence plot.

2) We can plot the standardized residuals against time and
examine for detecting the problem of autocorrelation.

3) Alternatively, we can plot the residuals
tu


against
1t

u



.

Positive Autocorrelation :

Negative autocorrelation :
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No Autocorrelation :

 When, pairs of residuals are more in I and II quadrants, there is
the presence of positive autocorrelation.

 When, pairs of residuals are more in II and IV quadrants, there
is the presence of negative autocorrelation.

 When, pairs of residuals are equals in the all four quadrants,
there is no presence of autocorrelation.

2. The Runs Test

The run test is developed by R. C. Geary IN 1970 in the
article entitled ‘Relative Efficiency of Count Sign changes for
Asserting Residual Autoregression in least squares Regression’ in
Biometrica.

The run test is also known as Geary test and it is non -
parametric test.

Suppose, there are 40 observations of residuals as follows -

(- - - - - - - - -) (+ + + + + + + + + + +

+ + + + + + + + + +) (- - - - - - - - - -)

Thus, there are 9 negative residuals, followed by 21 positive
residuals followed by 10 negative residuals, for a total of 40
observations.

First let we know the concept of run and length of run.
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Run:
Run is an uninterrupted sequence of one symbol of attribute

such as + or - .

Length of Run:
Length of run is the number of elements in the series.

In the above series -

N = Number of total observations

N = N1 + N2 = 40

N1 = Number of positive residuals = 21

N2 = Number of negative residuals = 19
R = Number of Run = 3

Now taking the null hypothesis that the successive

residuals are interdependent and assuming that both N1 & N2

(N1 > 10, N2 > 10) the number of runs (R) are follows normal
distribution.

Mean: E(f) =
1 22N N




Variance: 6R
2

= 2

1 2 1 22N N (2N N - N)

(N)

 




Now let we decide the confidence interval (CI) for R.

95% CI for R = E(R)  1.96 6R

99% CI for R = E(R)  2.56 6R

Take any confidence interval for R from above two.

Decision Rule -

If number of Runs (R) lies in the preceding confidence
interval, the null hypothesis accepted.

If number of Runs (R) lies in the preceding confidence
interval, the null hypothesis rejected.

When we reject the null hypothesis, it means that residuals
exhibit autocorrelation and vicevarsa.

3. Durbin - Watson d Test:

The most celebrated test for detecting the autocorrelation or
serial correlation which is developed by statisticians Durbin and
Watson - in the article entitled ‘Testing for social, correlation in least
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squares regression in Priometrica in 1951. This test is popularly
known as the Durbin - Watson d statistic test.

Durbin - Watson d statistic test as defined as -

d =

2

2

1
t = n
t = 2

t = n
t = 1

( )
t t

t

u u

u







 










Where,
Numerator = Sum of squares of difference of

continuing residuals

2
1

( ( ) )
t tu u

 
 



 


Denominator = Sum of squared residuals

2( )
tu 

 



Thus, the Durbin - Watson d statistic is the ratio of sum of

squares of difference between continuing two residuals

2
1

( ( ) )
t tu u

 
 



 
 to the sum of squared residuals

2( )
tu 

 


 .

Assumptions :
This test is based on the following some assumptions -

i) Regression model includes intercept term (1)

ii) Residuals follow the first order auto-regressive scheme.

ut = e ut -1 + vt

iii) This test assume that there is no tag value of dependent
variable in the regression model.

Yt = 1 + 2Xt + 3 Yt -1 + ut

iv) All explanatory variables (X’ s) are non - stochastic.

v) There is presence of all observations in the data.

d =

2

2

1 1
2

t t t t

t

u u u u

u
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Approximately,
2

tu 


 and 1

2
tu 



 are same.

d =

2

2

1
2

t t t

t

u u u

u

  





  
  









=

2

2 2

1
2

2 t t t

t t

u u u

u u




  

 

 
 

 

 

=

2

2

1
2

2 t t

t

u u

u



 


 







= 2

12 t t

t

u u

u



  
    
    





Where,

= 2

1 XY

2
X

t t

t

u u

u

e

 
  

 
 






 d = 2 ( 1 e

 )

- 1  e

  1

The value of e

 is between -1 and 1 or equal to -1 and 1.

0  d  4

The value of d is between 0 and 4 or sometimes equal to 0 and 4.

When, e

 = 0 , d = 2  No Autocorrelation

When, e

 = 1 , d = 0  Perfect Positive Autocorrelation

When, e

 = -1 , d = 4  Perfect Negative Autocorrelation
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How to apply this test –

1. Run the regression and obtain the residuals ( )
tu 






2. Compute d ( by using equation (1) ).

3. For given sample size and given number of explanatory

variables, find out the critical dL and du value.

4. Then take decision about presence of autocorrelation by using
following rules.

In the term no decision, Durbin – Watson test remains
inconclusive. This is the limitation of this test.

8.5 CONSEQUENCES OF AUTOCORRELATION

1. When the problem of autocorrelation creates in the regression
model, we get linear, unbiased and consistent parameter estimates;
but we do not get minimum variance of parameter estimates.

2. In the presence of autocorrelation is regression model, we get
inefficient parameter estimates.

3. Hypothesis testing becomes invalid in the case of presence of
autocorrelation.

4. While estimating the regression model, variance of parameter
estimates is not minimum confidence intervals are big in the
presence of autocorrelation in regression model.

No. If Null
Hypothesis

Decision

1. 0 < d < dL Reject No positive
autocorrelation

2. dL  d  du
No decision No positive

autocorrelation

3. 4 - dL < d < 4 Reject No negative
autocorrelation

4. 4 – du  d  4 - dL
No decision No negative

autocorrelation

5. du  d  4 - du
Do no reject No autocorrelation

(Positive/Negative)
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5. If we ignore the presence of autocorrelation in the regression

model,
2

6 


 becomes less identified and determination coefficient

becomes over identified.

8.6 QUESTIONS

1. Explain the meaning and sources of autocorrelation.
2. Explain the detection of autocorrelation.
3. Explain the sources and consequences of autocorrelation.

8.7 REFERENCES

 Gujarati Damodar N, Porter Drawn C & Pal Manoranjan, ‘Basic
Ecometrics’, Sixth Edition, Mc Graw Hill.

 Hatekar Neeraj R. ‘Principles of Econometrics : An Introduction
(Using R) SAGE Publications, 2010

 Kennedy P, ‘A Guide to Econometrics’, Sixth Edition, Wiley
Blackwell Edition, 2008
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9
PROBLEMS IN SIMPLE LINEAR

REGRESSION MODEL:
MULTICOLLINEARY

Unit Structure:

9.0 Objectives

9.1 Introduction

9.2 Multicolinearity

9.3 Sources of Multicolinearity

9.4 Detection of Multicolinearity

9.5 Consequences of Multicolinearity

9.6 Summary

9.7 Questions

9.8 References

9.0 OBJECTIVES

1. To understand the causes of Autocorrelation.
2. To understand the detection of Autocorrelation.
3. To understand the consequences of Autocorrelation.

9.1 INTRODUCTION

While using the OLS method for the estimation of simple
linear regression model, if assumption 10 which is no perfect
multicolinearity does not fulfil, the problem of autocorrelation in the
simple linear regression model arises.

9.2 MULTICOLINEARITY

You all studied the ten assumptions OLS (Ordinary Least
Square) method which are also assumptions of Classical Linear
Regression Model (CLRM). The tenth assumption of OLS method
is that there is no perfect linear relationship among the explanatory
variables (X’s)

The multicolinearity is due to economist Ragner Frisch. The
multicolinearity is a existence of a perfect linear relationship
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between the some or all explanatory variables of a regression
model.

There are five types of degree of multicolinearity which have
been shown in the following figures.

If we consider, there are two explanatory variables namely

X2, X3 and Y is dependent.

No Colinearity:

Low Colinearity:

Moderate Colinearity:

High Colinearity:

X2

X2

Y

X3

X2

Y

X3

X2

Y

X3

Y

X3
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Very High Colinearity:

Why the OLS method or classical linear regression model
assumes that there is not existence of multicolinearity? The answer
of this question is that, if the multicolinearity is perfect, the
regression coefficients of the explanatory variable (X’s), the
regression coefficients of the explanatory variable (Xs) are
indeterminate and the standard errors are infinite. And if the
multicolinearity is less, the regression coefficients are determinate;
possess large standard error which means that the coefficients
cannot be estimated with accuracy.

9.3 SOURCES OF MULTICOLINEARITY

There are mainly four causes or sources of multicolinearity.

1. The data collection method is responsible to create the
problem of s multicolinearity. For example, sampling of limited
range of the values which taken by regressions in the population.

2. To constraints on the model which can be responsible to
create the problem of multicolinearity.

3. Because of model specification, the problem of
multicolinearity arises.

4. Because of over identified, multicolinearity arises.

These are the major causes of multicolinearity.

9.4 DETECTION OF MULTICOLINEARITY

There is no specific method available for detection of
multicolinearity. Thus, following these rules are used to detect the
problem of multicolinearity.

1. High R2 but few significant – Ratio’s.
2. High pair-wise correlations among regressions.
3. Examination of partial correlation.
4. Auxiliary Regression.

X2

X3

Y
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1. High R2 but few significant – Ratio’s:
If R2 (coefficient of determination) is high (more than 0.8),

the f test in most cases will reject the hypothesis that the partial
slope coefficients are simultaneously equal to zero, but individual t
tests will indicate, vary few of the partial slope coefficients are
statistically different from zero.

2. High pair-wise correlations among regressions:
If zero order correlation coefficient between two independent

variables in the regression model is high, the nature of problem of
multicolinearity is high. But high zero order correlation coefficient is
not necessary condition, but it is complementary condition of the
presence of multicolinearity in regression model. If there are only
two explanatory variables regression model high zero order
correlation coefficient is the useful method for identifying the
presence of multicolinearity.

3. Examination of partial correlation:
The way or test or method of detecting the problem of

multicolinearity that is examination of partial correlation has
suggested Farror and Glauber. In this method, if we regress the y
on X, overall coefficient determination is very high; but other partial
R2 is comparatively small and at least one variable is unnecessary,
that is the condition of the problem of multicolinearity.

4. Auxiliary Regression:
For identifying independent variables are correlated to which

independent variables, we have to by regressing each independent
variable  X Si . Then we have to consider the relation between F

test, criterion  fi and coefficient of determination  2Ri and for it

following formula has been used.

 

   

2 / 2

21 / 1

R Kifi
R n ki




  

Where,
2Ri = coefficient of determination for ith

K = Number of explanatory variables
n = Sample size
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9.5 CONSEQUENCES OF MULTICOLLINEARITY

Consequences of the term multicolinearity are as follows:

1) OLS estimators show the BLUE properties, but variance &
covariance are very high.

2) Confidence intervals are so wider because of the high variance
and covariance. So, null hypothesis (HO) does not accept easily.

3) t-ratio to one or more than one coefficients is not statistically
significant because of high variance and co-variance.

4) If t-ratios for one or more than coefficients are not statistically
significant, but we get very high value of R2.

5) In the presence of multicolinearity, estimators and its standard
errors can respond also to the small change or variation in the
data.

6) There is exactly linear correlation in the explanatory variables in
the model. So regression coefficients are indeterminate and
standard errors are infinite.

7) If there is imperfect linear correlation between explanatory
variable in the explanatory variables in the model and
regression coefficient are determinate, but standard errors are
so high.

9.6 SUMMARY

When we consider the linearity in simple regression model or
two variable models, it is called as simple linear regression model.

There are two ways or methods for estimating the simple
linear regression model. When we use the ordinary least square
(OLS) method for the estimation of simple linear regression model;
homoscedaticity or equal variance of ui , no autocorrelation between

the disturbance terms and no prefect multicolinearity these three
assumption are unable to fulfil, sequentially the problem of
heteroscedasticity, autocorrelation and multicolinearity raise which
has been discussed in this unit.

9.7 QUESTIONS

1. Explain the meaning and sources of multicolinearity.
2. Explain the detection of multicolinearity.
3. Explain the sources and consequences of multicolinearity.
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