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Unit I. Holomorphic functions

Note: A complex differentiable function defined on an open subset of C is called a
holomorphic function.

Review: Complex numbers, Geometry of the complex plane, Weierstrass’s M-test
and its aplication to uniform convergence, Ratio and root test for convergence of
series of complex numbers.

Stereographic projection, Sequence and series of complex numbers, Sequence and
series of functions in C, Complex differential functions, Chain rule for
holomorphic function.

Power series of complex numbers, Radius of convergence of power series,
Cauchy-Hadamard formula for radius of convergence of power series. Abel's
theorem: let },,-0 a,(z — z,)™ be a power series of radius of convergence R > 0:
Then the function f(z) defined by

f(2) = Y a,(z — z,)™ is holomorphic on the open ball |z — z,| < R and f @ =
Yns1 ay(z —zy)" forall |z — z,| < R: Trigonometric functions, Applications of
Abel's theorem to trigonometric functions.

Applications of the chain rule to define the logarithm as the inverse of exponential,
branches of logarithm, principle branch [(z) of the logarithm and its derivative on
C\{z € C|Re(2) < 0; Im(2) = 0}.

Unit I1. Contour integration, Cauchy-Goursat theorem

Contour integration, Cauchy-Goursat Theorem for a rectangular region or a
triangular region. Cauchy’s theorem(general domain), Cauchy integral formula,
Cauchy’s estimates, The index(winding number) of a closed curve, Primitives.
Existence of primitives, Morera’s theorem. Power series representation of
holomorphic function (Taylor’s theorem).



Unit I11. Properties of Holomorphic functions

Entire functions, Liouville’s theorem. Fundamental theorem of algebra. Zeros of
holomorphic functions, Identity theorem. Counting zeros; Open Mapping
Theorem, Maximum modulus theorem, Schwarz’s lemma. Automorphisms of unit
disc. Isolated singularities: removable singularities and Removable singularity
theorem, poles and essential singularities. Laurent Series development. Casorati-
Weierstrass’s theorem.

Unit V. Residue calculus and Mobius transformation

Residue Theorem and evaluation of standard types of integrals by the residue
calculus method. Argument principle. Rouch’e’s theorem. Conformal mapping,
Mobius Transformation.



INTRODUCTION TO COMPLEX
NUMBER SYSTEM

Unit Structure:

1.0. Objectives

1.1. Introduction

1.2. TheField of Complex Numbers

1.3. Extended Complex Plane, The Point at Infinity, Stereographic
Projection

1.4. Summary

1.5. Unit End Exercises

1.0. OBJECTIVES:

After going through this unit you shall come to know about

e The field of complex numbers denoted by C.

e Representations of complex numbers in polar forms.

e The Euclidean two dimensional plane R? adong with the
point a infinity forms the extended complex plane.

e The extended complex plane is in one to one

correspondence  with the unit sphere in R® and such a
correspondence is known to be the stereographic projection.

1.1 INTRODUCTION :

Numbers of the form z=a+bi, where a and b are rea
numbers and +/i =—1are called as Complex Numbers. The identities
involving complex numbers lead to solutions to many problems
in the theory of real valued functions.The wider acceptance of
complex numbers is because of the geometric representation of
complex numbers , which was fully developed and studied by
Gauss. The first complete and formal definition of complex umbers
was given by William Hamilton. We shal begin with this
definition and then consider the geometry of complex numbers.
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1.2. THEFIELD OF COMPLEX NUMBERS:

A complex number zis an ordered pair (x, y)of real numbers.
i.e. z=(xy) xeR, yeR. Complex number system, denoted by C

is the set of al ordered pairs of real numbers (i.e. RxR) with the
two operations of addition and multiplication (. or x) which satisfy :

() (O y1)+(%2 ¥2)=(a+X+ V1 +Y2) }
(X, V1)) ( X9, eC
(i) (%, %) (%2 ¥2) = (4 %2~ Y1 Y2, X1 Y2+% Y1) (0. %1). 0. y2)

The word ordered pair means (x, y;) and (y;, %) aredistinct unless
=Y
Let z=(xy); xeR, yeR. ‘X is caled Real part of a complex

number z and it is denoted by x=Rez, (Real part of z) and ‘y’ is
called Imaginary part of zand itisdenoted by y=Imz.

Two complex numbers z =(x, y;) and z, =(xp, y,) are said
to be equa iff x=xand y; =y, i.e. real part and imaginary part
both are equal.

About Symbol ‘i’
The complex number (0, 1) isdenoted by ‘i’ and is called the

imaginary number.

i2=i.i=(0,2).(0,2)
=(0-1, 0+0) by property (ii) abov
=(-10)

= i2-_1

Similarly,
i®=i%i=(~10).(0,1)=(0-0, -1+ 0)=(0,~1)
= i3
i4 =

i%.i=(0,-1).(0,1)=(0+1 0+0)=(10)..+/3

= i4=1

Using this symbol i, we can write a complex number (x, y) as x+iy
(Since x+iy =(x,0)+(0,1)(y,0)=(x,0)+(0,y)=(x,y) The complex
number z=(x, y) can bewritten as z= x+iy

Note: (The set of all complex numbers) C forms afield.



Pr opeties of complex numbers
Let Zl=(X1, yl)’ Zy =(X2, y2) and 23=(X3, ys)EC .
1) ClosureLaw: z+zeC and z.z,eC

2) CommutativelLaw of addition: z+z,=2,+7

4+2 =(X11 Y1)+(X2, Y2) =(X1+ Xo, Y1+ yz) =(X2+X1, Yo+ Y1)
Z(X21 Y2)+(X11 Y1) =5H+4

3) AssociativeLaw of addition: z +(z,+2z3)=(z+2)+ 2

2+2+7) =04 y)+ (% ¥2) +(%.¥3)]
=0 W)+t YorYs)  =(aPetx i+Yats)
=(x+X%, Y1t Yo) + (X3+Y3)=[(X17 W) +(% Y2)J+(X3, ¥a)
=(z+2)+7

4) Existence of additive ldentity : The Complex Number
0=(0,0) i.e. z=0+0i is caled the identity with respect to

addition.

5) Existence of additive Inverse:
For each complex number z e C, 3 a unique complex number

Ze Cst. z+z=z+7=0i.e. z=-2z. The complex number z
is called the additive inverse of z anditisdenoted by z=-z.

6) Commutativelaw of Multiplication: z.z,=2.7
7.2 =(x.%1)-(%2: ¥2) =(X1'X2—Y1'y2’X1'YZ+X2'y1)____(1)
and
2.7 =(%,¥2) (4, 1) = (X2 - X = Yo Y1, X0 - Y1+ X0 - Y2)
=(X - X—Y2. Y1, X-Yo+X2.V1)=27.2 from (1)

7)  Associative L aw of Multiplication : z.(z,.23)=(7.2).2
2.(2.23) = (%0 Y1) (%2, ¥2) - (%3-¥3) |

= (%, )X X3 = Y2 Y3, X2 - Y3+ X3 Y2

[4(%- Y= Y2 Y5) - Y10 X6 =Y Y5), X% X6135. Yo) +¥i(%- X Y2 Ya) |

Z(Xl.Xz.X3—X1.y2.y3—X1.X3.y1+ Y1-Y2-¥3, X . Xo0.X3+X.X3.Y2

+X2.X3. Y1+ Y1 Y2 Y3) *)



4

(z-2).z3 =[(X1, y1)-(%2, Y2)](X3, y3)=(a X2 = Y1 Y2, X Y2 +% Y1)(X3, ¥3)

=X XXX Y1 Yo—-X X Y3+ V1Yo Y3, X XgYo+Xo V1 Y3+ X X0 X3—VY1 Y2 V3
=27(2.23) from (*)

8) Existenceof Multiplicativeldentity : z.1=1.z=7
The complex number 1=(1,0) (i.e.z=1+0i) is called the
identity with respect to multiplication.

9) Existence of Multiplicative Inverse : For each complex
number z = 0, there exists a unique complex number zin C st.

2. 2=72.7-1i.e z=- is caled the multiplicative inverse of
4

complex number z and it is denoted by z:i or z7 L.
4

Let z=(x,y) ad z=(x, y1)
L z.2=1
(% Y) (e y1)=(L0) = (xq - Y1, Xy1+xY)=(10)
= X.x-Yy.y3=1........ (i) and x.yy+x.y=0 .......(i)
Equation (ii) x x - Equation (i) x y;, we get
gy + Ky = 0

— Xh - W= own
— + —

v+ ¥ )=-n

y=—% (i)
Y1

Substitute equation (iii) in equation (i) i.e. x.y;+y.x =0

Xt + v X+ye W

X
X=— : 2
Xty

z={ X % }
2 2' 2 2
Xt Xty

zis the multiplicative inverse of complex number z =(x, ;).




10) Distributive Law :
21(22+ 23) = Zl' 22+ Zl' 23

Subtraction: The difference of two complex Numbers
ZlZ(Xl, yl) and
Z, =(Xp, Yo ) isdefined as

H—2p =(X1, Y1)—(X2, Y2) =(X1—X2, Y1— Y2)

Division: It is defined by the equality 2 =z.2 z,#0

Z
—(x ) X2 =Yoo || X X+tY.Y2 —XYot+Xoy
=0 Y1 2 2°' 2 2| 2 2 : 2 2
X2+Y2 X5+Y2 X2 +Y2 X2 +Y2

Geometrical Representation of a Complex Number :
Consider acomplex number z= x+iy.

Complex number is defined as an ordered paired of rea
numbers.

e z=(x y)
YA\

Fig. 1.1

This form of a complex number z suggest that z can be
represented by point (say) P whose Cartesian co-ordinates are x and
y referred (relating) to rectangular axis X and Y, usually called the
Real and Imaginary axis respectively.

To each complex number there corresponds points in the
plane and conversely, one and only one each point in the plane there
exist one and only one complex number.

A plane whose points are represented by the complex
numbers is called Complex Plane or Gaussian Plane or Argand
Plane. Gauss was first who formulated that complex numbers are
represented by pointsin a plane in 1799 then in 1806 it was done by

Argand.
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Vector Representation of a Complex Numbers:

If P is the point in the Complex Plane corresponding to
complex number z can be considered as vector OP whose initial
point isthe origin ‘O’ and terminal pointis P=z=(x,y) asshownin
thefigure 1.2.

P=z=(x.y)

14

)6

N

Figl2

Conjugate:
If z=x+iyeC then the complex number x—iy is called the

conjugate of a complex number z or complex conjugate and it is
denoted by z.
eg. z=4+3 —=z=4-3

w=4+5 —=w=4+5"

Geometrically:
The complex conjugate of a complex number z=(x,y)is the image

or reflection of z in the real axis.
Zz= X +iy

<N
Y
0,
o 92 P%
e Zz= X-iy
Fig1.3
Let z=x+iy
z+z z-2

" x=Rez andz=Imz..". x:Rez:Tand y:Imz:T
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Definition: The modulus or absolute value of a complex number
z=x+ly isdefined by|Z=*?+y? .

YA

P(x,y)=z

Fig 1.4

The distance between Two Complex Numbers:
Let z=(x. Y1), Zo=(%p, y,) in complex planeis given by

2 2
d(z,2)=|2-2| :\/(Xl_xz) +(1-¥2)
YA

z 2( X2,y2)

z1(X1,¥1)

N\
v
x

Fig15

Polar form of a Complex Numbers:
If P is a point in the Complex Plane corresponding to

complex number z=x+iy=(x, y) and let (r,0) be the polar co-
ordinates of point (x,y) from figure 1.3, x=rcos6 and y=rsin,

where r =y x2+y? is called the modulus or absolute value of z

(denoted by | z| and e=tan‘1[Xj is called the argument or

X

amplitude of z (denoted by 6=arg z). Here 6 is the angle between
the two lines OP and the real axis (x- axis) .




@)
N
<
v
x
b 4

Fig1.6

L Z=X+iy

. z=rcos@+irsing

. z=r(cosO +ising)

This form is called the polar form of athe complex number z.

Y N

0-2n
P

N

/N

&
<

Fig 1.7

Any complex number z=0 has an infinite number of distinct
arguments.

Any two distinct arguments of z differ each other by an integra
multiple of 2r.

If one of the value of argument of zis 6 then argz=0+2nzr where
n=0,+1+2,..
The value of 6 which liesin the interval —t<6<n or (0<6<2n)

is called the principal value of argument of z and it is denoted
by Argz=0.
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The relation between Arg z and argz isgiven by Argz=argz+2nn
where n=0, +1, +£2,...

Exponential form of complex number: A complex number can be

written in the form ofz=ré®, where r=4x°+y®and

0 =tan ‘1(Xj .Thisis known as the exponentia form.
X

(Note: €9 = cosd+isin® known as Euler’s | dentity)
. i500
Note:l)‘e'e‘=1 e 4 |=1

Solved Examples:
1. Let z=1+i,2, =1-2i, 23 =1+~/3 . Find i) 2.2, ii) zy/2, iii) z,iV)
|zz| V) arg(z:) vi) Expressz; in polar and exponential form.
Solution:
) 7z, =(+i)(1-2))=1-2-i-21°=1-2I - +2=3-3
1+ 1+ 1+20 1+2i+i-2 -1+3

i) z/z,= = = =
) A% T AT 14 5
i) z,=142
V) x =1y, =1

|zl|:\/x2+y2 12112 =2
V) 4 =1y =1

» o=t i) =tan i =T

X 1 4

Vi) 1 =y (cosO; +sin6;)
zl=\/§(cos£+sinﬂ)
4 4
2. Find the principal value of arg'i'
0=Argz —t<0<nm

X
= tan‘l(ij —tan (=) =—
0 2

3. Findthe principal value of arg(1+1i)

Argi=0=tan? (Xj {z=i=z=(ox+iy)}

T z=1+i=(x+iy)
... X::L y:l

Argz=0=tan! (Xj =tan* (lj :
X 1 4
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4, Express the Complex Number z=1++/3i in polar form.
Solution : *." z=r(cosb+isin6) 1)

and °." z=x+iy=1++/3i

. x=land y=+/3

=% +y? =\1+3 =4 ..
o= tan‘l(ij - tan‘l(ﬁ} = tan‘l(ﬁ) = tan_l(tan—

m . . T
=2| cOS—+i1Sn—
( 3 3)

Results: tan(45°) = tan (180 + 45) =1

e:

wla

an(- 45" + tan (180 45) = -1
tan(60°) = tan(180+ 60) = V'3

an(—60°)= tan(180—60°)=—\/§

5. Express the Complex Number z=-1+i in polar form
Solution : *." z=r(cos@+isin®)

toz=—1+i (given)
Comparing with z=x+iy
ox=-1, y 1

. X2 +y \/T V141 =42
e:tan_l[%]:tan_ltiljﬂan_ =) :tan_l[tan(n_%fﬂ

_n_3n
4 4

[ 3t . . 37':)
Z=+2 | CcOS—+i9n—
4 4

Basic Properties of Complex Numbers:
1) z=1z iff z is purely a rea number
Proof: Let z=x+iy, z=x—iy
Let z=z, = X+iy= X —iy
2y=0 < y=0 < z=x< zisrea number.

2) | z|=0iff z=0
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Proof: 0=[74=yX*y* < x°=0andy’=0< x=0and y =0
i.e. z=0
3 |z|:‘2‘
Proof: z=x+iy and z=x—iy
BEIEN (1
E‘:\/x2+(—y)2 :\/x2+y2 (2

" |z|=‘§‘ from (1) & (2)
4) Rez<|Rez|<| z|
5) Imz<|Imz|<| z|
6) Let zeC, weC then

Z+W=Z+W

Let z=x+iy, w=u+iv

Lo zrws= (x+iy)+(uriv) =(x+u)+i(y+v)
=(x+u)—i(y+v) =(x—iy)+(u—iv) =z+w

L ZHW=2Z+W

7 zw=z.

W= (x+iy)(u+iv) =(xu—y)+i(xv+ yu)
=(xu—yv)—i(xv+yu) =(xu—ixv)—(yv—iyu)
:x(u—iv)—iy(u—iv):(u—iv)(x—iy):E.v_v

2_2.2

8 |z|

z
2=(F i) =y @

z.2=(x+iy)(x+iy) = X2 = xf + ixg —i°y> =x2 +y? (2)
S zff=z.2 from (1) and (2)
9 [aw|=|z][w|

| 2w = (aw) (2w) = (22)(ww) = | 2| w[* = | aw|=| 2| w|

10) z|_|z|
wi|w
z 1 1 |z
2L A e L2
w W] [wl [w]
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11)

N

E:
z= X+iy)=X—iy=Xx+iy

I~

v Z=X—iy=X-i(-y)=X+iy=2z

Addition of two Complex Numbers:
Let z=x+1y,w=u+iv

Now, Z+w=0A+0B =0A+ AC =0C
YA

XV

Fig1.8
Triangle Inequality :
1) z,weC then | z+w|<| z|+| w|
Pr oof:
| z+w|2 =(z+w).( z+w) :(z+w).(E.v_v) = 727+ ZW+ ZW+WW
|z+w|2:|z|2+|w|2+zv_v+2.w (1)
Now,

z.Vv+E.w=(x+iy)(u—iv)+(x—iy)(u+iv) =Z.W+Z+W =2Re(sz)
SZ‘Z.V_V‘ (" Rez<| z|)
=2| z|| w|

z+v_v+E.w:2|z|‘v_v‘ (2

Substitute (2) in equation (1), we get

2 2 2 2
| z+w|"s[ 2"+ w|"+ 2 2| w| <(| z[+[wl)

= | |z+w|<| z|+| w|

Geometrically, in any triangle, the sum of the two sides of a triangle
is greater than or equal to the third side(the points are
collinear, in case it is equal).
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X
v
Fig 1.9

2) Let z, we C then Hz|—|w”£|z—w|
Proof: Let z=z+w-w
Takingmod on (| | ) boththe sides

| z|=| z+w-w|

<|z-—w|+| w]

sz wl<| z-w| (i)
Interchanging z and w, we get

|w|-| z|<|w-z|=|z-w]| (ii)

~(Iz]-w[) <~ z-w]

| z|-|w|=—|z-w]| (iii)

From equation (i) and (ii), we get
~[z-w|<(| [~ w]) <[ z-w]|

| 2|~ w]<[z-w|

3) Let z,weC then

| z+w|2:| z|2+2Resz+| W|2
| z—w|2:| z|2—2Resz+| W|2
4) Parallelogram Law: The sum of the squares of the lengths of

the diagonals of a parallelogram is equal to the sum of sgquares of
lengths of its sides. .e. prove that

| z+w|2+| z—w|2 :2(| z|2+| W|2)

Proof: Let z we C
[z wf?=| (x+u)+i(y+v)?| =|2° + 2Re(zw) + uf’
+|z-wf =|2° —2Rezw+ |’

Sz |z w? =2 [ 2 | wf?)
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YA
7
B
2)))|
/] /|
z))|
A
G X
\4
Fig 1.10
5)  Let zweC then | z|-|w|<|ztw|<|z|+|w]|
Proof: i) T.PT. | ztw|<|z|+| w|
Case (i) | z+w|<| z|+| w| by triangle inequality

Case (i) | z-w|=| z+(-w) | <| z|+| -w| <| z|+| w]|
From above both cases,
| z=w[<| z[+[w] (*)

i) TRT.|z|-|w|<| z+w|

Consider | z|=| z+w-w|<| z+W|+|-w| <| z+W|+| w|
ol z) - wl<| z+w| €)
Consider | w|=| w+z-z|

<|w+z|+]| - z|<|w+z|+] Z]

~lwl=| z]<|w+ z|

o= z] - wl)<| w+ z] (b)
2wl = 22w )
From (*) and (**), we get

| z|-|w] <]z w|<| z|+]w]

Theorem: The field C is notalinearly totally ordered field
OR

Thefield C is not partially ordered field (Total ordering or partial
ordaring meansthat if a=b then either a<b or a>b).

Proof: Suppose that such atotal (partial) ordering exists.
Thenfori.e. C,wehaveetheri>0ori<0ifi>0

-1=i.i>0

orifiti<0(-i>0)

~1=(=i) (~i)>0
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Weget —-1>0, whichisnot truein R.
. Our supposition is not true.

. C isnot linearly totally ordered field.

Properties of polar form and exponential form
1) Letz =r % = r(cos0y +isindy), zp =r€ 02 rp(cosby +isinds,)

then zl.zzzrl.rz(coselﬂsinel)(cose2+isinez) =n. r2e(91+92)

e| 0 — e| (9+2nTC), e2in7r ::L ne Z

| 7. 2| :‘ r.ry.e(1792) _p o (‘ ¢ (01+02) ‘zl)

and| arg(z.z)=argz +argz,(mod2r) |in the sense that they are
same but for an integral multiple of 2rx.

Note: | agz.zy=argy +agz + 2kn where k=0,1 or -1 |

2. Let z=r,€% and z,=r,€% and z, =0

7 _ r(cosBy +isin6y) _ 1 g(01-02)
z, rp(cosBy+isingy) 1y

. arg [Z%jzarg z —arg z, (mod 2r)
Let z=-1and z,=-i, (-n<B<n)
z7=-1=x+iy => x=-1and y=0
argz =ag(-1)=ten (/) =tan"}(0) = tan *(tan7) =
z=—i=x+iy = x=0and y=-1

argzy =ag(—i)=tan" (/)—tan (%)—tan () :_g
ag(z.z)=ag(-1.-i)=arg(i) =tan_1(}6) = ta‘]_l(oo) _I

2
ag(z.z)=agzy +ag z, + 2kn where k=0
Let 21=_1 and 22=i
e z71=-1 = z=x+iy =>x=-1 y=0
agz =a ( ) :tan_l(O) =m
Zp=i=X+iy = x=0,y=1

agzy =arg(i)= tan_l(%) = tan_l(%) = tan‘l(oo) =

N
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. ag(g.z)=ag(-l.i)=arg(-i)= tan_l(%) - tan_l(_%)

=—t8n(oo) :—g

ag(z.z)=agz+agz+2kn where k=-1
In this case, we get correct answer by adding —2r to bring within
theinterval (- n, ).

When principal argument are added together in multiplication
problem, the resulting argument need not be the principle value.

De-Moivre’'s Theorem :
Theorem: If n is any integer or fraction then

(cos®+isin®)" =cos(n) +i sin (n6)

Proof:
LHS=(cos6+ising)" = (€°)" =€ =(cosn6 +i sinng) =RHS

(cos +isin®)" = cosnd +i sinnd

eg.i) (cose+isine)5=cos5e+isin5e
i) (cose+isin9)%:cos(éejﬂsin[%ej
Note: (sin@+icosh)" = (sin+i cosnd)

But, (sin6+i cose)n = {cosn(g—ejﬂ sin n(

_cosn[——ejﬂ sin n(
2

eg. 1) (sin9+icose)y {cos(z—e +|sm ——9]

o]

6] (by above thm)

%

I\JI:I

I\Jl?—l

2) (cos®—isin®)" = cosnd —i sinnd
4
e.g. (cose—isine)é :cosge—isinge
Y Z=X+iy

x> +y? =r? is equation of circle with centre at the origin & radius

equal tor.
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ay
A\ 4
Fig 1.1 C-plane

Z=X+iy .. |Z|=«/X2+y2:\/r_2:r

21 y2 = r2

v

The equation of the circle with the centre at c=a+ib eC and
radiusequal to r.
N

A\
\ 4

Fig 1.12

| z—c|=r
eg.1) |z-(2+i)|=1

Thisis equation of the circle with centre (2,1) and radius 1.
| z-1| =3, circlewith centre (1,0) and radius =3

| z+i|=2, circlewith centre (0,-1) and radius = 2

Roots of Complex Number :
Definition: A number w is called the n™ root of complex number z if

w'=zor w=2z/n.

Theorem: In C, given z=0, the equation expansion w" =z has n-
[ 0+2km
(

distinct solution given by w, = Jr.e' D j k=0,1,..,n—1 where
r=|z| and 6=Argz
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Proof: Given, zeC and z=0
". The polar form of complex number zis z=r(cos6 +isin®) where

r=|/z| and 6=argz.

" w'=z=r(cos0+isino) (given)
=r[ cos(0+ 2km)+isin(0+ 2kn) ]
OR
W= z% = r%[cos(e+ 2km)+isin(0+ 2kn)]%1
:(‘/T{cos(e+r]2knj+isin(e+nzknﬂ (by De-Moiver’'s
theorem)

i(6+2knj
w=w="Yre' " Jwhere k=0,12,..,(n-1)

Note : It is sufficient to take k=0,12..(n-1) since al other
valuesof k lead to repeated roots.

Example: Find al thefourth roots of z=1+i and locate these
rootsin C plane.

Solution : Let w*=z=1+i
x=1y=1

N Y N v R TN
O:tan_l(%):tan_l(%):tan_l(l) n =1
wh =12 {cos(%j +i sin(%ﬂ (polar form)

= V2] cos( + 2k )+ sin( %, + 2k |
W_Z%_Cos(n+fknj+isin(n+2kn 7

Fourth roots of equations are

w=2}/8 cos(nJrlzknj+isin(n+2knj where

For k=0, wozz%[cos( j+|sm

Bl
o el (3
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C-plane
Fig 1.13

Example : Find al the fifth roots of z=-32 and locate these
roots in C-plane.

Solution : Let w? =z=-32
) x=-32and y=0

.o r:\/x2+y2:\/(—32)2:
0= tan_l(%) = tan_l(%z) =tan 1(0) =
) W5=32(005n+i sinn)

W = (32)% [ cos(m+ 2km) +i sin(m+ zkn)]%
_2{ (ﬂ+2k )+isin(n+52knﬂ
o vl
k=1, w= 2[ (( j+|5|n( H

)+| sm( ﬂ =2[cosn +isinn]

k= 2W2 2|:



\4

Fig 1.14

Example: Solve 22+ 2°+ 22 +1=0
28+25+z3+1:0
25(z3+1)+1(23+1):0
(25+1)(z3+1):0

Consider, 2+1=0

2=-1 ow3=z=-1

x=-1 y=0

r=yx?+y*=J1 = [r=1

and 0= tan_l(%l) =— tan_l(O)

w:z3=1(c05n+isinn) in polar
w=22= [ cos(n+ 2km) +isin(m+ 2Kn) |

W = = cos(m+ 2km) +isin(m+ an)]%
by De-Moivre's theorem

Wi :z=cos(n+2

3

knj+isin(n+2kn] where k=0,1, 2
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Jrio3)

J—H sn(B—ngcos(n)H sin(n)

Jral

For k=0, w :cos(

oo|§_,*’ w3

k=1, w= cos(

k=2, w, =cos

w|{

Now, consider z° +1=0
L P=-1
W
“lr=1and 0=nr |
. W=cosn+isinm
w=(cos(m + 2km) +i sin(m + 2kr))

T+ 2Km

. wk:cos£ j+isin(n+2kn)% where k=0,1,2,3, 4

. 3 COS£n+2knj+iSin(n+2knj
" 5 5
For k=0, WO:cos(Eszin(Ej
5 5
3n

k=2, w,=cos(n)+isin(n)
In I
k=3, w, = cos| — L
W3 = COS 5J+|sn(5J
k=4, W4_cos(%j+|sm(9—ﬁj
5 5
1
Example: Find al roots of (8+8\@i)4 and represent them
graphically. (2009)

Solution: Let z=8+83

r =8W=16, 0 =tan-1(ﬁ):%
2= {16(005(%+ 2k7rj +i sin(% + 2knm%l k=012,3.
Ao 3]
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= - ~ tisnZt 13
for k=0 WO_Z(COS +isin j "o

12 12
for k=1 w=2 cos7—n+isin7—ﬂ vzq
12 1

"o

2 \
for k=2 w,=2 coslB—n+isin13—n 197 u
12 12

for k=3 w,=2 cos,19—7TJrisin19—7r
12 12

1
Q. Find all the roots of (\@ +i)§ and locate them graphically.

1.3. EXTENDED COMPLEX PLANE, THE POINT AT
INFINITY AND STEREOGRAPHIC PROJECTION: :

Construction of the Stereographic Projection Map. (2012) Let C
be the Complex plane. Consider a unit sphere S (radius 1) tangent to
C at apoint z=0. The diameter NS is perpendicular to C and we
call points N and S the north and south poles of the sphere S
corresponding to any point z on the Complex Plane C, we can
construct a straight line NZ intersecting sphere Sat apoint P(= N).

S
Fig 1.15

Thus to each point of the Complex Plane C, there corresponds one
and only one point of the sphere S and conversely, to each point of
the sphere S (except N), there corresponds one and only one point on
the plane. For completeness, we say that the point N itself
corresponds to the point at infinity of the plane C. This one-to-one
correspondence between the points of the plane C,, and the points

of the sphere S is called the Stereographic Projection. The sphereis
called the Riemann Sphere (because Complex Number can aso be
represented by point on the Sphere.)
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Suppose Complex Plane C passes through centre of the unit
sphere S

Let xZ+ x5 + x5 =1 be the equation of unit sphere S
N E(O, 0,1)

Also, identify C with {(x, %,0):% R, X, e R}.
Put z=(x,y) and p=(x,%,X3). Wewill find equations expressing
X4, X2, X3 INterms of x and y.

The equation of straight line Nz in R® passing through points N and
Zisgiven by
{(1-t)z+tN:teR} ={(1-t)(x, y)+t(0,0,1)t e R}
={(A-t)x,(1-t)y, t) teR} .....(1)
" Straight line Nz intersects sphere S.
(1-1)? X% +(1-t)2 y2 +12 =1
(1—t)2(x2+y2):1—t2
(1-t)? [+ y?) = (1-1) (1+1)
(1-1)°| z[* = (2-1) (L+1)

(1-t)| z|=(1+t)

Thisequation holdsif P=N ... (*."if P=N thent=1and z=x)
| z[P—t| z[F =1+t

|2 -1=(1+] 2 )t

2
t=l5L1; (for P=N)
1+| z|
2 2 2
Lto1 |z["-1 :1+|z| - z|7+1 _ 2 .
1+|z|2 1+|z|2 1+ z|

Points N, P, Z are collinear.
From equation (1),



2X Z+2 h
X =(1-t)x= =
1= 1+|z|2 1+|z|2
2y -i(z-7)
Xo=(1-t)y= = 2
2=(1-1) 14]z7 14| 2 ’
o l2Pa
P )

Point z=x+iye C correspondsto point P.

Pz[ 2z ~i(z7) |zF—1]

1+|z|2, 1+|z|2 ’ |z|2+1
Again from equation (2),
_ X _ X y= X2 _ X2 Z=X+iy= X +1 X
1-t 1- X3 1-t 1- X3 1- X3

Point P =(x, X, X3) € S corresponds to point z.
| XX | o
1- X3

Note: From figure (Fig 1.20)

The straight line Nz in R® intersects sphere and in exactly one point
P=N.

If | z|>1, then point P is in the Northern hemisphere and if | z|<1,
then point P is in the southern hemisphere. Also, if | z|=1, then
P=z andas z— «, P approaches N.

Distance function :
Let zand Z be any two points on the Complex Plane C. Suppose

point z(x, y) corresponds to point P =(x, X, X3) € S. Suppose point
Z(X,y') correspondsto point P'=(xg, X5, X3) € S.
We define distance function as

d(z Z)=d(P, P'):\/(xl—xi)2+(x2—x’2)2+(x3—x'3)

[d(z z’)]2 = (xl—xi)2 +(%o —x’2)2 +(x3—x§,)2

= 12 + xiz - 2% + x% + x’22 — 2% X5 + x32 + x’32 —2X3X3

S’ncexf+ x§+ X32>

2

=land x ?+x3+x3=1
SxP 3+ +xT+Hx5+x3=1+1=2

= [d(z, z’)]2 =2-2( XX + XX + X3X3)
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z+2 —i(Z—E) |z|2—1
Put x= , Xp=———l | Xg =
ez 1z T 2P
, 7+7 , i(Z'+?) , |7 |2—1
X = 20 2T T2 BT
1+| Z | 1+| Z | | Z[7+1

[d(z,z')]2:22[[ Z+7 }[ 72 ]Jr —i(z’_?l)

1+]z|? )| 1+] 2 ]2 1+| 2 |2

e e

1.4. SUMMARY

1) A Complex Number Z is an ordered pair (x, y)of real numbers.

2) The distance between Two Complex Numbers : Let
Zi=(x. %), Zo=(%,y,) be two complex numbers. The

distance between them in complex plane is given by
d(Zl,Zz):|Zl—ZZ|=\/(x1—x2)2+(y1—y2)2

3) If Pisapoint in the Complex Plane corresponding to Complex
Number Z = x+iy=(x, y) and let (r,0) be the polar co-ordinates of

point (x,y) fromfigure x=r cosé and y=r sin6 where
r= x2+y? | iscalled the modulus or absolute value of Z (denoted
by |z | and

0=tan —{Xj is called the argument or amplitude of Z (denoted by
X

0=agZzZ)

Here 0 isthe angle between the two lines OP & thereal axis (axis—
X)

4) The modulus or absolute value of a Complex Number Z = x +iy
isdefined by |z =+ x®+y? .

5) De-Moivre'sTheorem :

If nisany integer or fraction then (cosd +isin®)" = cosnd +isinnd
6)Theorem : In C, given z=0, the equation expansion w" = z has
.(9+2knj
|
n-distinct solution given by w.=r.e' " / k=041..,n-1
where r =| z| and 6 =argz.
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1.5.UNIT END EXERCISES:

1) Find two square roots of 2i .
(Hint: Let x+iy beasquare root of 2i = (x+iy)’=1z.
:>(x2—y2)+(2xy)i =2i, comparing real and imaginary parts

on both the sides, weget two equations in X,y.
x? —y? =0, 2xy=2.= (x+iy)=1+i or (x+iy)=-1-i

2) Describethe set {z:|z+1<1} in the Complex plane C.
Solution: Let z=x+iy; x=Re(z), y=1m(z2)

= |z+1=|x+iy+1 = J(x+)*y? .

Hence |z+1/ <1 describes al real number pairs (x,y) in R? such
that (x+1)2+ y? <1.

— (x+1%)+y?<1 This is an equation of the open disc with
centre
at and radius equa to 1, which can be described as follows:

r=1Y B ((-1,0),1)

3) Find polar form of the Complex Number 1+i.

v

4) Show that the n™ roots of 1 satisfy the “ cyclotomic *
eguation
2" "2 z41=0.

(Hint : Use the identity 2"-1=(z-1)(2""+ 2"+ ..+ z+1).
(2009)

2
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2

SEQUENCES OF COMPLEX NUMBERS

Unit Structure:
2.0 Objectives
2.1. Introduction
2.2. Convergent Sequences

2.3. Topological Aspects of the Complex Plane (Limits,
Continuity, Uniform Continuity)

2.4. Summary
2.5. Unit End Exercises

2.00BJECTIVES

Thisunit shall make you understand :
e Cauchy and convergent sequences of complex number = .

e The connection between the convergence of rea and
imaginary parts of a sequence z,=x,+Y,, namely x, and
y, with the convergence of z, inC. We shall also see that

under what conditions a given sequence of complex
number z, =x,+Y, IS a Cauchy sequence. Can werelate to

our findings for real values sequence x, andy,, .

2.1. INTRODUCTION :

We have already associated the meaning to a sequence of
real numbers asafunction, a:Z" - R, denoted by (a(n)).y- ON
asimilar line, we shall define a sequence of complex numbers,
where each term of a sequence is a complex number . For

example z, =in is a sequence of Complex Numbers with terms
y4

%iz i ...efc. In this Unit, we shall consider the topological
aspects of the Complex plane. The concept of absolute value can
be used to define the notion of a limit of a sequence of complex
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numbers . We shall begin with the definition of a complex valued
sequence .

Definition: A function whose domain is a set of natural number
(N) and rangeisasubset of R, issaid to be Real sequence.

Any function whose domain is a set of nature numbers (N) and

range is subset of complex numbers C , is said to be complex
seguence.

Generally, we denoteit by {z,!. z, isthen™ term of the sequence.
eg. 1) Theset of numbers i,iZ,i3,...,i°®. Thisis finite sequence
anditsn"termis z, =i", n=12,..,200

) 2 3
2) The set of numbers 2;“' (241)7 (2+1)

2 3

o : : 2+i)"
It isthe infinite sequence and its ™ term is Zn=( +i) :
n

Sequences : Definition : A function whose domain is a set of
natural number (N) and range is a subset of R, is said to be Real

uence.

Any function whose domain is a set of nature numbers (N)
and Range issubset of R, issaid to be Complex sequence.

Generally, we denote it by {z,}. z, is the n" term of the
sequence.

eg. 1) Theset of numbers i,i2,i3,...,i%%°. Thisisfinite sequence
anditsn" termis z, =i", n=12,..,200
2+i (2+i)% (2+i)°

2) The set of numbers > 3

U , , 2+i)"
It is the infinite sequence and its N term is z, (@)
n

2.2 CONVERGENT SEQUENCES:

A sequence {z,} is said to converge to a point zy [or a
sequence {z,} hasto limit zy] if for every >0, there is an N st.

|zy-79|<e ~ nx=N andwewrite lim z,=z,.
n—o
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Geometrically, z,— z, if every ¢-nbd of z, contains aimost all
terms of the sequence {z,} .

------

-------

Fig2.1

Divergent Sequences. A sequence is said to be divergent if it is not
convergent.

Theorem: Prove that any convergent sequence has a unique limit.

Solution : Let limz, =z and lim z, =z,
N—o0

N—o0

If z =z, then for e=@>0

AN, st. n>, N = |z,-2z|<e/2

and 3N, st. n>,N, =z, - 7| <&/2
choose N = max {N;N,f=N=xN;and N >N,
=|zy —z|<e,and |zy —zy| <&/ 2

= |z - z|<|z-zy|+|zn — 20| < &

= 0<|z - 79| <€ acontradiction.
Lg=12.

Theorem : Suppose z, = x, +iy,, and zp=xg+iyg then lim z, =z,
N—co

iff lim x,=x and lim y,=y,.
n—o0 N—o0

Proof : Suppose Ilim z,=2zy =¢>0, 3, an integer N sit.
n—oo

| z,-279|<e »n=N.
Now, | 2z,~20[=] %) +iyn =X ~i¥o[<| % %0 [+i| Yo Yo
oo X% | <t
» N> N
and | Yo Yo <
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= lim x, =% and lim y, =yp
Nn—oo nN— o0
Conversely, suppose lim x,=%y and lim y,=yg ~ €>0,3 N;
Nn—oo n—oo

and N2$.t.|Xn—X0|<% AanZN]_
and|yn—y0|<% AanZNZ
Choose N =max {Ny, N}

if n>N then

oz - 2o = X% FiYn =X —iYo | <| X %0 |+| Yn— Yo |
('.'Rezs| z| and Imz<| z|)

<%+%=8
ol zn-zn|<e
lim z, =27
N—co

Theorem : If lim z,=25, then lim |z, |=|z | and the sequence
N—ao0

n—oo

{z,} isbdd.
Proof : Suppose lim z,=2zy ~ ¢>0, 3 an integer N sit.

n—o0

|Zn—20|<s ~ n>N.
REEA SIS
ol zn |-z |<e ~ n>N (1)
olim |z, | =]z |
N—o0
.". from equation (1)

|20 |-e<|z[<[20]|+
‘- Sequence {z,} isbounded.

Example: If lim z,=z5 and lim w, =wg prove that
n—o0 n—o0

) lim [z +w,] =20+ wg
N—0

i) lim [z, . w,]=29wo
N—o0

i) lim {i}i provided wy # 0
n—o| Wy WO

Definition : Cauchy Sequence : A sequence {z,} is said to be a

Cauchy sequence for every ¢>0 there is an integer N st.
|2,—Zy| <&~ n>N,and m>N.
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Note: From equation (1) |z, -2z, |<e, ~ n>=N
Put m=n+pfor p=123,..
|zn+p—zn|<a ~n>N and p>1.

Theorem: Every convergent sequence is a Cauchy Sequence.
Proof : Suppose {z,} isaconvergent Sequence.

.+ A sequence {z,} hasalimit of z,.

lim z, =12,

N—o0

..For every ¢>0, there is an integer N st
|zn—zo|<72 w n>N

If m>N and n>N then
|Zm—20|<% ~ m>N

|zn—zo|<%2 w n=N
Sz =l -2t 22| S| -2t 22 | < H+ o=
| 2z | <o if n>=N and m=>N

= {zy} isaCauchy sequence.

Theorem : C is complete. [i.e. T.P.T. every Cauchy sequence in C
IS convergent.]
Proof : Let {z,} ={x,+iy,} beaCauchy sequencein C.
={x,} and {y,} are Cauchy sequencein R .
" R iscomplete.
Sy > % and y, >y for xg, ygpeR
Lolim oz, = lim (X, +iy,) = lim X, +ilim y, =X +iyp = 29
Nn—oo Nn—oo N—oo n—oo
= sequence {z,}is convergent.
Hence C iscomplete.

Note : A sequence is convergent iff it is a Cauchy sequence (Cauchy
Criteriafor convergence of a sequence.)

Theorem: Let (a,),., be a sequence of positive real numbers. If

im 2ot

i, = <Lthen|nlﬂgan:0.
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Proof: We have | <|%1<1, and by data there exist me N such that

|<ﬂ<l%1 foral n>m

a,
_I+1
Putr—T.Then0<r< 1. Then

Bt < 8y B <8, T <(@,r)r =a,r? and so on. We get
a_. <ar“vkeN.Put c=2n Then O<a,<cr"VneN. Since

m "

;
O<r<l,c"—>0a n—>®.S0 a —»>0asn— .

2.3 TOPOLOGICAL ASPECTS OF THE COMPLEX
PLANE

Topology in the C-plane:
A function CxC—R, (zz')—|z-z'| has the following

properties.

i) |z-z'|>0, if z#z' and|z-z'|=0if z=2'
i) |z-2z'|=|z"-7
i)  |z-z'|<|z-wW+|w-2' z,z'\weC

Thus, C is a metric space with Euclidean metric (distance)
definedby d(z,2)=|z-2|, 7, zeC
1) Let zpeC and £>0, thenthe set B(zg,8)={zeC:| z—z5|<¢} is
called an open disk or open ball with centre at z; and radius ¢ (This
isalso called the ¢ -nbd of z; or nbd zp).
Geometrically, B(z,¢) is an open disk, consisting of all points at a
distance lessthan ¢ from the point z;.

YA\
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2) A set of the form, B(zy,e)|{z} ={zeC:0<|z-2z|<¢} iscalled
the deleted neighbourhood of z; or punctured disk.

3) The set of the form 6B(zy,r)={zeC:|z—z|=r} is the circle
with centre at z, and radiusr and is called the boundary of circle.

4) Let GeC, A set of G is said to be open in C if for every
zpeG, 3 r>0,st B(zo,r)c G

YA
-
P et T
[ e .
1 )
' 1
Nl e )
‘\ r ‘\ 1
A L] ‘
\‘ —
'l kY ZO ’I' 1
" ----
K4 !
4
P ! S
Y Y s > X
~..-' ----------------------
o)
C - plane
v
Fig 2.3

e.g.1) Interior of circleisan open set
i) The entire plane C isan open set
iii) Half planes: Rez>0,Rez<0,Imz>0,Imz<0 areopen set.

Fig 2.4

Thoerem :.Any open disk is an open set

Proof : Let zpeC, r>0 and B(z,r)={zeC:|z-z|<r} be an
open disk.
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Let aecB(zg,r)=|a-z|<r (i)
If |z—a|<d then
|z-275|=| z-a+a-z5|<|z-a|+|a-7|
<d+r-9% (From (i))
<r
| z-z79|<r
ie.  zeB(ad)=zeB(z,r)
=  B(ad)c=B(zr)
=  Any open disk is an open set

5) The complement of aset Sc C isdenoted by S°, and defined by
S*={zeC:z¢ S}
6) A set F — C issaidto be closed if itscomplement i.e. F€ isopen.

OR
A set Fissaid to be closed if it contains all its limit points.

7) A set of the form B(zy,r)={zeC:|z-z|<r} is called the
closed disk or closed ball.
e.g.i) C isclosed set

i) & isclosed set

lii) E={zeC:lmz=4}

iv) S={zeC:|z|<2}

V) S={zeC:|z-2|<|z|
8) Interior point : Let Sc C, then the point ze S is said to be an
interior point of set Sif 3 r >0 st. B(zr)cS.
9) The point Ce S is said to be exterior point of the set Sif 3 a
B(c, r) which does not contain any point of set S,
10) A point peS is said to be a boundary point of set Sif itisa
neither ainterior point nor an exterior point.

Y

Fig2.5
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11) The set of all interior point of the set Sis said to be interior of S
12) A set G C issaid to be open if each point of G is an interior
point of G.

13) Closure set : The closure of the set Sc C, denoted by CI(S)
Cl(S)=SU&S(where 35S is boundary element is always closed.)
14) A subset Sof C issaidto be Denseif CI(S)=C
eg.i) Q isdensein R.
i) {x+iy/xeQ, yeQ} isdensein C.
15) Anopen set G is said to be connected if for any two points z
and z, can bejoined by acurvethat liesentirely in G.

OR
A metric space (X,d) is said to be connected if the only

subset of X which are both open and closed are X and
(D =theempty set) .

N

Fig 2.6
e.g. 1) Open disk isaconnected set.
2) The unit disk B(0,1)={zeC|| z| <1} isaconnected set.

3) Theannulus B={zeC:1<| z|< 2} is connected Fig. 2.6
4) The set S={zeC:|z-2|<1} or |z+2<1 is not connected

Fig. 2.6(b).

YA YA

i, s

< l\' \‘, >X < T Aol 2 3
il
C—plane C—plane
fig,(a) fi\g,(b)
z-2/<1 z+2<1
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16) A domain isan open connected set.

17) A domain together with some none or all of its boundary
point isreferred to as aregion.

18) Bounded Set : A set is said to be bounded if 3 R>0 sit.
ScB(O,R)={zeC:|z|<R}.

19) A set which is closed as well as bounded is called compact
Set.

20) A set that cannot be enclosed by any closed disk is called
unbounded set.

21) Let zeC and z,eC. These we denote the line segment

from z to z, by [z, 2]={(1-t)z+tz:0<t <1}

YA

A
v
x

Fig2.8

Function, limits and continuity :

Definition : Let A and B be two non-empty subset of complex
numbers. A function from A to B is a rule, f, which associates to
each zy=xy+iyg e A aunique wy=Ug+ivg e B

The number wg is the value of f at z; and we write
f(zg)=wp. If zvariesin A then f(z)=w variesin B. We say that
fisacomplex valued function of a complex variable.

Here w is the dependent and z is the independent variable.

Let f:A>B be a function and ScA
then f(S)={f(2)/,ze S} where f(S) iscalled theimage of Sunder
‘" andthe set R={f(2)/ze A} iscalled range of ‘f’.

Single and Multiple Valued Function :
Let zeC-{0}, then we write the polar form of a complex
0

number z is z=ré® where r=|z| ad 6e[-n,n] ie

z:z(r,e):reie.
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YA

A
v
x

Fig2.9
If weincrease 6 to 6+ 2n

z(r,0+2n)= re (0+27)
itsoriginal value.

—rel® e?™ —re® = 2(r,0) returning to

Definition : A function f is said to be a single valued if f satisfies
f(2)=1f(z(r,0))=1f(r,0+2n).
Otherwise, f is said to be a multiple valued function.

eg. f(z)=2", neZ isasinglevalued function.

Solution : . f(z)= f(z(r,e)):(reie)n
f(z(r,0+2n))= [r e‘(”‘”zﬁ)}n _ (Ng(n+2nm) _ njno 2inm
=r"d™ [ -1nez,
~(re) = 1(z(r0)

Note: If ngZ then f(z)=2" isamultiplied valued function.

" e?™M 1 when neZ
Let f: A—> B beafunction.

i) If the elements of A are complex numbers and those of B are Real
Numbers then we say that f is a real valued function of complex
variable.

i) If the elements of A are Real Numbers and those of B are
complex numbers then we say that f is a complex valued function of
real variable.

Let f:R — R be afunction then the graph of f is asubset of RxR

and it is two dimensional object and we can represent it very well on
the two dimensional page. However the graph of the f :C - C isa
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subset of CxC (RxRxRxR Cartesian product) i.e. a four
dimensional object and we cannot represent it on two dimensional
plane. In this case we consider two plane, one plane is z-plane and
other oneis w-plane.

YA VA
» * (D
Z

> X > U

C—plane C—-plane

z—plane o-plane
Fig 2.10

Limit Point :

Let D beasubset of C i.e. D < C then we say that apoint z,
isalimit point of D if every neighbourhood of z, contains a point of
D other than zj i.e. (B(zy,r)-{z)}) forany r>0.

Definition : Let f be a complex valued function defined on D and let
ZpCl(D). We say that a number ¢ is alimit of f(z) as z— 7

and wewrite lim f (z):f.
ran )

& iff +e>0,38>0 st |f(z)-¢|<e whenever zeD and
0<|z-27|<3.

& f(2)eB((,&) wherever ze DN[B(z,8)—{zo}]

Q

A\
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Note: 1) f may not be defined at z= z,
2) 7y need not bein D.
3)evenif zyeD, f(zy)=/¢
4) In real variable theory, if xyeR then x— Xy has only two

possible ways, either from left or from right. In complex case,
z— 7, inany manner in the Complex Plane.

Theorem : Let f be a complex valued function defined on D and let
ZpeCl(D). If lim f(z) exists, then thislimit isunique.

Z—2)
Proof : Let lim f(z)=¢;and lim f(z)=/(,
-7 17
TPT. t1=15
By definition for a given ¢>0, 3 8,>0,8,>0

st|f(z)-1|<8,, whenever zeDN[B(z,8)-{z}] and

| f(z)—£2|<%,whenever 2e DN B(29,82)- {20} ]-

Let §=min{3;,8,}.

If ze DN{B(2,5)—{2}} then

01— o] == T (D) + (Lo <| 11— T (2) |+| T (2)- 12|

<%+%=8

¢ isarbitrary.
=07

i.e. limit isunique.

Theorem : Let f be a complex valued function defined on D.
suppose, f(z)=u(x,y)+iv(xy), Zg=Xg+iYg, Wo=Ug+ivy and

zpeCl(D).
Then lim =wg iff lim u(x,y)=up and lim v(x y)=vq.
) -7 -7

Proof : Direct part —
Let lim f(2)=wy and wy =Ug+iv
-2

By definition, ~&>0,358>0 st |f(z)-wy|<e whenever

ze DN[B(2,8)~{20}]-
Now,
| £(2)-wo |=|u(x y)+iv(x y)-(ug+ivy) |

=[[u(x y)-up ]+i[v(x y) -] |
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|u(xy)-up| ""Rez<|Rez|<|z]
>
| v(x ) 0 Imz<|Imz|< | z|
If  zeDN[B(%.5)-{z}] then |u(xy)-up|<e and

[v(xy)-vo |<e

= lim u(x y)=ug and Iim V(X y)=Vo
270 -2

Conversely, assumethat lim u(x,y)=uy& I|m V(X Y)=Vy
2170 -2

-~ By definition given e>033;, 5, >0.

St. [u(xy)—up/<e/2 and |v(x,y)—Vvy|<e/2 whenever |z-zy|<8;
and |z-zy|<3,.

let §=min{8,5,}.

- whenever |z-z| <3,

Consider ‘f(z)—wo =|u(x, y) +iv(x, y)—uO—iVOH

<|u(x, y) = Ug| + V(X y) = vg| < §+§ =e

= lin f(2)=w,
-2

Examples : If f(2)= —Z in the open disk B(0,1), prove that

z-1
Solution : Given f(z)=—

iz i

. We must prove that for every £<0,38>0, st <g

whenever 263(0,1) and 0<|z 1]<8, f( );tz

if 0<|z-1<3&,then 2 | ||z 1|

2

choosing 6 = 2¢, we see that

<& Whenever ze B(0, 1) and

0<|z-1|<3.

iz i
[im—=—

z->1 2 2
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4
<1 [< a—
"' ‘0'. ‘\‘ ) \‘
! {210 /0=2¢e
\J 4 1
“\ 0 “\ :'l &"
z— plane
Fig2.12
Problem
. [
lim f(z)=—.
z—1 2

Solution : Given f(z)=i7Z

--.~~

» Ne
RN
~
N
N
Il
N =
-, -
‘--_¢"

1

D
D)
LY

w— plane

i f(z)—% in the open disk | z|<1 prove that

We must prove that for every £>0, for given any ¢>0 we can find

iz i

0>0 sit.

If 0<|z-1|<e

<& whenever 0<| z-1|<35.

=|z-1|<2e

<&, whenever 0<| z-1|<3

liz—i | _
——l<e =|il|z-1]<2e
i =1
Choosing, & =2¢, we see that dz_ 1t
.z i
im—=—
71 2 2
al 1:'»:;"-\‘
] Z“:KQZG
0 Y
- z— plane

w— plane
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Problem : Provethat lim z does not exist.
z—0 Z

Solution : We know that the function f(z)— ¢ (aunique limit) as
z— 7y inany manner in the C-plane.

z

Let f(Z)=7
Let z— 0, along therea axis.
Coy=0, z=x ("." z=x+iy)
lim £ (2)= lim 2 = lim = =1

z—0 z—»02Z z-50 X
Let z— 0, along the imaginary axis.
. x=0, z=iy (" z=x+iy)

lim f(2)=lim £ =lim—Y =1
z—0 z—>0 Z z-0 1Yy

= limitisnot unique along real and imaginary axis.
lim % does not exist.
z—0 Z
Problem : If f(z)=22, provethat lim f(2)=2°.
-7
Solution : Let e>0given, to find §>0 st. |22—22|<8 whenever
0<|z—2g|<3
consider |22—22|:|(z+ 2)(2— zp)|
|2+ 2g||z— 29| < 8|2+ 7|
=8|z— 2y +225| < 8|2 Zg|+ 20| 7| < 8.5+ 20| 70| =€
.-Choose §>0 st.min—S 1
1+2|7|

:‘22—202‘<e.
= lim f(2)=z0°.
-7
Theorem : Let f and g be defined in the neighbourhood of z, except
possibly at z= z,.

If lim f(z)=¢and lim g(z)=m
z-70 z-70
Then 1) lim [f(z)£g(z)]=¢+m
z-179

2) Zimzo[f (z).9(z)]=tm
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3) lim { f(z)}%

Vand )

Continuity
Definition : A function f :D — C issaid to be continuous at a point

zpeD,iff lim f(z) existsand lim) f(2) = f(z).
=7 70

OR
Definition :A function f:D — C is said to be continuous at a point

ZpeD iff »-£>0, 3 3>0 st | f(2)-f(z)|<e whenever zeD
and | z-zy |<e

OR

Definition : A function f is said to be continuous at a point z; e D
iff the following 3 conditions hold true :
i) fisdefinedat z)i.e. f(z) exists.
i) lim f(z) exists

-7
i) lim f(z)="f(z)

Z-7y

OR
Definition : A function f:D — C is continuous or f is continuous

on D if fiscontinuous at every point of D.

Example : If f(z)=2* then prove that f is continuous a a point
z=ieC.
Solution : Given, f(z)=22, zy =i

f(i)=i®=-1
limz2=/2=-1
Z—1

lim 22 =—1=f (i)
Z—I

= fiscontinuous at apoint z=i.

2 .
VA Z#1 . .
Example: Let f(z)= prove that f is not continuous at
0 z=i

apoint z=i.
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Solution : f(i)=0 (given)

lim f (2)=lim /% =-1
lim f(z)=—-1=f(i)

z—i
- fisnot continuous at z= z,

2 i*
Problem : Discuss the continuity of f(z):%at z=e*4
Z7+372°+1
i* i*
Solution : z=e4=>z?=e2=i=7*=-1
i
L f(@)=——m—=1
(2) -1+3i+1 3

T

|7
- thelimitexist z=e 4.
. TT

|7
- f(2) iscontinuousatz=e 4

Uniformly Continuous:
A function f:D — C issaid to be uniformly continuous on

D iff the following conditions holds for every ¢>0, 3 &> st. for
any two points z and z, inD.
|z-2|<8=|f(a)-f(z)|<s

Example : Let f(z)=2 in the open disk B(0,1), prove that f is

uniformly continuous on B(0,1).

Solution : Given, f(z)=2°.

. We must prove that for agiven >0, we can find § >0, st. for

any two points z and , in B(0,1) and

|z-2p|<8=] f(zl)—f(22)|:‘ 212—2%‘=|21—22| |7+ |
<8(lal+ z|) by triangle inequality
<25 (v]z|<land |2z |<1)

Choosing 6:%, we see that ‘zf—z%‘«z whenever |z -2z, |<3,

7,2 € B(O, 1) .
.. fisuniformly continuous on B(0,1).

Definition : Unbounded set :
A st E issaidtobeunbounded if 3 R>0 st.ze E vzeE.
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Definition : Limit at Infinity
Let f be defined on an unbounded set E. If for each ¢>0,
3 R>0 st. | f(z)-¢|<e whenever zeE and | z|> R then we say

that f(z)—>¢ as z—« andwewrite lim f(z)=/¢.

Z—>0
e.g. Iimlzofor given >0 above R>O0st. R>1
20z Z €
= 1—O‘=i<:a(|z|>R>1j
z |7 €
Infinite Limit :

Let f be defined out D except possibleat zy < D. If for every
R>0,35>0 st | f(z)|>R whenever 0<| z—z7 |<38 then we say

that f(z) > as z— zy andwewrite lim f(z)=o.
-7

. 1
eg. lim :
-1 772-1

=0

2.4. SUMMARY

1) Let f be a complex valued function defined on D and let
ZpeCl(D). If lim f(z) exists, then thislimit is unique.

z-70

2) Let f and g be defined in the neighbourhood of zye except
possibly at
If lim f(z)=¢and lim g(z)=m
a4 a0
Then 1) lim [ f(z)+g(z)]=/+m
zZ>7y

2) lim [f(2).9(2)]=/m

279
2 | 53]

3) A function f is said to be continuous at a point zy < D iff the
following 3 conditions holds
i) fisdefinedat zyi.e. f(z) exists.
i) lim f(z) exists
a4

i) lim f(z)="f(z)
z-79
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4) A function f:D — C is said to be Uniformly continuous iff the
following conditions holds for every ¢>0, 3 §> st. for any two

points z and z, inD then| z -2, |<3=| f(7)-f(2)|<e

5) Every convergent sequence is a Cauchy Sequence.

6) C iscomplete.

2.5. UNIT END EXCERCISES:

1) Find the limit of asequence z, =z" for |Z<1.

Solution : Consider \zn—o\:‘z”—o —»0an—w, for |7<1.

:‘Zn

2) Check whether the sequence z, =i_ IS convergent or not.
n+1

. n
Solution : -.-zn:%,then an:('—j |z-2 <5, because
+1

3+4i
L__J‘:_ i_|: L —0 @& n—>wo.
n-+i (n+|)| Jn2 41

3) Which of the following subsets of C are connected, if not
connected then what areit’s components ?

(8 X={z:|7<1}Ans : X is connected .
(b) X ={z:|4<1} U{z:|z-2 <1}

Ans. X is not connected , because X={z:|z|sl}U{z:|z—2|31}

is adigoint union of nonempty closed subsets ( Components) of
X.

4) Let z,,z be points in C and let d be the metric on C,.
Show that |z,-Zz—0 if and only if d(z,,z)>0 asn—w.

. 2|z-z'
Hint: F ,2'eC, d(z,z")=
(Hin or zz'e (z,z2") f((1+|z|2)(1+ 2’2))
d(z,00) = — >
(1+|z|2)E

5) Let P(z) be a nonconstant polynomial in =z. Show that
P(z2) 50 asz—w.
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6) Suppose f:X —Q is uniformly continuous, show that if
{x,}  is a Cauchy sequence in , then {f(x,)} is aCauchy
sequence in Q.

7) Show that if f and g are bounded uniformly continuous
functions from X into C thenfgis aso bounded and uniformly
continuous function from X into C.

(Hint:
(fg)() — (fa)(y)| =| f () g(x) - T (¥)g(y)|
<[ )= F(W[|a)[+]f (y)]|g(x)-a(y)].)

8) Verify the continuity of the following function f of the extended

complex plane Cu {} at the point a:_I3 (2012)
. -3
f(2)= if z#—
(2= # 2
_z+1 . -3
= if z#—
4z+3 4
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SERIESOF COMPLEX NUMBERS

Unit Structure:

3.0. Objectives

3.1. Introduction

3.2. Convergence of Series

3.3. Tests for determining the Convergence of Power Series
3.4. Summary

3.5. Unit End Exercises

3.00BJECTIVES:

This unit shal make you construct a series of
complex numbers by understanding the definition of a series of
rea’s. Basicadly, we are going to define a power series of the

form Y ,a,2". We shall check for the conditions, under

which the given power series is convergent or not. Hence, we
shall employ certain tests in order to determine the
convergence of the given power series.

3.1 INTRODUCTION::

An infinite series of red’s is the expression of the form
Sk1d, Where a.is area number for all k>1. Similarly we

construct an infinite series of complex numbers as X7z,
where z's are complex numbers for al n>1. For example

Zio_lk;iiis an infinite series of complex numbers. To check
whether the sum exists or not, in other words whether a given
series of complex numbers is convergent or not, we employ
certain tests for convergence and we shall convert the given
problem of checking convergence of the series of complex
numbers to checking convergence of the series of real
numbers. For example ik is aconvergent series of real

1 o0
2k
e
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numbers, because | i

i 1 and we know that yo 1
K2+ k11 kA1
converges. Let us start with defining a series of  complex
numbers.

3.2 COVERGENCE OF SERIES:

Definition: Let {z,} be a sequence of complex numbers, Form a
new sequence defined by S =7, S,=7+2,.., $,=+2+...2,,
where S, is called the sequence of n" partial sums of sequence {z,} .

The sequence {S,} is symbolized by z+2z,+..= ) z, caled an
n=1

Infinite series.

If lim S, =S existsthen the series is said to be convergent and Sis

N—co

itssumi.e. izn: lim Y z = lim S;=S

n=1 Nn—oo k=1 Nn—oo

A seriesis said to be divergent if it is not convergent sequence. (The
necessary condition for the convergence of the series.)

o0
Theorem : If the series > z, isconvergent then lim z,=0.
n:1 N—o0

Proof : Given seriesis ) z,.
n=1
Let S,=z+2+..4+Z110+2Z,  ceeeeinnn (1)
be the n™ partial sum of series.
Giventhat the seriesis convergent

Let Sbe the sum § z,

n=1
" lim §,=S
n—o
.". from equation (1)
Zh =S -Sh (Ca+zp+.+2y1=51)

Taking limit on both sides,
" lim z,= lim S;- lim §,_;1=S-S

n—o0 n—o0 nN—o0
- lim z,=0
n—o0

Consider theinfinite series )’ z=279+7+...
n=0
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If Ry=2z4+2y,1+2Z.2+... then R, is caled remainder of infinite
series. If Sissum of infinite seriesthen S=S,+ R, or R, =S-5,.

Theorem : A series ' z, of complex terms is convergent iff for
n=0

every £>0, 3 aninteger N St. | z,+ 2y 1 +..+ Zy;p |<& ~ N2N
and p=>0. (Cauchy criteria for convergence of series)

Proof : Suppose ) z, isconvergent

n=0
Let S, =2y+2+2 +...+ 7, 1 bethen™ partial sum of seriesand let S
be a sum of series.

. lim S,=S

n—oo

v £>0, Janinteger Nst. | S,-S|<e (1) ~n>=N
Let R, =24+ Zy11+ Zhyo +... Detheremainder of an infinite series.

.. S=5,+R,0r R,=S-5,

.". From equation (1)
1S -S|=| S-S |=| R |<¢ ~ n=N
1€ | Zy+ Zp 1+ Znyo +o | <€ ~ n>N

|zn+zn+1+zn+2+...+zn+p|<e ~»n=N and p>0

Converse:
Given ¢>0, thereisaninteger N s.t.

|Zn+zn+1+zn+2+...+zn+p|<g ...................... (2
~+n>N and ~ p>0

Weknow that, > z,=2y+2 +...+ 2 +...
n=0
If Sisitssum then wewrite S= S, - R,

. R=5-8 5| Ryl<|Sy -S|
BUE | Ry |=| 2+ Zna1 -+ Zny p | < given from (2)
~+~n>Nand ~ p>0

= |S,-S|<e ~ n>N
= lim §,=S
n—o0

o0
> z, isconvergent.
n=1
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Definition : Let z, e C. For every n>0 the series )  z, converges
n=1

to z, iff for every ¢>0, 3 aninteger N st. <g Vnx=N.

n

2 % -2

k=1

Definition : A series 3, z, converges absolutely if 5 |z,| converges.
n=1 n=1

Proposition : If the series ) z, converges absolutely then > z,
n=1 n=1
converges.

o0
Proof : Let €>0, consider an infinite series Z zZ, .
n=1

Let S, =2+2+..+z, bethe partial sum of seriesgiventhat ) z,
n=1
convergent absolutely.
) For agiven £ >0, 3 aninteger N st.

o0

>z |<e ~ n>N (1)
k=n+1

If n>m>N then
n

< > ||

k=n+1

> a

k=m+1

|Sn_3*n|=| Zm+l+zm+2+---+zn|:

0

< > |z l<e from(1)
k=n+1

= {S,} isaCauchy sequence.
= {S,} isaconvergent Sequence. ("." by Cauchy criteria)
.3 zeC st lim S, =g

nN—co

Thus, > z, isconvergent.
n=1
Examples:

o0
1) Provethat ) " =1tz+ 2% 4. =
n=0

if |z|<1
1-z

o0

Solution : Given > z,=1+z+72%+..
n=0

Let Sy=1+z+2z°+..+2"1

2S,=z+2%+2°+..+2" (multipliedby z, z0)
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L §-28=1-7" = §(1-2)=1-7" = S = 11—_22”
(z#1)
TPT. S, - 1}2 ........ 1)
i.e. TPT. lim z2"=0
o0

Given any >0, we must find integer N sit. ‘z”‘<s ~ n>N [If

z=0, then theresult istrue].
Let z#0

‘zn‘:|z|n<s

=  nlog| z|<loge

n>-109¢ {+log|7| is negative when || <1}
log| z|
. loge n
Choosing N = ,Weseethat‘z ‘<s ~ n>N
log| z|
lim z2"=0
n—oo
From equation (1)
_ 5N
lim S, = lim 1z ) 1 (-.-z”:O aSI’l—)oo)
n—o now| 1-2z 1-z
Hence, > 2= ! when | z|<1
=0 1-z

Note : 1) Geometric series (G.S.) > z" is cgt when | z|<1 and
n=0
divergent when | z|>1.

Uniformly convergesfor series:
For each neN, let f (z) be a complex function of complex

variable.The series ¥ f,(2) convergesto f(z) point wise for each
ze D iff X f,(2)=f(2) andfor each ze D [This means that for each
ze D and for each ¢>0, 3 aninteger N (depends on z) and ¢], st.
1S (2)-f(z)|<e  ~n=N.

Definition : The series > f,(2) is said to be uniformly convergent
on D to f(2) if for every £€>0, 3 aninteger N (depends only on ¢)
st. | Sy(2)-f(z)|<e~ zeD, and » n>N. A power series about




53

2 IS an infinite series of the

formZan(z—zo)n:ao+(z—zo)a1+(z—zo)2 a t o , Where
n=0
constants a, and z, are called complex numbers and z is a complex

variable.

0

Note: If zp=0then > a,z"=ag+a+..
n=0
Thisis power series about origin (i.e. z=0)

eg. Geometric Series(G.S) Zz”:1+z+zz+...
n=0

i) If | z|<1 then lim S”_l—lz and the G.S. converges with

27
i

If | z|>1then lim S, = andtheG.S. diverges.

n—oo

3.3. TESTSFOR DETERMINING THE CONVERGENCE
OF A POWER SERIES:

Weierstrass M-test :
Statement : Let f,:D < C— C beacomplex function defined on D

o0
st. | f1(2)|<Mp ~ zeD and neN. If Y M, is convergent

series of positive real numbers then series > f, is uniformly
1
convergent.

Proof : Given | f,(z)|<M,+zeDand neN D
Let e>0

o0
Giventhat > M, isconvergent
1

. JFaninteger N st. > Mp<e = nx=N 2
k=n+1

Given seriesi fn(z)
1
Let S,(2z)= fy(2)+ fa(2)+...+ fa(2) if n>m>N, then
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150 (2)=Sn(2) | =] fmea(2)+ fme2(2) +-+ Fr(2) |

n n
- Y K@< 3 )]
k=m+1 k=m+1
n
< > My from (1)
k=m+1
n
< ) Mg<e from (2)
k=m+1
| Sh(2)-Sm(2) | <e, ~ n,mxN
=  {Sy(2)} isaCauchy sequence.
Sequence {S,(z)} isaconvergent sequence

-

3 weC st. lim §,(2)=
nN—o0
Define w= f (z) this givesafunction f:D — C for each ze D and
foreach n>N |S,(2)-f(2)|=| f(2)-S(2)].

S (2)- T (2)|=] F(2)-%(2)| = S1(2)+ Tar2(2)+.- |
PIRICIES AT
< i My <& from (1) and (2)
Hence | S,(2)- fk(:zn)+|1<g ~ zeD where n=N

=  Series § f,isuniformly convergent on D.

n

Examples : 1) Prove that the series is uniforml
ples = 1) Z  Vn+1 y
convergentonaset D={zeC:| z|<1}.
n
Solution : Given series z
Z \/n+1
Let f z
Z)=—
" g
“ | fa(2)]= il <o ] z]<y
n |n\/n+1|_\”/n+1 | B
< 1 =M, (\/ﬁ \/n+1)

02
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ZMn=Z% is a p-series and it is convergent
n

e

By Welerstrass M-test,

n

The given series )’

isuniformly convergent.
o1 Wn+1

2)  Givenseries ) z"(1-2)
n=1
i) Prove that the series converges for |z|<1 and find its
sum.
i) Prove that the series converges uniformly to the sum z for

| z|£%.
iii) Does the series converges uniformly for | z|<1? Explain.
Solution :

) The given seriesis i z"(1-2)
n=1
i "(1-2)=z(1-2)+ 72 (1-2)+ 23(1— Z)+...
n=1

— 72—+ BB A -

—z- "1 z(l— z”)

LoLet S (2)=2z-2"1
We must prove that given any ¢>0, we can find an integer N s.t.
| Sh(2)-2z]|<e » nx>N

1

n+1

|Sn(z)—z|:‘z—z”+1—z‘<g:>‘—zn+1 <e=|z| T<e

= (n+1)log| z|<loge

=n+1> loge , 2#0 :>n>|oﬁ—1:N
log| z| log| z|
. loge
Ch N = - 1
oosing, 09| 2| (1)
1S, -Z|<e ~» nxN

lim S, = lim z-2""1=2
nN—oo N—o0

Hence, the series convergesfor | z| <1 and z isits sum.
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ii)  Since from (i) the series converges to some z for | z|<1 and

hence it convergesfor | z| s%

loge

N = -1 from (1)
log| z|
If | z|:1, then N= 193¢ 4 isthe largest value of loge .
2 Iogl log| z|
2

loge

Iog}é

. . . 1
The given series converges uniformly to sum z for | z| < >

| Sh-z|<e, » n=N= —1 where N depends only on

¢ and not on z.

i) 1f|z|<1
N= 098 4 from (1)
logl

Hence, the series does not converges uniformly for | z|<1.

Ratio Test for series (2012)
Statement: Let Y z be an infinite series for non-zero complex term

S.t.

ZN+1| ZN+2| Zn | n-N

=Zn|. S/ <|zZy|A

20| =2n] P s P e L e
IDZ>1|ZN|7JO.'. z, > 0% z,

i) If L<1, the series converges absolutely.
ii) If L>1,the seriesdiverges.
i) If L=1, the series may converge or diverge.

Proof: Suppose L<1. Thenfor 1 with L< 2 <1, there exist an integer
N st.

‘ﬁ <2 vn>N sothat,

z,

12| =|zu]. Al B ‘ Zn |<|zN|>J‘-N
ZN || 2N —|

.'.|z,\,+p|<|z,\,|kIO for p>1.

Since Y |zy|APis a convergent (geometric series), ¥ |zy| is
p>1 n>1

covergent by comparision test. This proves (i)



57

If L>1, then there an integer N st. L>k>1 and ‘% > k for all
n>N
Z Z
~foradln> N |z |=|zy]. N+1|.| N+2| ....... ‘ “n |> zy|k"™N oo
|Zn| | N| AN BIANEE] Zhq | N|

Hence, ..z, > 0as n— o and so Y z, diverges. Hence (ii).

Example:

[e] n
1) Prove that the power series Z Z—| convergesfor all values of z.
n:

n=0

0 n
Solution : Given power seriesis > Z—I

n=1 N
Here, a,=— = -

O =T T A (n+1)!
|

lim [ 204  Jim M _lim|—1 ] —0<1
nowol 8y | N %I n—wo|N+1

Therefore the the series is convergent.

Comparison Test :
If the series > |v,| converges and |u,|<|v,| then > u,

converges absolutely. Also, > |u, | converges,

Abels theorem:
Statement : If the power series Zanzn converges to particular
value zy=0 of z then it converges absolutely v z st. | z|<]| z)|.

Proof : Given that the power series ) a,z" us converges for a
particular value z, = 0of z

o > a, 70 converges.
" lim a,z =0

nN—oo

— sequence {an 28} is bounded.

.". 3 positive number M st. <M

n
anZ

ENE

X
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n
~ N

z
or‘anz”‘sM‘—
Z

<1

n
UM Z ‘ % is a geometric series and convergent for | —
e |z|<|z]
. By comparison test Z‘anz”‘ converges absolutely for

|z|<[ 7]

Cauchy-Hadaward Theorem :

Statement: For a given power series )’ a, Z" define a number R,
n=0

0<R<w, by %:Iim.sup| a, |% then

i) If|z|<R, then the series converges absolutely

i) If O<r<R, then the series converges uniformly on
{zeC:|z|<r1}

iii) If |z|>R, then the series diverges [Here R is radius of
converges of power series] (2008)

Proof : Given, %:Iimsup| a, |% (1)

[Note : A number L is said to be a limit superior of the sequence
{up} if infinitely many terms of the sequence u,, are greater than

L —¢, while finite number of terms greater than L+¢ where £>0.]

i) Let | z|<R,then 3 r>0st. | z|<r<R
1 1

_>_
r R

By definition of the lim sup and from equation (1)

n
|an2n|<£|ri|] ~»~ n=>N

n
Z['ri'] is a G.S. and it is convergent for @d i.e.



i)

=

59

By comparison test,
¥ a,z" convergesfor | z|<R.

> a, 2" converges absolutely for | z| <R.
n=0

Let O<r<R choosing r,.3 O<r<r'<R.
By using part (1), we have

la,|n]a, ' <% wnzN

1

(r)

(&) <[+

lan| <

-

n
Z[rLj isa G.S. of positive real numbers and it convergent

forr<r’'.

By Weierstrass M-test, the power series )" a, Z" converges
n=0
uniformly on {ze C:| z|<r}.

Let|z|>R,then3 r>05|2|>r>R
1 1

<=

r R

By definition limsup and from equation (1)
an> v nzN

1
|an|>r_”
n n
‘anzn‘>|zr|] >r_n:1
r r
‘anz”‘>1 ~ n>N

anz' >0 & n-owo{" > z  converges then

lim z,=0, z;, >0 asn—>w}

n—oo

=

Power series ' a, 2" is divergent for | z|>R.
n=0
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Definition : The radius of convergence R of the power series

> a,z" is defined as R = sup {r' the series converges

vzsatisfying |7<r}.

i) If R=0, then power series > a, z" cgsonly for z=0.
i) If R=00,thenthe power seriesconverges, for al valuesof z.
iii) If 0<R<w, the power series converges for al z f,(z)<R and

diverges vz, f,(z)> R.

The power series may converge or diverge on the circle
| z|=R. Thecircle | z| =R isthen called the circle of convergence.

Note: If > a, Z" is power series with radius of converges R then

n=0
R=lim |—2"_| provided thislimit exist.
nN—oo| 8ny1

Theorem : If a,=0 for all but finitely many values of n then the

radius of convergence R of ) a, 2" is related by following,

n=0
liminf | 20+L | < <I|msup‘ 8ni |
an an
In particular, if lim | 2o+l exists, then
n—o| an
L jim G =limsup| a |% (2007,2008,)
n—owo| ap
Proof : Given Risradius of convergence of the series »° a, z".
n=0
Suppose, Ilmsup‘ 841 | _ | and liminf | 20+l (= ¢
an an
By the definition of limit sup, 3 an N sit.
‘M <L+e v n=N
an
AN+ <L+eg, AN+2 <L+g,...,‘ &n <L+eg
an aN +1 81
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Multiplication of these inequalities gives
‘ a:
an-1

an +2 n—-N

aN+1

an +1
an
an

an

<(L+¢g)

n—-N

<(L+¢)

la [<|an|(L+e)"™

|an|% |: L+8 n— N:|%1
J%
¢ isarbitary as n — o, we get

lim sup|an|%sL (1)

Nn—oo

('.'Iimi‘/gzl n—a if p>0)
Similarly, by the definition of limin f

(< Iiminf|an|%1 (2
From equation (1) and (2), we get

|an|%<[aN|L+g

L+8

¢ <liminf %slimsup %SL
an an

= KS%SL {'.'Iimsup|an|%:%}
If lim | 2L | existsthen ¢ =L
n—oo| anp
%:Iiminf|an|%:limwp|an|}/n
1 i an+1 i }/
== fim | 2ol |
R e | e Pl
Note: R= lim |-
N—co| anyp

Theorem: Let > a z"be a power and ) na,z"*be the power series
obtained by differentiating > a,z" term by term. Then the derived
series has same radius of convergence as the original series.

Proof: Suppose for Rand R be the radii of the convergenve of the

series ) a,z" and > na,z"" respectively.
Then we have,
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1 —, 2 — 1 1
—=limla|n and —=Ilimn" n
= =mlay| = 2|
1
In order the desired result we have to show that limn" =1

n—oo

1
Suppose n" =1+h. Then we have

n= (1+h)"=1+nh+ %h% .......... h" >%n(n—1)h2 ie

<2

n-1
1

Thus =In1+i%=i% sothat limn" =1.

n—oo

Hence R=R

0

h2

Proposition : Let f(z)= ) a,z" haveradiusof convergence R>0

n=0

then for each K >1, the series

> n(n-1)(n-2)..(n-K +1)a, 2" ¥ hasradius of convergence R
n=K

(2009)

Proof : Let R be a radius of convergence of the power series

f(z):ioanz”.

Let R bearadiusat cgs. of apower series ' _n
n=K (n_K)!
T.PT. R=R
e n! n %‘
- _Ilmsup‘ (n—k)! a
n

:Iimsup‘ (n?!k)! .Iimsup|an|%

1 I n! % 1 1)

-2 WS TR I

{-.~Iimsup| a, |% :%}
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Now, I|m sup|an|%_llm a”azl
N—o0
limsu n! %_ (n+1)! ><(n—k)!
Pkt | “now| (nelok)

GRS S e
n—o0 n+1 k Mﬂf

=lim|———|= lim
nowo| N+1-Kk

Substituting in equation (1), we get
1 1

R R

] n
Example: 1) Prove that the power series > Z—I converges for al
n'
n=0
values of z.

n
Solution : Given power seriesis »_ Z—I
n

_1
(n+1)!

= lim A
= }(/n+1)!

(n+1))7r.f‘
d

1
Here, an=—r= an.1=

an
an+1

(n+1)!‘

R= lim
N—o0

= lim
n—oo

= lim |n+1|:
n—oo

= lim

n—oo n!

R=w
00 n

z convergesfor all values of z
0 n!

2) Prove that the power series " n!z" convergesonly for z=0.
0

Solution : Given the power series >_ n!z"
0

a,=n! = ay=(n+1)



R= lim |2 |= fim |-
Now| 8h41 | N> (n+1)|
= lim L—Iim 1 ‘—izo
N—>00 (n+1)yr.f n—owo| N+1 0
R=0
> niz" convergesonly for z=0.
0
_ _ > (n+2)
3) Find the radius of convergence of series =~——~7z".
(3n+5)
2
Solution : The given seriesis 2(n+ )z”.
(3n+5)
_n+2 _ (n+D)+2  n+3
an+5 M 3(n+1)+5]  an+8
R= lim | 20| jim | (1+2) / (n+3)
n—ow| an4q N—00 (3n+5) (3n+8)

(L Z)n(3+ %)
n(3+5)nfe %)

(n+2) (3n+8) — lim
(3n+5) (n+3) n—w

2202
M a3

= lim

( 2)(3+8) _(1r0)(3+0) _3 et
(3+5,)(1+3,) (3+0)(+0) 3
2n+1 A
4) Find the radius of convergence of the power serlesz( 5) :
+
Solution : Thegiven seriesis 2(2:+;)
+
2n+1 2(n+1)+1  2n+3
=3 = 8ny1 = =
n+5 3(n+1)+5 3n+8

LAy (2n+1) | (3n+8)
a1 (3n+5) (2n+3)

(2 1) (2 %)
(34 5)(2+ %)

R= Iim

N—oo

= lim

N—o0

= lim
n—oo
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(2+3)(3+8))  (2+0)(3+0)

= = =1 ~R=1

) aE

5) Find the radius of convergence of the series > (c+id)" 2" where
c,deR.

Solution : The given series " (c+id)"z"

n+1

an = (c+id)" = a,,1 =(c+id)

. n
R= lim |-n (c+id) -
n—o| 8nig (c+id)™
. \N
i (c+id) ~lim 1. ‘
N— o0 (C+id)n(c+id) n—w| C+id

By Rationalizing
_ Iim| c—id |: 1
n%oo|(;2+d2| \/02+d2

6) Find the radius of convergence of the power series ' nl ",
4" +1
Solution : The given power seriesis )’ S
4" 41
an ! = & :
= 1
L
4" (4+1j
4n
R= lim 1 = lim| 4| =4
n—oo 4n [1_’_ j N—o0
"
7) Find the radius of convergence of the series )’ (1+—j z".
n

n
. : . 2
Solution : The given series is Z[l+1) Z". Let an=(1+1)n
n n

2| ;

i:Iimsup|a|%:limsup (1+1j :Iimsup‘(hlj
R n n

1 n
=lim|1+=]| =e R=
n—m[ nj }é
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8) Find the domain of region of convergence of the power series

i 1.3.5...(2n-1) (1—2 "

| ] and show the doman or region
n! z

n=1
graphically.

© 1.3.5...(2n-1 —z\
Solution : The given power seriesis »_ nl( n-1) (1;) :
n=1 ;

put =2 =&, weget

_ i 1.3.5...(2n-1)

n=1

n! én
1.3.5....(2n—1)

1.3.5....r(1!2n—1)(2n+1)
(n+1)!

Now, a, =

= an1=

1.3.5...(2n-1)

— i n!
s 1.3.5...(2n-1)(2n+1)

(n+1)!

an
an+1

R= lim
N—oo

1.3.5...(2n-1)(n+1)!
1.3.5...(2n-1)(2n+1)n!

(n+1)! _
(2n+)n! | now
Al 2)
A2+ %)
_vX
2+}§o

= lim

= |lim
Nn—oo

n+1
2n+1 yrf
n+1

= lim =
2n+1

Nn—oo

Nn—oo

1+%
2+%

= lim
N—oo

R==
2

. . 1
Domain of convergence of power series | & | < >

2l iz)< g
z 2 2

Taking square on both sides.
1-2f <2
4
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(1-z) (1— E) < 1 77 { | z |2 - Z.E}
4
4(1—E—z+ ZE)< 77
=  4-47-47+47272<727= = 4-47-42+322<0

= zE—%(z+E)+i<O

Put z=x+iy = Z=X+1y
2 o2 8 4
= X+y" —+—<0
3 3
= x2—§x+£+y2+i—£ 0

r

{

I
o

Wl

;

Fig3.1
Given series converges inside the circle.

9) Find the doman of convergence of the power series

n=0

Solution : The given power series IS
_ . n . .\ N

© |z—1} _i{I(ZH)} ("iz——l)

noL 3+4i n—oL 3+4i

n

0
:go( 3l4i j (z+i)"

: a”=(3+i4ijn
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(5%)

M

R_Ilmsup|an|y_llmsup =Iimsup‘ | ‘

3+4i

_‘ i ‘_ i
| 3+4i | [3+4i

z:x+iy:>|z|:\/x2+y2

i =0+iy=|i|=+/0+1 =1 =1and

|3+4i|=V3%+4% =\9+16 =25 =5

1 i 1

R [3+4i] 5 (0,1

Fig 3.2

. Domain of convergence of power seriesis | Z+i |< 5

. Centre=(0,1) , Radius=5

. The given series converge inside the circle.
10)  Find the radius of converges of the series > (3n+2)(z-2)".
Solution : The given seriesis > (3n+2)(z-2)".
Put (z-2)=¢

= > (3n+2)¢"
) a,=3n+2 =ay,1=3(n+1)+2=3n+5

Now, R= lim|—20_|= |jm|3N*2 ‘: lim nE+2) |
n>w| 8u41 | n-ow| 3N+5 | now (3+/)
"

" Domain of convergence of power seriesis 1z-2/<5
i.,eacirclewithC=(2,00 andr=5
11) Find the region of convergence of power series

i z+2)

1 (n+1)2an



© n-1
Solution : The given seriesis Z%
n-1 (n+1)°4"
N SN B
(n+1)%4" T (ne2)Pam
7
1. v
Now,— =limsup| a, |/n =limsup
R i (n+1)° 4" ‘
=limsup ; =i
(n+1)%4 4
The region of convergence of the seriesis | z+2|<R
e |z+2|<4 = |z+2|2<16
= |z+2|‘§+2‘<16 ('.'|z|2:z.2)
= (Z.E+22+22+4)<16 = zE+2(z+E)+4<16
Put z=x+iy= z=x—iy
=  xX2+y?+2x.2-12<0 ('.'Z.E:x2+y2 and z+E:2x)
= x2+y2+4x—12<0 = X2+ 4X+ 4+ y2—12—4<0
= (x+2)2+y2—16<0 = (x+2)2+y2<16

c=(-20 r=4
ANY

4
(_270)
< _'2 —:l 0 / > X

\ 4
Fig 3.3
.. The given series converges inside the circle.

(12) Find the radius of convergence of (i) 2%(2/ 22" (2009)
n!

sz
(-1

(i) 3 (2009) (iii) = n"z"  (2008) (iv)zZ_nn (2008)
j=2
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(13) Find the power series for the function f(2z) 1 about the point
z

z=2 and find its radius of convergence. (2007)

14) Check for the convergence of the series § nz".
n=0

Solution : Hereafter comparison with § a,z",
n=0

“wa,=n VvV nx1.

Sl

n"=1 .. L=1

1
limp_,. Sup‘an‘H =limy_,,

= R:%:l. " The series y2=0"%" converges for |7 <1 and
diverges for |7>1.

For \z\:L‘n z"

=N—>ow,aS N—>a.

Ymonz" diverges for |7=1.

15) Find the radius of convergence of the following series.

o0 n o0 n o0 n o0
) $ZGi) £ i) 5 (v) 32"
n=1 N n=1n n=1 n! n=1

1

Solution: (i) aﬂ:iz: L=lim,_,, supla,|n =1.
n

e R:%:l. The radius of convergence of the power series

n

2‘;,0:12—2 is equal to 1.
n

(iv) " a,=1if " n=k?®for some integer k = 0 otherwise.
1
Consider " L=lim_,,, sup|a,|n = sup{1,0} =1.

e R=%=1.The radius of convergence of the power series

2 .
>ro,z"  isequa to 1
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3.5. SUMMARY

o0
1) If the series > z, isconvergent then lim z, =0.
n=1 n—oo

2) A series Z z, of complex terms is convergent iff for every
n=0

e>0, 3 an integer N st. zn+zn+1+...+zn+p|<g ~+ nxN and
p>0. (Cauchy criteria of convergence of series)

3) The series ¥ f,, is said to be uniformly convergeson D tof if

for every ¢>0, 3 an integer N (depends only on ¢) sit.
|Sn(z)—f(z)|<s ~ zeD, and ~» n>N.

4) Let fn:D<cC—C be a complex function defined on D sit.

e}
| fa(2)|<Mp ~ zeD and neN. If 3" M, is convergent series
1

o0
of positive Real numbers then series >° f,, isuniformly convergent.
1

5) Let > u, be an infinite series for non-zero complex term sit.

Uns1
un
i) If L<1, the series converges absolutely.
ii) If L>1,theseriesdiverge.

i) If L=1, the series may converges or diverge.

lim =L then

N—o0

6) A power series about z; is an infinite series of the form

and z are called complex numbers and zis a complex variable.

7) The radius of convergence R of the power series § a,z" is
n=0

defined as R=sup{r :the series cgs - z satisfying | z|<r}.
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3.6. UNIT END EXCERCIES:

1) Check for the convergence of the series Y% ,2".

n+1
Solution: If |7<1 then 1+z+...+z":1 LN 1 as
1-z 1-z

1
n—oo .. Z%ozozn ZE.

If |Z>1, thenlim,,|7" =w. . The series 3y ,z"diverges.

2) Show that the radius of convergence of the power series
y2,2""Dis equal to 1.

Solution : Z‘,?le”(”*l):—22+%ZG—%212+..

s a,=0if nzk(k+1)for some integer k

a, = % otherwise.

1
o L=lim,_,, sup|ay|n =sup{0,1} =1. - R:%:l

. The series has the radius of convergence equal to 1.

Kk
3) Find whether Z‘f&# converges or not.
+1

1 1
and we know that Y ,——
\/ k?+1 VkZ+1
K

. |
converges. ..The series Zf&lkz—l converges.
+

on - ||
Solution : .. |k2+i|_

4) Check whether Zoko:]_% Is convergent or not. (Hint : Check
+1

whether z“k(;lRe[%Jrijis convergent or not.)

5) Show that f(z)=y7 kz*is continuous in |z<1.( Hint :
Here the convergence is uniform . Show that YP.kz* is
convergent in |7<1. Let f(z)=kz* which is uniformly

continuous for all k>1)
n

6) Show that the series Z?f:ozﬁ IS convergent everywhere in
n:

the complex plane.
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7) Show that the functions f(2)=cos(2),g(z)=sin(z)ae

analytic in the whole complex

plane. (Hint: Show that each of the  series
. ( 1)n n _ . ( 1)n 2n+1

f(2)=cos(2) =¥, 2L and g(z)=sin(z) =X O el

have infinite radius of convergence.)

8) Let (a,)be a sequence of positive red’s and
lim,,, 2L —| . Show that

lim

%H—\?
!_

Nn—oo

2n+1
9) Find the radius of convergence of the series Y% ,—— .
(2n+1)
] 2n+1 Z3 Z5
Solution: Y5, =Z+—F—+ . F..
(2n+1)! 3 5l

-.Comparing with ¥ ;a.z", we get
a,=0if n=2,4,6,...
:iif n=357..
n!
1
L=lim,_,, sup|a,|n =sup{0,0} =0.
1 . 72l o .
- R===ow. The power series > ,———has infinite radius of
0 (2n+1

convergence.

10) Find the domain of convergence of the series

(-D"

2 he=0 o (z+D)".

Solution: Put 6=2z+1.

" -"
e ey v e 4= 0
L=lim, |22 —jim__, i‘:o
a, n+1

R:%:oo. The given power series converges for all 0.

But 6=z+1. As 0 varies over C, .. z also varies over C.
-. The given power series converges for all complex numbers.
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11) Find the domain of convergence of the power series
Sho(z=i)"
(Ans: The series converges for zeC such that |z—i|<1.

1 1
12) Show that n" -1 as n—>wo. (Hint:  Put anlog[n”}

for n>1.)

13) If Y a,z" has radius of convergence R, what is the radius of
convergence of

Sa, z?" andof a2 2" ?
(z+2
1(n+1 )34

)n—l

14) Prove that the series Z convergesfor | z+2|<4.

15) Find the radius of convergence of the power series

00 2
s> a' Z", aecC.
n=0
16) Find the domain of convergence of the series % z+ ;—2 7% + %5553 o

17) Find the radii of convergence of the following power series

antz—ﬂjn

1+i

Zn

Z_
18) Show that the ROC for the power series " is 1. Discuss the
convergence of this series of the points on the boundary or the

{zeCl|Z<1
disc
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DIFFRENTIABILITY

Unit Structure:

4.0. Objectives

4.1. Introduction

4.2 . Differentiability incomplex
4.3. Summary

4.4. Unit End Exercises

4.0. OBJECTIVES

After going through this chapter you shall come to know about :

e Defining apolynomial with complex coefficients and in an
indeterminant z, which can take any complex number value.

e Aninfinite series of the form ¥©=0a,z" is caled a power
series.

We shall investigate for the differentiability of a power series as
a function of acomplex variable z, at the same time we shall
also check for the condition, under which two power series
are one and thesame, that is both the power series represent
the same complex valued function.

4.1. INTRODUCTION:

Through this Unit , we shall examine the notion of “ a
function of = “, where = isa Complex Number of the form z=x+iy.

A Complex Number z can be viewed as an ordered pair of real
numbersxandy as z=(x,y). Thepoint of view taken in this Unit
is to understand some functions, which are direct functions of
z=x+iy and not ssimply functions of the separate parts x andy

Consider for example the function x?-y?+2ixy is a direct
function of x+iy, since x%—y?+ 2ixy = (x+iy)?.
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(f(z):zz) but x2+y?—2ixy is not expressible as a polynomial

in variable x+iy. Therefore we are compelled to consider a
special class of functions, given by direct/ analytic expressionsin
x+iy. We shal name such direct functions as the analytic

functions . Let us start this Unit by defining an c polynomial
p(z) in a Complex variablez.

Definition : A polynomial P(x,y) in a Complex variable z =(X,
y) is an expression of the form

P(X,¥) = ag+oy (X+iy)+..+a, (x+iy)"  where oy, aq..,0, ae

complex constants e.g. (i) P(x,y)=x?—y?+2ixy (i) x?+y?—2ixy is
not apolynomial in z=x+1iy.

4.2 DIFFERENTIABILITY IN COMPLEX

Differentiation: Let Gbeanopensetin C and f:G— C canbea
function, we say that f is differentiable at a point z; in G if the limit

lim M ...... @D
z-7) z-7,

exists, this limit is denoted by f'(z5) and is called derivative of f

a zy.
Put z= z; + h, (complex number) then equation (1) becomes
z-7 h
In terms of ‘&-&’ notation limit in equation (1) exists iff

~+€e>0, 3 8>0,5 f(zl_—;o(zo)—f'(zo) <e wheneverO<| Z—Zo|<8.
If fis differentiable at each point of G then f is differentiable on G.
Notice that if f is differentisble on G, f'(z) defines a function

f:"GoC.

If f’ continuous then we say that f is continuously differentiable. If
f' is differentiable, then f is twice differentiable continuing, a

different function > each successive derivative is differentiable is
cdled infinitely differentiable.

Proposition: If f:G— C is differentiable at z;eG then f is
continuous at z, (2012)
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Proof : Given f:G — C isdifferentiableat z;G.
o (2T (z) _

f’ exists.
o (%)

lim | f(2)-f(z)|= lim | 1(2)- (=) Jz-2z]

279 >z | z- zo|
= £(2).0=0

lim f(z)="f(2)
z-79

. fiscontinuousat z,.

Theorem : If f and g are differentiable at z;eG then
f+g, f.g, f/g, (g=0) arealso differentiableat z,G.

The Increment Theorem: Let f:G—>C be a complex valued
function zpeG and r>0, 3 B(z, r)c=G. Thenf is differentiable
at zg iff 3 a complex number o and a function
n: B(0;s) —» C(o,s,r) such that + he B(0;9),
f(z+h)=f(z)+ha+hn(h)and r1i_r>n0n(h):O.
Proof : Let fisdifferentiable a point z,.

f(z+h)- (%)

(Let) put n(h)z h -
Sothat, f(zg+h)="f(z)+ha+hn(h)
Let f'(z)=a *)

fisdifferentiable at z,.
f(z+h)-f(z)

amyn(h)= h e
=f'(z2)-a=a-a from (*)
=0

Conversely,

Let r!ino”() 0 and (**)
f(z+h)=1f(z)+ho+hn(h)
0= 1) _,

Taking lim on both sides.

Nn—oo
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. f —h)-f )
i L= L G| i
[f(zmh)— 2

n

lim
h—0

f )}zowo from (**)

dw

f(2)= "—C-o>C
(=) az 5

f is differentiable at point zy and f'(z))=o.

Composite Function : Let GeC and QeC be open sets. Let
f:G—>C and g:Q— C be functions > f(G)cQ. Then for each

ZeG, the association go f defined by [g-f](z)=g[f(z)] isa
function called of composite function.

Note: Ingeneral f og=go f

Chain Rule:
Theorem: Let GeC, QeC be open sets and let f and g be

differentiable on G and Q (respectively). Suppose f(G)cQ then
go f isdifferentiable on G and

(gof)(2)=9g[f(2)].f'(z) ~ zeG

Proof : Fix apoint zeG, choose r >0 5 B(zr)cG.
Let 0-heC and | h|<r(z=h)

Given that f isdifferentiable on G.
fisdifferentiableat apoint ZeG.
By increment theorem,
f(z+h)—f(z)=hf'(z)+hn(h) where n(h) is continuous function

and limn(h)=0
h—>0n( )

Put K=f(z+h)-f(z), where K=hf'(z)+hn(h)
Also gisdifferentiable at f (z)eQ
.". by increment them,
o[ f(z+h)]=9(f(2)+K) =g f(2)]+K g[ T (2)]+K v (K)

where y(K) is continuous function and I(Iim y(K)=0.
-0

Sog[f(z+h)]=g[f (z)]+[hf'(z)+hn(h)].[g'[f (z)]+\y(K)]
~a[ f (2] +h'(2).o[ F(2)]+hn(h).o[ f (2]

+ht"(2).y(K)+hn(h).y(K)
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=g[f(z ]+hg[f z)]f'(z)+h3(h)
Where, 5(h)=n(h)g'[ f(2)]+ f'(2)w(K)+n(h)w(K)

T.PT. lim S(h) =0.
h—0

" nm(hy>0ash-0

Ash—0, K=f(z+h)-f(z)>0
. y(K)>0ash—-0

Hence, lim 8(h)=0

n—oo
". by increment theorem,
(gof) isdifferentiableat ze G

" Z was arbitrary .

) g o f is differentiable on G and
(gof)(2)=g[f(2)]f'(2) »2zeG

Let z_x+|yeG and f.G—)(C be defined by, f(z)=u(z)+iv(z),
where u and v are real valued function

OR
f(xy)=u(xy)+iv(xy).

Definition : If lim ”(”h'y}z‘”(x’y) exists then it is called
h—0

partial derivative of u w.r.t x as the point (x,y) and is denoted by

a—)l:(x, y) Or uy (X, y).

Theorem : Let f(z)=> a,z" have the radius of convergence
n=0

R> 0 then

1)  Thefunction fisinfinitely differentiable on B(0;r) and

1M (2)= ¥ n(n-1)(n-2)..(n—k+1)a,z"* for | z|<R and v k>1.
n=k
£ (™ (0)

2) 1f n>0 then a,= o

Proof 1) For | z| <R, we will write f(z)= ) a,z"=5,(2)+R,(2)
n=0

where S, (z Zanz and R,(z Z ax 2¢

n=0 K=n+1
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Put g(z Znanl“_llmsn()

N—>o0
Fix apoint z; in B(0; R)

(Choose r>0, 5 |z |<r<Rand|z|<r<R (z#29)
We will provethat f'(z)=9(z)

Let >0 bearbitary > B(z;5)<B(0,r)

Let ze B(z,8) then

fA-1) o, S@+R@-[S(2)R@)]
z-7, -4
_S()-%(%) : Rn(2)-Ru(2)
(@S
Taking modulus on both the sides.
.| f(z)-f -
|0 g < S g ) ) 5ot
+ Rn(z)_Rn(ZO)‘ (1)
-7
Let £>0, begiven
Rn(2)-Ra (%) 1 K
Now, — _
ow — — Kzr,:+1aK A )
__ 1 5 _ K-1 K-2 K-2 , K-1
“ K§+la|<(z zo)[z +29Z" T+ +22Z) T+ 7 J
Ra(2)-Rn (2 K1, K2 K2, K-1
‘ — KZml|a |‘ +o.+22Z) C+Z ‘
Z | ak |‘ KL KLy .+rK_1‘ = i |ag |. KK
K=n+1 K=n+1

o0
".* The derived series Y na, 2" isconvergent at z=r.
n=1

o0
". The power series Y | ay |. K r'~! convergesfor r <R.
K=1
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". For the above >0, 3 an integer N; >

> Jac|.K.r"F<gf s n=Ng. (by Cauchy criteria)
K=n+1

<E wnxN )

Thus,
3

Ri(2)-Ra(20)
-7

z

" lim §,(20)=9(%)

N—o0

For the above ¢ >0, 3 aninteger N, sit.

Sh(20)-9(20) < % (3)

Choose N =max {N, N,}. for n>N

For thisn, we can find 6 >0 st.

‘ $(2)-Sh(20)
z-7

-Si(20)| <5 4

whenever 0<| z—zy[<35.

From equation (1), (2), (3), (4) we get

‘M_g(zo) BN
z-7 3 3 3
=g whenever 0<| z—zy<3|

=  fisdifferentidbleat z, € B(0,R)
zisarbitary.
fisdifferentiableon B(0; R)
A repeated application of this argument shows that the heigher

derivatives 1, 7.... £(X)_ exists, so that

1K) (2)= ¥ n(n-1)..(n-K+1)a, 27K exists for |z|<R and

M8

n=K

A~ K2>1.
= fisinfinitely differentiableon B(0; R).

2) Since
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0 |

=Kla + S —
K=Zr1:+l (n_K)!

an PALILN

Put z=0
1K) (0)=K1ag +0

1()(0)

Y

Replace K by n
f(”)(o)
ol
Corollary : If the power series )’ aj Z" has radius of convergence
n=0
R>0, then f(z)=Xa,z" isanalyticon B(0; R).

Theorem : If G is an open connected set and f:G—>C is
differentiablewith f'(z)=0 ~ ze G, then f is constant.

Proof : Fix apoint zye G andlet wy = f (z).
Let AZ{ZEG; f(z):wo}
TPT. A=G.

[i.e. by showing A is both open and closed and A= ]
T.P.T. Aisclosed.

Let zeG and {z,} beasequencein A> lim z,=z2

n—oo
f (z,)=wp, for each neN
f isdifferentiable on G (given)

f is continuous on G.

f(z)= f[ lim zn}: lim f(z,)=wp
n—oo Nn—oo
= ze A
A contain its limit point.
=  Alisclosed.
Now, T.P.T. A is open.
Fix ae A, since G is open.

3r>0 > B(ar)cG
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Let zeB(a;r) and set g(t)= f[tz+(1-t)a], 0<t<1

g(t)—g(s) f[tz+(1—t)a]+ f [SZ +(1—S) a] y (t—S) z+(S—t)a
t-s (t-S)z+(S-t)a (t-9)

. Iim[ g(tzig(s) }: Iim{ f[tz+(1-t)a]- f[sz+(1-S)a] «(2-a)

t—>S (t—S)z+(S-t)a

g's= f'[sz+(1-9)a]x(z-a)
g'(s)=0, 0<s<1("." f'(2)=0, »+ zeG)
= g(s)=constant, 0<S<1
=  g(1)=constant = g(0)

f(z)=9(1)=constant=g(0) = f (a)=wy
= ze A

zeB(a;R)=>ze A
= B(a;r)cA
= Alisopenand Az (.- zeA)
Hence, by the connectedness of G

A=G
~. fisconstant on G.

4.3 SUMMARY

1) If f:G—C is differentiable at a point zy in G, then fis
continuous at z.

2)The Increment Theorem : Let f:G— C be a complex valued
function zyeG and r >0, 3 B(z, r)c=G. Thenf is differentiable
a zy iff 3 a complex number o and a function
n:B(0;s) > C(0,S,;r) > ~ heB(0;S)
f(z+h)="f(z)+ha+hn(h)and r1i_r>n0n(h):0.

3) Chain Rule: Let GeC, QeC be open sets and let f and g be
differentiable on G and Q (respectively). Suppose f(G)cQ then
go f is differentiable on G and

(9of)(2)=9[f(2)].f'(2) ~ zeG
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4) 1t lim ”(“h’yr)l‘“(x’y) exists then it is caled partial
—0

derivative of u w.rt x as the point (x,y) and is denoted by

8_::()(’ y) Of Uy (X,y).

5) Let f( Z a, z" has theradius of convergence R> 0 then
n=0
i) Thefunction fisinfinitely differentiable on B(0;r) and

10(2)= 3 n(n-1)(n-2)..(n—k+1)a,2"* for | z| <R and + K >1.
n=k

f(“)(o)

n!
6) If G isan open connected set and f :G — C is differentiable with
f'(z)=0 ~zeG, then f is constant.

i) If n>0 then G, =

4.4. UNIT END EXERCISES:

1) Check for the differentiability of the power series

f(2)=Tios

Zn

Solution: We know  that the series X7, converges for all
n:

complex numbers.

f' (2 exist for al zeC and

ot o L
f' (=X =

Zn Aam-D ain
f'(2)=f(x)for al zeC.

Z—sz(z)

2) If the series 3% ja,(z—a)"has the radius of convergence
R>0, then show that f(2)=3Xr,a,(z—a)" is anaytic in
B(a;R).

(Hint : Use the fact that f is infinitely differentiable on
BaR) anda, =%f”(a)Vn21.)
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COMPLEX LOGARITHM

Unit Structure:

5.0. Objectives

5.1. Introduction

5.2. Logarithmic function

5.3. Branches of Logarithmic Function
5.4. Properties of Logarithmic Function
5.5 Trigonometric and hyperbolic functions
5.6. Summary

5.7. Unit End Exercises

5.0. OBJECTIVES:

We ae dready familiar with a logarithm function,
defined for positive real x. Inthe same manner one can define a
complex logarithm Log (z) of acomplex number zeC. We
shall study the branchesof thiscomplex logarithm function. The
complex logarithm Log (2) posseses some branches, which we
shall try toinvestigate. We shall also study the properties of a
complex logarithm in detail.

5.1. INTRODUCTION:

With the help of order completeness property of, we
proved in our earlier course that if y>0 and n>2 is any

integer, then there is aunique positive number x such that

x"=y. x is caled n" root of y, since there is a unique positive
1

number x satisfying this, defining yﬁis justified. We proved that,
for a>1land xeR, a*a¥=a""Y vx,yeRand (ax)yzaxy.

f :R —(0,0)defined by f(x)=a* is a bijective function and
it's inverse is caled as the logarithm of yto the base a,
denoted by log,(y). We want to discuss these concepts once
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again but we consider the logarithm of complex numbers
with base e, hence we try to identify the nature of inverse
of the exponential function of complex variable z, namely

f(z2)=e”* onsome domain DcC. Here we shal start defining
log (2)for zeC.

5.2 LOGARITHMIC FUNCTION :

Definition : For z=0, the logarithmic function of a complex
variable Z denoted by log z, is defined as

logz=In| z|+i(arg z+2n ) where 6=argze[-n,n] or [0, 2x]

and neZ.
Here, log z isasingle valued function.

5.3 BRANCHES OF LOGARITHMIC FUNCTION :

Definition : If 0¢G isan open connectedsetin C and f:G—C is

a continuous function such thate (2) z, ~ zeG, thenf is branch
of logarithm.

Theorem: A branch of the logarithm is analytic and its derivative is
1

Z
Proof: Let f(z)=logz=In|z|+iagz be a branch of logarithm,

where z=0, arg(z)=[-x,7].
Let f(z)=u(z)+iv(z) and z=x+iy

u+iv:|n\/x2+y2+itan_1(%) where |Z|=\/X2+y2 and
—tan (Y
0=tan (4)
) u(x y)=Inyx?+y? and v:tan_l(%)

u(x, y):ln\/x2+y2

. au 2X X ou y
. —(XY)= = and X, Y)=—ee
ax( ) 2\/x2+y2 \/x2+y2 ay( ) 2

X +y2
v:tan_l(%)




ov —-X

y  xP+y?

Therefore C-R equations are satisfied
0

eI f (z):%(log z)

ou . ov X . -y z z 1

Theorem : Let 0¢G be an open connected set in C and suppose
that f:G— C is analytic. Then f is a branch of logarithm iff

f'(z)==, v2cG and e'(® =a for atleast one acG.
z

Proof : Suppose f isabranch of alogarithm.

ef@D_7; o zec (D)
Differentiate w.r.t. toz on both sides.

. e'@ f(z2)=1

f’(z):— v z2eG
Clearly, from equation (1), ef (@) _a for atleast one acG.
Conversely,
Suppose f’(z):% v zeG and e' (@ — 4 for atleast one acG.
T.P.T.f isabranch of the logarithm.
Define, g(z)=z.¢ '(? )
*." g isanalytic.
.. g isdifferentiable.

L) -ze (9] 10, O Mo 1)]
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= g(z) = congtant = K (Say) (3)
Tofind K, put z=a inequation (2) and (3)
g(a):a.e_f(a) and g(a)=K.

~ Keaef@_ 1 {...e f(a)zi}
a a

=1

-

Put K =1 in equation (3), we get g(z)=1
Put g(z)=1in equation (2), we get 1-z.¢ (2

ef(z) =z v 2eG
= f isbranch of logarithm (by definition)

A single valued function (is branch of logarithm)

logz=In| z|+iagz (z#0and O=argze[-n,n]) is continuous
function in the region or a Domain
D=C |{z=x+iyeC; y=0, x<0}

logz=In|z|+iargz (z+#0and 6=argze[-m, x])

.". logz isnot defined at the point z=0.

Theorem : Prove that log z is not continuous on the negative real
axis.

Proof : Let z;=xy <0 beany point on the negative real axis.
For z=x+iy with x<0, y<0,
wehave, limargz=limarg(x+iy)=7 =n
-7, X—>Xg
y>0
For z=x+iy with x<0 and y<0,
We have limargz=limarg(x+iy) =-r
-7, X=Xy
y<0
Two limits obtained are different.
i.e. arg z faillsto possess alimit every point of the negative real axis.

. log z is not continuous along the negative real axis.

Theorem: Let 0¢ G be an open connected set in C. If a branch of
the logarithm f:— C is related by g(z)=f(z)+2=in [for some

integer ne Z] with g:G — C then g isbranch of logarithm.(2008)

Proof : Giventhat f isabranch of the logarithm.

ef(z):Z v zeG
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Given, g(z)=e(z)+2rin (forsomeintneZ)
eg(z) :ef(z)+2nin :ef(z).eznin
9Dz & zeG {-_-ef(Z) —J and ezmnzl}

- g isabranch of logarithm.

5.4 PROPERTIES OF LOGARITHM FUNCTION :

Theorem:
1) log(z.z)=logz+logz,+2nin, where n=1, 0or -1 by
definition.

Proof : logz=In| z|+iargz where z#0 and 6 =arg ze [, n].
o log(z.2)=In(z.2)+iag(z.2)
=In| z |+In| z, |+i[arg z +arg z, + 2min]

(" ag(z.z)=agz+agz+2rnin)
=(In|z |+iargz)+(In| z; |+iarg z)+ 2rin =log z +log z, + 2rin

2) Iog(ij: log z —log z, + 2nin
2

3) Iog(%j =-log z

Proof:log(iJ:In 1 +iarg(iJ
z z z

. - . 1 -
=—In| z|+iargz ( arg(;jzargzj

=—In| z|-iagz=—[In|z|+iargz] =-log z

Evaluate:-
1) logi
B z=x+iy=i = x=0and y=1
log z=In| z|+iarg| z| (by definition)
. . . . . T .
. logi=In|i|+iarg|i| =In1+|E=|E
2) log(1-i)

z=1-i = x=1 and y=-1,

| z|=yx%+y? =V1+1 =42
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log(1-i)=In(1-i)+i arg|1-i |=In(V'2 ) +i tan (- ¥/
= In(ﬁ)—i tan_l(l) :In(ﬁ)—i

T
4
3) log(1+i)

z=1+i = x=1Ly=1 = |z|:\/§

5 |og(1+i)=|n|1+i|+iarg|1+i|:|n(ﬁ)+itm_l(%)
=|n(\/7)+i tan‘l(l) :In(\/?)ﬂ %

4) In unit disk B(0,1)={zeC:|z|<1} prove that power series

= " 1
Z—:Iog ——— | where log
o N 1-z

1Z.
oozn

Solution : Let f(z)= ZT (1)
n=1

1 1 J is a branch of the logarithm
—-Z

and g(z):log(lfzj 2

= g isdifferentiable.

o) %11_ ZJ e (1)] ) <(11—_ >)

1
’ — 3
9(z)=75 3)
00 n
Given, the power series f(z)= > -~
n
n=1
Here, a, =~ __1
' n = n’ Pl = n+1
)f{ 1+
R= lim 4 |_ lim ix(nﬂ)‘: lim ( %\)
now| 8py1 | noeo| N N—>c0 n

o {2

=  f isanalyticin opendisk B(0,1) (using corollary)
= f isdifferentiablein B(0;1)

o0

(-3 M

n=1 n

1 ©

o0
Zn—l _ N
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f'(z)= (4)

( i z"isaG.S.andcgsto| z|<1, .7 i Gh=_1t ]
n=0 n=0 1-z

From equation (3) and (4), we get
(2-g(2)=0 = [f(2)-9(2)] =0
=  f(z)-g(z) = constant =K (5)
Tofindk, put z=0 in equation (1), (2) and (3)
f(0)=0, g(0)=0
f(0)-g(0)=K
= K=0
Put K =0 in equation (3), we get
f(z)-g(z)=0
f(2)=9(2)
iz—::log(ll j forall zeB(0;1)

n=1 —Z

Definition : Given 0¢C, the principal value of Z° (i.e. the b"
power of Z) isdefined by 22 =€®1%92 pec

Here, z° isanalytic. (*." logz isanalytic)
Consider 22 =eP-1992  pe
Here, Z° is multivalued function.

arg z (and hence log z) isamultiple valued function.

Case | : If b isan integer then 2°=€°!%97 js a single valued
function.

Proof : Let b=K eZ.
b _ b.logz _ ek[ln\ z|+i (argz+2mn) |

z
_ ek[ln\ z|+iargz] d(+2nKn)
=ek|OgZ(i) (...ei(Zn Kn) -1 neZ)
:eblogz

Z° = e°-1997 js a single valued function.

Casell : If b="F q (real rational) then z° has produces exactly q

values.
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Caselll : If bisan irrational number or imaginary number then z°

isinfinite valued function.

Example 1 : Find the principal value of i'.

Solution : 22 =192 pecC (by definition)
; /2 .

i _ o logi :ei[ln\ i |+i argi | :eI[OH / }:elz.%

i :e_%

Example 2 : Find all the values of i~ 2.

Solution : 2 =€!%92  pecC (by definition)

-2 {on (’Hznnﬂ
(=21 _ o 2i.logi :e—2|[ln\|\+|(arg|+2nn)]:e 2

AE)) e

]
m(4n+1)

=¢"

Here, the principal valueof i~2 i

s e" .(All values are not found.)

Example 3 : Find the value of 2.

Solution :i2 =2!09 = 2['”“\”(“9”2“)]=e2['”1+‘ (argi+2nn)]

[O+1/} ghmni _ (...e4nni -1 neZ)

=cosn+isSnn=-1+0
i2-_1

Example4: Find all thevalues of (1+i)**1).

5.5 TRIGNOMETRIC AND HYPERBOLIC FUNCTIONS:

Trigonometric Function : The Complex trigonometric functions

sin and cos are defined by

iz iz ~Z_ oz
snz=2""%_  and cosz=S € (2008)

2! 2
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iz —iz
- e —e 2
S'm'larly, tan22+, SeCZZﬁ
i(e'z+e_'z) e‘+e
oi |(e +e"z)
cosec 2= iz 7 cot z= iz iz
e —e e —e

Note:
1) sin®z+cos’z=1

2) %(sinz):cosz and %(cosz):—sinz

3) sin(-z)=-sinz and cos(-z)=cosz
4) sin(z+w)=sinz.cosw+cosz.sinw

5) cos(z+W)=c0sz.CoOSW—Sinz.sinw

6) sn2z=2sinz.cosz

Hyper bolic Function : The complex hyperbolic functions sin h and
cosh are defined by

z -z Z, —Z
sinhz:l and Cosh:i
2 2
Z — Z VA — 7
Similarly, tan hz:i, cothz=2 1%
ef+e ¢ ef—e *
sechz=L, cosec hz = 2
ef+e ? ef-e ¢
Note:
1) coszz sin’z=1
2) (smhz) coshz
3 coshz)=sinhz
) dz( )

4) sinh(z+w)=sinhz.coshw+coshw.sinhz

5) cosh(z+w)=coshz.coshw+sinhw.sinhz

Relation between Trigonometric and Hyperbolic Function :
1) sniz=isinhz

Pr oof

=isinhz



2) cosiz=coshz

Proof :cos(z)= € = > =coshz

3) taniz=itanhz
4) coshiz=cosz
5) sinhiz=isinz
6) tanhiz=itanz

Periodic Function : A function f:G — C issaid to be periodic if 3
anon-zero complex number T > f(z+T)=1f(z) + zeG.
Here T isaperiod of the function n.

Periodicity of e*:
Let T bethe period of e*

o e?T =e? v zeC.
TofindT, put z=0

o _e0 _q_g2rin
Let T=a+ip

eoc+i[3262ﬂ:in

e* —1 and ei[?) :e211:in
= a=0and B=2rn

T=a+ip=0+2inn isaperiod of e*.

OR
T =1logl=0 (isnot possible by definition)
Let T=a+ip
eOL+i]3 =1

e*.cosp=1and sinp=0
= e*=0 and B=2m = T=a+iB=0+2inn=2inx

2inn isaperiod of e*

zZ+2nin _ . Z

o€ e

Periodicity of sinz :
Let T bethe period of sinz.
sin(z+T)=sinz

Put z=0
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sin(0+T)=sin0
snT=0
T=nn,where n=0,+1,+2,...

uJ

sin(z+2n):sin Z.C0S2T+C0SZ.Sn Zn:(—l)nsin v4

=sinzif n iseven.
. Theperiod of sinz is 2nt where neZ.

Periodicity of cosz :
Let T bethe period of cosz.

cos(z+T)=cosz
Put z=0

cos(0+T)=cos0
= cosT =1

= T =27nn v NeZ
. The period of cosz is 2nr, where neZ.

5.6. SUMMARY

1) For z=0, the logarithmic function of a complex variable z
denoted by logz, is defined as logz=In|z|+i(argz+2nn)

where 6 =argze[-n,n] or [0,2r] and neZ.

2) If 0¢G is an open connected set in C and f:G—>C is a

continuous function > ef(z):z, ~w zeG, then f is abranch of
the logarithm.

3) Given 0¢c, the principal value of z° (i.e. the b™ power of 2) is
defined by

Zb :eb.logz, beC

4) The Hyperbolic functions sinh and cosh are defined by

V4 —Z 7 — 7
. e“—-e e“+e
sinhz= and cosh=——F—.

5.7.UNIT END EXERCISES:

1) Suppose that f:G— C is a branch of the logarithm and nis
any integer . Provethat z" =exp(nf (z))for al zeG.
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Solution: Since f:G — C is a branch of the logarithm (GcC

isan open connected set .)
s z=exp(f(2)for dl zeG.

s 2= exp(f (2).exp(f (2)) =exp(f(2)+ f (2)) =exp(2f (2)) .
- 2" =exp(nf (2)) for al zeG. (By induction on power of z.

2) Describe the branches of an analytic function f(z) =z .
Solution: ... f(2) =+/z = exp(%log(z)j ,since

1 2 1 1
(exp(ilog(z)j] =exp(§Iog(z)+§Iog(z)j:exp(log(z)):z.
-.This defines =z and it is analytic, where the log(z)is

analytic.

-. Different branches of log(z)yield different branches of +/z.
log(z) has infinitely many different branches log(z) + 2rki for any

integer kbut there are only two different branches of +/z.
Since exp(%log(z)j:expB(Iogz+27rki)} whenever k is an even

integer .

3) Find all values of the complex number i'.

Solution; .-.i' = ¢''09() _ glogli)+iarg(i) _ g-arg(i)

Here we know that

arg(i) = —3—ﬂ£5—ﬂ7—ﬂ = Z+2n7r:neZ .
2 2 2 2 2

3 7 5
Lit={.e2e2e 2 1.

4)Find all values of (1+i)"  (Hint: (1+i)"" = *'oat)y,

5 Let f:G»C and g:G—>C be branches of z* and 2°

IC’andiis a

g

respectively. Show that fg is a branch of z**

branch of z2P.
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Solution: .. f(2)=2% and g(z)=2° for al zeG.

- fg:G—->C defined by (f9)(2)="f(2).9(2)= 2220 = 220
(fg)(z):za+b for al zeG .

. 2" has a branch fgon G.

Similarly, é is a branch of 2.

6) Let z,2,...,z, be complex numbers such that Re(z)>0and
Re(zz,..z) >0, for 1<k<n. Then show that

log(z2,...z,) =109(z) +...+109(z,) -

Solution : Let f(z)=log(z) be the principle branch of the
logarithm function .. ef(? =¢%9@ = 7.

Take a=2z..z,. Since the arguments of each z and that of
22,z lies between —2 to % for al 1<k<n. Therefore

l0g(z2,...2) =109|7...7 | +i Arg(z2,...%) and
log(z) =log|z|+iArg(z), for 1<k<n.

o Arg(zz,..z,) = Arg(z) + Arg(z,) +...+ Arg(z,) + 2kz . where k is
any integer .

- f(a) =log|z...z,|+i Arg(z2,...2,)

= % log|z | +i[ Arg(z) + Arg(z,) +...+ Arg(z,) + 2kr |
k=1

= YR.a| log|z | +iArg(z) |+ 2k

= Yk1l09(z) + 2Kz

. o @-XR_jlon(a)=e"1

= f(a)-Xkalog(z) =0

- f(a) =2k41100(7)

- log(zz,...2,) =109(z) +...+109(z,) -

7) Give the  principal branch of +i1-z ( Hint
godV-7) =%Iog(1— 7))



98

8) Prove that there is no branch of the logarithm defined on
G=C-0.

(Hint: Assume the existence of a continuous function L(2)
defined on aconnected open set G of the complex plane such that
L(2) is a logarithm of z for each z in G, compare L(z) with the
Principal branch of log(z). As o goes from O to 2z, since

L(€®)=ia and L being continuous function of «
L(ez”i ) =27i=L(1) =0, a contradiction.)

9) Evaluatei' by taking the logarithm in its principal branch.
10) Provethat |sin z|2 =sin’x+sinh’y

Solution:

sinZ’ =|sin(x+iy)|2 =|sin xcosiy + cosxsiniy|® =|sin xcosh y +i cosxsinh y[*

=(sinxcosh y+icosxsinh y)(sin xcosh y +i cosxsinh y)

= (sinxcosh y+icosxsinh y)(sin xcosh y—i cosxsinh y)

=sin® xcosh? y + cos” xsinh® y = sin” x(1+sinh? y) + (1-sin® X)sinh® y
=sin® x+sin® xsinh? y+sinh® y—sinh? ysin® x=sin® x+sinh’ y

11) Find the principal value of i~2'
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ANALYTIC FUNCTIONS

Unit Structure:

6.0. Objectives

6.1. Introduction

6.2. Analytic Functions

6.3. Cauchy Riemann equations
6.4. Harmonic Functions

6.5. The Functions e?,sin(z),cos(z) etc.

6.6. Summary
6.7. Unit End Exercises

6.0. OBJECTIVES:

Inthis unit we shall characterise the differentiability of a
complex vaued function in terms of it's power series
expansion, in this case the function is said to be an analytic
function about some point zeC. An analytic function
f () satisfies some properties, among these one important
property is to satisfy Cauchy-Riemann equations . Further we
shall aso see the term by term differentiation of apower series
function, provided that such term by term differentiation is
possible. We shall also study the inverse function theorem then
we shall define a class of functions called as harmonic
functions .We shall also discuss the differentiability of a

complex valued functions like e*,sin(z),cos(z) €tc.

6.1.INTRODUCTION :

Given afunction of the complex variablez we wish to
examine iff is adifferentiable function of z or not. As we
saw in the case real valued functions, we look for existence

f(z+h)-f(2)
n

of the limit lim which should exist regardiess

n—0
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of the manner in which h approaches 0 through complex values.
An immediate consequence is that the partial derivatives of f
, considered as a function of two red variables x and
y(f(2)= f(x+iy)=f(x,y) must satisfy the Cauchy Riemann
equations. Let us define the derivative of a function of
complex variablezat the point z=z,eC.

Let z=x+iyeG and f:G— C be defined by, f(z)=u(z)+iv(z),
where u and v arereal valued function

OR

f(xy)=u(xy)+iv(xy).

Definition : If lim u(x+h,y)-u(xy)
h—0 h
partial derivative of u w.r.t x as the point (x,y) and is denoted by

0
a—)l:(x, y) Or Uy (X, y).

exists then it is cdled

6.2 ANALYTIC FUNCTIONS:

A function f is said to be analytic (or holomorphic or regular)
at apoint z=z, if fis differentiable at every point of some nbd.

of z.

Definition : A function f:G— C is analytic if f is continuous
differentiable on G.

A function f is analytic on a closed set Sif f is differentiable at every
point of some open set containing S.

Theorem: Let f(z)= > a,z" have the radius of converges R>0
n=0

then

1)  Thefunctionfisinfinitely differentiable on B(0;r) and

f*(2)=> n(n-1.....,n-K+Da,z" " for | z|<R and +~ K >1.
K

2)  1fn>0 then a - fn(lo)



101

Pr oof ; 1) For | z|<R, we  will write

f(2)=3 anz"=S,(2)+ Ro(2) Wwhere Sn(z):ioanz” and

R(2)= > a2

K=n+1

Put g(z):nij:lnan 71 :rlligos,g(z)

Fix apoint z in B(O;R)

(Choose r>0, 5 | zp|<r<Rand|z|<r<R (z#79)
We will provethat f'(z5)=9(z)

Let 5>0 bearbitrary > B(zy;8)< B(0,r)
Let ze B(Z,5) then

f(2)-f(z) _

Let ¢>0, begiven

||( ) ||( 0) 1 K K
Now, = E ]
W - 1aK(Z o) )
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"." The derived series ) na, 2" isconvergent at z=r .
n=1

(e8]
.". The power series > | ax |.K r™~! converges for r <R.
K=1

For the above e>0, 3 an integer N; >

IREX |.K.rK‘1<% ~»n=N;. (" by Cauchy criteria)
K=n+1

Thus, <L ~ n>Ng 2

3

Ra(2)-Ru(2)
)

z

Wlim S (z)=9(2)
N—o0
For the above ¢ >0, 3 aninteger N, Sit.

Sh(20)-9(%)| < % (3)

Choose N =max {N;,N,}

For thisn, wecan find 6 >0 s.t.

S$i(2)-S(n) o
‘ — Sh(20)

<z @

whenever 0<| z—zy[<35.

From equation (1), (2), (3), (4) we get

‘ f(2)-f(%) «E L2418 _¢ whenever 0<|z-7)<3]
7~ 7 33 3

= fisdifferentiableat z5 e B(.; R)

-9(2)

Zisarbitrary.
f isdifferentiable on B(0; R)

A repeated application of this argument shows that the heigher
derivatives £/, f",..., f()... exists, so that

f(K)(z): > n(n-1)..(n-K+l)a, 2" K exists for |z|<R and

= fisinfinitely differentiable on B(0; R).
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2) Since
() (2)= 3 n(n-1)..(n-K+D)a, 2K = Y — Mg K
= an Z = Z (n—K)I a, z
n=K n=K '
= S n! n-K
_K!ak+K=Zn:+1(n‘K)! i
Put z=0
" 1K) (0)=K1ag +0
f(K)(o)
ReplaceK by n
f(n)(o)
- n!

Corollary : If the power series )’ a, z" has radius of cgs. R>0,
n=0
then f(z)=> a,z" isanalyticon B(0;R).

Theorem : If G is an open connected set and f:G—>C is
differentiablewith f'(z)=0 + ze G, then f is constant.

Proof : Fix apoint zye G andlet wy = f (7).
Let A={zeG; f(z)=wp|
TPT. A=G.

[i.e. by showing A isboth open and closed and A= ]
T.P.T. Aisclosed.

Let zeG and {z,} beasequencein A> lim z,=z2

Nn—oo
f(zy)=wp, foreach neN
f isdifferentiable on G (given)
f is continuous on G.
f(z)=f [ lim zn}: lim f(z,)=wp
Nn—oo nN—oo
= ze A
A contain its limit point.
=  Alisclosed.
Now, T.P.T. A is open.
Fix ae A, since G is open.
3r>0 > B(ar)cG
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Let zeB(a;r) and set g(t)= f[tz+(1-t)a], O0<t<1

. g(t)-g(s) _ fltz+(1-t)a]+ f[S,+(1-S)a] ) (t-S)z+(S-t)a
t-s (t-S)z+(S-t)a (t-9)

. Iim[ 9(t)-9(S) }: Iim{ f[tz+(1-t)a]- f[ sz+(1-S)a|

t—>S t-S t>S (t-S)z+(S-t)a

x(z—a)

g'S=f'[z+(1-S)a]x(z-a)
g'(S)=0, 0<S<1 (" f'(2)=0, ~ zeG)
= g(s)=constant, 0<S<1
=  g(1)=constant=g(0)
f(z)=9g(1)=constant=g(0) = f (a)=wy
= ze A
zeB(a;R)=>ze A
= zeb(gr)c A
=  Alisopen.
Hence, by the connectedness of G.
A=G
e fisconstant on G.

6.3 CAUCHY RIEMANN EQUATIONS (C-R Eq.):

Theorem : Let u and v be real valued function defined on the domain

G < C and suppose that u and v have continuous partial derivatives
then f:G — Cdefined by f(z)=u(z)+iv(z) isanalyticiff uandv
satisfy Cauchy Riemann equation. i.e. u_ v and v

ox oy oy oX
(2006, 2007, 2008, 2009)

Proof : Let z=x+iyeG and Az=Ax+iAy.
Given, f:G—->C is defined by f( )=u(z)+iv(z) OR
f(xy)=u(xy)+iv(xy)

fisanalytic on G.

fisdifferentiableat zeG.

f(z+Az)-f(2)
AZ

as Az— 0inany manner in C.

— f'(z) (aunique limit)
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Now,
f(z+42)-f(2) _ [Uu(x+AX, y+Ay)+iv(x+Ax y+Ay) [-[u(% y)+iv(x Y)]
Az AX+iAy
_ U(x+Ax, y+4y)-u(x,y) +{ V(X+AX. y+Ay)-V(X, Y) }
AX+I1Ay AX+iAy

Suppose z— 0, along the real axis (x-axis)
Az=Ax and Ay=0
f(z+Az)-f(2)

{ u(x+Ax, y)—u(x,y)

lim = lim

Az—0 Az Ax—0 AX
H{v(x+AX y)-v(x,y)}

’ AX

F(2) =S (% )+ S ()

..................... (1

Suppose Az — 0, along the imaginary axis (y-axis).
) Az=iAy and Ax=0

f(z+az)-1(2) _ im {u(x,y+Ay)—u(x, y)

i
AZITO AZ Ay—0 Ay
N i{v(x, y+Ay)-Vv(X, y)}
IAy
ot v ou), v
oy oy oy ) oy

. Ou ov
5 (% y)+ Y (% y)
.................... (1)
From equation (11) and (I11)
ou . ov . ou oV

+1i =—i +
ox o oy oy
Equating Real and imaginary part on both sides.

. ou ov ou ov
e =— and —=

ox oy oy X
which are Cauchy Riemann equations.
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Conversdly,
Let zeG

" Gisopen= 3 r>0,5 B(zr)cG
Let Az=Ax+iAye B(0;r).

Given, u and v have continuous partial derivatives.

. ou ou ox ov .
TR, are continuous on G.

"ox oy ox oy

.. The expression u(x+Ax, y+Ay)—-u(x,y) can be written as (by
definition of partia derivative.)
U(X+AX, y+Ay)—u(X, y) = AX.Uy (X, y) + Ay uy(X y)+D(Ax Ay)

where, lim 2% g orim 2042
Ax—>Ay—>0  AX+IAy Az—0 Az
U (AV)
Similarly,
V(X+AX, Yy +AY)=V(X Y) = AX Vy (X, ¥) + Ay vy (X, y) +y (A, Ay)
where  lim MZO ................. (V)
AX+iAy—>0 AX+I1Ay
f(z+Az)-f(z)=u(x+Ax, y+Ay)-u(x,y)
HV(X+AX y+Ay)-V(x,Y)] from equation (1)
= AX.Uy + Ay Uy +D(AX, Ay)+i[Ax Vy + Ay vy +y(AX, Ay)]
from equation (1V) and (V)
=Ax(ux+ivx)+Ay(uy+ivy)+®(Ax,Ay)+i\y(Ax,Ay)
By Cauchy-Riemann equations
v o o
ox oy oy OX
i.e. uy =vy and uy=—vX=i2vX ('.'i2=—1)

f(z+Az)- f(z):Ax(uX+ivx)+Ay(i2vX+iuX)+®+i\y

= AX(Uy +iVy ) +TAY (ivy + Uy ) + D +iy
= (AX+iAY) (Uy +ivy )+ D +iy

f(z+Az)-f(2) _ Ax+idy (u iy )+ D+iy
Az Az X y Az
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_u +i v + ®+_W {*.' Az= Ax+iAywhere
oX OX  AX+iAy
lim L_'\Vzo}

AX+iAy—0 AX+I1AY

= f isdifferentiable at z and

f(z+Az)-f(z
lim (+ ) ():ff(z):a_u+iﬂ
Az—0 Az oX oX
= f' iscontinuous ('.'a—u and kil are continuous)
oX oX

=  fiscontinuoudy differentiable.
= fisanalytic.

Note: If f(z) isanalytic then it can be differentiated directly

Example:
(1) Provethat the function f(z)=e” isanalyticin C. Also find
its derivative.
Solution : Let f(z)=u(z)+iv(z) and z=x+iy
Giventhat, f(z)=¢’
u+iv=ey =X &Y = e*(cosy+isiny)
Equating real and imaginary parts on both sides.
T.P.T. fisanalytic.
By previous theorem, we see that in order to prove and is analytic
we have to veify that u and v are satisfy Cauchy-Riemann

eguations.
ou ov ou -—ov
and —

e —-= —
ox oy oy oX

Now, *." u=e*cosy and v=e*siny

ou X oV X
——=¢e".cosy, —=e€"sny
OX oy

ou ov ou —-ov
= and =

ox oy oy OX
=  uandv satisfiesthe C-R equation.
=  fisanaytic.

-0, .0
gni@:%:ﬁnh@
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0, 9
and cosiez%:ooshe
f'(z):%ﬂ (;ﬂ =eXcosy+ie’siny =e*(cosy+isiny) =eX. &Y
X X

_eXHY _ oZ

(Or ~ (2 isanalyticit can be differentiated directly i.e. f'(2) =€%)

2) Show that the function f(z)=w=sinz is analytic and also find
dw

o

Solution : Let z=x+iy and u+iv=w

Giventhat w=sinz

U+iv=sin(x+iy) =sinx+ cosiy+cosx.siniy

=sin x.coshy+i cosx.sin hy

Comparing real and imaginary parts

. u=sinx.coshy, v=cosx.sinhy

= uandvarerea vaued function of x and y.
u ov : .
—— =c0sx.coshy, —=-sinx.sinhy
oX oX
and ﬂ=sinhy.sinx, ﬂ=cosx.coshy
oy oy

ou ov ou —ov
and —

X oy oy  ox

Cauchy-Riemann equations are satisfied.

f (z)=sin z isan analytic function.

o _ f'(z):ﬁﬂﬂ =cosx+coshy—isinx.sinhy
0z OX OX

(or (2 is analytic it can be differentiated directly
i.e. f'(2)=sinz)

3) Using the Cauchy- Riemann equations , verify that
x?+y? +2ixy is not analytic.

Solution: . P(x,y)=x*+y? +2ixy
= P, =-2y+2ix, B =2x+2ly= P, #iPF
= P(xy) is analytic.
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4) Using Cauchy-Riemann equations, verify that x?+ y?—2ixy
is not analytic.

Solution : - P(x,y)= X2+ y2 — 2ixy
= B, =2y-2ix,P, =2x-2ly = iB = 2ix+2y
= P, =2y-2ix, B = 2x-2ly =P = 2ix+2y =P, #iR, = P(xy)

IS not analytic.

(5) Give an example of function which is continuous everywhere but
not analytic

Solution: Let f(z)=xy+iy
~u=xy,v=y. Since u and v are polynomials , they are
continuous everywhere.
Ny 0

x Tyt ax
ou  ov ou ov
S—F——FE——

oX oy oy OX
Therefore f(z) is not analytic

Now,

6.4 HARMONIC FUNCTIONS:

If G isan open subset of C, then the function U:G—>R (i.e.
Real valued function of complex variable) is harmonic if, it has
continuous second order partial derivatives and

’u o _ .

——+—>=0 (Thisis called Laplace’ s equation)
2 2

OX oy

eg. u(x y)=€".cosy isharmonic function ?

ou X ou X

——=e¢".cosy —=-¢€"sny

OX oy

62u X azu X

—226 .Cosy —2:—e Cosy

oX oy
2 2

a—g+a—g:excosy—excosy:O

OX oy

. Above function is Harmonic function.
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Proposition : Let f be a anaytic function in a region and
f(z)=u(z)+iv(z). If u and v have continuous second partial

derivatives then u, v are harmonic function.

OR
1) If f:G—>C defined by f(z)=u(z)+iv(z) is anaytic then,
u=Ref and v=Im f are harmonic functions.

Proof : Giventhat f(z)=u(z)+iv(z) isanalytic.
Cauchy Riemann equations are satisfied.

. ou oV
and U v ()
oy OX

Differentiate equation (1) partially w.r.t. x and (I1) w.r.t. y.

62U 3 0%V o%u _ ~o%v
ox2  OXx.oy oy>  ox.0y
o°u o 0%V 0%V

2 T2 " - =0
OX oy ox.0y  OX.oy
v is harmonic function.

Differentiate equation (I) and (ll) partialy w.rt. y and X
respectively.

2 2 2 2
o“u _ oV and o°u :—8 v
ox.0y  oy? ox.0y oy

azv azv azu azu

Consider, >t = - =0
OX oy oX.0y  OX.oy

. v is harmonic function.

Definition : If f:G— C is analytic and f(z)=u(z)+iv(z) then
u=Ref and v=Imf are harmonic conjugate i.e. u and v are

harmonic conjugate then u and v are harmonic function and u, v are
satisfied C — R equations.

Example : If f:G—C is analytic and f(z)=u(z)+iv(z) then

prove that harmonic function u satisfies the partial differential
2
. o“u
uations ———=0
& 0z.0z
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Solution : Given fisanaytic.
Let z=x+iy= z=x—iy.

Here, u=u(x, y) where x= Z*Z and y:%
QU0 )]s Xy Lou 1
oz oz ’ oX 06z oy o6z 2 ox 2 oy

_ljou . ou N B
_2 ox oy i_i2_—1_

ou ]_u auayzlau 1 ou
oz ox 0z ay'aE 2 ox 2 oy

02.02 -

Example: Prove that the function u(x,y)= X2 —3xy? +3x° -3y + 2
is harmonic. Find its harmonic conjugate and corresponding analytic
function f(z)=u(z)+iv(z).

Solution : Given function u(x, y)= X —3xy? +3x° —3y% + 2

a—u:3x2—3y2+6x and a—;=—6xy—6y
X

2 2
a—g:6x+6 and a—2=—6x—6
OX oy

2 2
O O M 6x+6-6x-6=0
oX oy

u is aharmonic function.
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To find v, we use Cauchy Riemann equation.
ou ov ou —ov
and —

X oy oy o

ﬂ=3x2—3y2+6x:ﬂ=3x2—3y2+6x
OX oy

By integrating [ov= j(sx2 _3y2 . 6x) oy

3
v=3x2y—3%+6xy+®(x) =3x2y—y3+6xy+®(x)
1)
where @(x) is an arbitrary function of x. To find &(x), we use
another equation of Cauchy-Riemann.

u_ o

oy OX

C. —6xy-6y=- 4 [3x2y—y3+6xy+®(x)J

x
:{6xy+ 6y+%)((x)} =—6xy—6y—'(x)

&'(x)=0
Integrating, we get &(x) =c, wherecis constant.

v:3x2y—y3+6xy+c
i.e. therequired harmonic conjugate.
. Anaytic function
f(2) =u(x, y)+iv(x,y)
:x3—3xy2+3x2—3y2+2+i(3x2y—y3+6xy+c)
Put x=z and y=0
f(2)=2+3z+2+cC

(Alternate method to find harmonic conjugate using Milne
Thompson method)

Given function u(x, y)= X3 —3xy? +3x° —3y% + 2
. ou ou
Solet fxy)=— =3 -3y*+6x and g,(x,y)= PV

Now,

f'(2) = ¢,(z,0)—i¢,(z,0) = (32" +62) +i(0) (putting x=2z y=0)
o f(2)= _[(322 +62)dz= 2" +37°
Put z= x+iy,
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o 1 (2) = (x+iy)® + 3(x+iy)?
=X +3x°yi + 3xy%i % + Vi + 3x° + 6xyi + 3y4i?
Separating rea and imaginary parts we get v=3x*y - y° + 6xy

Example : If f:G—C defined by f(z)=u(z)=u(z)+iv(z) is

analytic and u-v=e€*(cosy-siny) then find the function f(z) in

terms of z.

Solution :
f(2)=u+iv

if (z)=ui—v
L@+ f(2=u+iv+ui—v=u-v+i(u+v) =U +iV(say)

~U, =€ (cosy-siny) =¢,(xy)

U, =€'(-siny—cosy) =¢,(X,Y)

L@+ (2D =U, iU, =4,(2,00~¢,(2.0)
LA+ f(2) = j(ez +iet)dz= (1+i)_|'ezdz

(=€ +c

Proposition: Suppose that f is anaytic in a region G.

| f (2)| =constant.

Proof : Let z=x+iy e G and f(z)=u(z)+iv(z).
Given that f isanalytic.
= Cauchy-Riemann equations are satisfied.

ou ov ou  —ov
- and =
ox oy oy OX
Here, we given that | f (z)|=constant =K (say).

Let k=0 [If k=0, itisobviousthat f(z)=0].

lu+iv|=K S U2+ =K

Luevi=K? )
Differentiate equation (1) partially w.r.t. x
ouM v g
OX OX
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Again, differentiate equation (1) partially w.r.t y

2uﬂ+2vﬁ=0:> uﬁ+vﬁ=0
oy oy

MovM_g MM an

U—+VvV—=
oy OX oxX oy

Multiplying equation (11) by u and equation (111) by v and add

uzﬂ _ u\/ﬂ — O
OX oy

+ vzﬂ + uvﬂ =0
OX oy

(u2+v2)au =0

dx
o kM _y o M,

OX OX

Multiply equation |1 by v and I11 by u and subtract.

uvﬂ Zﬁ =0
OX oy
- uvﬂ + uZﬂ =0
oX oy
_(u? +v2\ou _
(u +v) dy 0
. k2N g
oy
a
oy
Using Cauchy-Riemann equation
ﬂ:o:ﬂ and ou =0= —ov
OX oy oy OX
N g™
OX oy
fisanalytic at z

fisdifferentiable at zand

f'(z):%ﬂéﬁ:OHO:O
X X

f'(z)=0, zeG
=  f(z) = constant.
Theorem : Suppose that f is analytic in a domain (region) D then

a) If f(z)=0,vzeD, fisconstant.
b) Ifanyoneof | f |, Ref, Imf, aref isconstantinD (2008)
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Proof : Let z=x+iyeD and f(z)=u(z)+iv(z)
Given that fisanalytic in D.
Cauchy-Riemann (C.R) equations are satisfied.

ie {ﬂ:ﬂ and ﬂ:ﬂ} 1
oxX oy oy OX
a) If f'(z)=0, ~ zeD then f is constant. (Already done, last
proposition)
b) i) Let|f|=constant.

Ju? +v2 =K (say)
= u?+v2=K )
where u(x,y) and v(x,y) are red vaued function. Let

K =0 [if K=0 then nothing to prove.]
Differentiate equation (2) w.r.t. x

Uﬂ-i-vﬂ:o {’.’ﬁz _8\/} (3)
oy oX
Again differentiate equation (2) w.r.ty

oy

vﬂ+ua—u=0 {ﬂzﬂ} 4)
ox oy

Multiplying equation (2) by u and (4) by v and adding
2 ou ou
u— - w— = 0
OX oy
2 OuU ou

+ Vv— + w— = 0
OX

U,
OX

Multiply equation (3) by v and (4) by u and subtracting



o k2N _g

oy

a

oy

From equation (1), v 0 and o 0
OX oy

f’(z):ﬂﬂ ﬂ:O+i 0=0
OX OX
zisarbitrary.
f’(z)=0 ~ zeD
by part (a)
f isconstant.

ii) Let Re f =constant = K (say)
" u(x,y)=K (say)

a_u:() and ﬂ=0
OX oy
.. from equation (1)
ﬂzo and ﬂ=0
OX oy
*." fisanalytic.
fis differentiable and f'(z) =22 +i -2
OX oX
f'(2)=0+i.0=0
~ f'(z2)=0 = f(z)= constant by (a)

iii) Let Im f = constant = K

(X, y)=K (say)
" ﬂzo and ﬂ=0
oX oy
. f isanalytic.
.. f isdifferentiate and f’(z)zﬂﬂﬂ
oX oy
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By Cauchy Riemann equation ﬁ=ﬂ=0
ox oy
. f'(z2)=0+i.0=0 = f(z)= constant

by (8)
iv) Let arg f (z)= constant
arg(f(z))=0 :tan_l(%j= K (say)

tan‘l(lJ =K
u

u
—=tanK = U=
\Y} tan K

“u-vecotK =0

Put cut K =C

=u-vc=0 unlessv.c=0

But u—cv isareal part of (1+ic) f (z)

=vecot K

= (1+ic) f (z) = constant by (a)
f(z)= c(oanr—sE;ar)f[ =constant  {*."1+ic = constant}

= f isconstant.

Example 1 : Prove that the function f(z)=z is not differentiable
anywhere in the complex plane.

Solution : We know that, f is differentiable at z if
f(z+Az)-f(2)

Az
as Az— 0 in any manner in C-plane.

— f’(z) (auniquelimit)

f(z+Az):z+Az:E+AE

f(z+Az)-f(2)

f'(z)= |
() Az—0 Az
z+Az . z+Az-z . Az
= | = |lim ——— = |im ——
Az—0 Az Az—0 Az Az—0 Az
. AX—iA
= gim 2X21AY (1)
Az—0 AX+I1Ay

Let Az— 0 along the Real axis.
Az=Ax and Ay=0
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f(2)= lim X1
Ax—0 AX
Let Az— 0 along the imaginary axis.
’ =iAy and Ax=0
£(2)= lim =1 _ 1
Ay—0 1Ay

Two limits obtained are different.

i.e.  limitisnot unique.
Given function f(z)=z is not differentiable in C to check
Az—0. x=Y, Wegetl—
1+i

2) Show that the function f(z)=|z|* is differentiable only at the
origin. (2006 )

Solution : Let f(z)=x*+y°.
Since, x*+y* is continuous everywhere, f(z) is continuous
everywhere.

f(z+629)- (%) _ . |2,+87" |z

f'(z,) = lim
77,

o5z 520 oz
im B t0D(2+52)-2,2 _ . (%+52)(%+D)-22
520 oz 520 oz
_lim 2052+252+5252 2052+2052+5252
5250 o5z 52—>0 S5z
=lim zo—+zo+52

6z—0

(i) When &5z is rea: Then sy=0 and 6z=6z=6x. AS
52—>05x—>0
f(zo)—llmzo—+zo+6z—llmzo+zo+5x Z,+2,

ox—0
(i) When 6§z is imaginary: Then sx=0and sz=isy,6z=-isy.
As 52—>O5y—>0
. f'(z)=Ilim zo—+zo+5z_ I|m zo(—)+zo+|5y_ Z,+2,

6z—-0

Since the two limits are different along two dlfferent paths except at
z=0, f’'(z,)does not exist anywhere except at z=0

Hence, f(2) is not differentiable anywhere except at z=0
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x3—y3+i(x3+y3)

0, 0i. 0
3) Let f(z): x2+y2 x=0, yz01le z#

0 x=0, y=0i.e z=0
Prove that C.R. equations are satisfied at the origin but f’(0) does
not existi.e. f(z) isnot differentiable there.

Solution : Let z=x+iy and f(x)=u(z)+iv(z)

f(z)=u(z)+iv(z)

x3—y3+i(x3+y3)
z=(xYy)#0
0 (%)
0 z=0
x3—y3+i(x3+y3)
z=0
u(x,y): x2+y2
0 z=0
x3+y3+i(x3+y3)
z=0
v(x,y): x2+y2
0 z=0
a_u(x, y): lim U(X+hy)_u(x’ y)
OX h—0 h
a_u((_),o)= lim u(h,O)—u(O,o)
OX h—0 h
3
h2—0 0 i
= lim-2=0  _jim Lo
h—0 h h—0 h
Similarly,
o-n
_ 2 _
M 0,0)= lim uOu)=u©0) _ o 0=h® "~ _yn=h_
oy h—0 h h—0 h h—»0 h
3
ov : ZO -0 h
—(0,0)= lim h =lim —=1
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0+h°
. ] h - y . 2 . 3
: ﬂ(X y)=lim v y+h)-v(xy) = lim -0+h" _ jim iU =1
oy h—0 h h—->0 h h—>0 h2

ou ov ou —ov
and —

X oy oy ox
Cauchy-Riemann equations are satisfied at the origin.
f(z+Az)-f(2)

)= g,
=

where z— 0, in any manner in Complex Plane.
Along the x-axis, y=0 and z=x

3,:3
X7 +iX
-0 .
. - 2 1
. £'(0)=xlim f(x)-f(0) = lim X - IimM
h—0 X x—0 X x—0 )(Zf
=1+i
Along they-axis, x=0 and z=iy
=y iy?
_ 2
. £/(0)= lim Mz lim— Y
iy—0 y iy—0 Iy

.2 . ..

174 |(|-+1) .
| I

Let z—>0 dongtheline y=x, x=y,and z=x+ix=x(1+i).

f’(O): lim M — lim A , IX i

= lim =
x(1+)50  X(1+) %00 22 (14§) x00 14X 1+

Hence, f'(0) isnot unique.
. Thegiven f(z) isnot differentiable at origin.

4) If f:G— C defined by f(z)=u(z)+iv(z) is anaytic and
suppose that w =y (u,v) be any continuously differentiable function.

Prove that (Z—‘)‘ZJZ + (%”JZ = ﬂg—\gf + (%"T] | t(2) .

Solution : Let z=x+iy and f(x,y)=u(x,y)+iv(x,y)
Given, f(z) isanalytic.
Cauchy Riemann equations are satisfied.
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au:avand au:—av 1)

ox oy oy OX
Now, v =y(u,v) where u=u(x,y) and v=v(x,y)

oy and oy exist.
oX oy

v _ 90
oX  ox [\u(u,v)]

_ oy ou N oy ov
ou  Ox oV ox

2)

Similarly,
8w=8w.8u+8\ylﬁv
oy ou oy ov oy
By C.R. equations
6w:—aw.8v+6\y.8u ©)
oy ou ox ov oX

Squaring and adding equations (2) and (3)

[awj2+ oy 2_(8u 8u)2+[6\|/ a"j2+25"’ ou oy ov
ox oy ) \au ox oV ox u ox ov  ox
{aw avj2+(aw 6“j2_26"’ ou oy au

du  ox v X au’ ox ov X

BRGIONEERIS
C RN R -

f isanayticat z

—  f isdifferentiableat z
t(z) =M i Y and fr(z)= M N
OX OX OX  OX

1= (3 (2 [ 23]
(ST e

5) Prove that the function Re zis differentiable anywherein C.
f(z+Az)
AZ
as Az— 0 inany manner in C plane.

Solution : — f'(z) (aunique limit)
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Here f(z)=ReZ
f(A+AzZ)= Re(z+ Az)

6) Prove that Cauchy Riemann equation can be written polar Co-

ordinates as ou :i dv and v :_—1 ou )
or r doe or r 09

Solution : Let f(r,0)=u(r,0)+iv(r,0)
Let x=rcos6 and y=rsin®
=1 =yx%+y? and Oztm_l(%)

Now, u=u(r,0) wherer and 6 arefunctionsof xandy.
ou ou 8r+8u 00

X o ox 00 ox

r:\/x2+y2 and 9=tan_1(%)

o _ Zx _ ¥ cos9  cost
X 4 /X2+y2 r
and
Z)e( = 1 2 X|:—X_2y:|: _2y 2 = _rgzne = _Srne
b A
ou ou ou ( —-sin® j
—— =——.C0S0 +——
ox or 00 r
(1)
Similarly, ﬂ:ﬂ.ﬂ+ au . o _ou .sin9+icos(i).ﬂ
or oy 90 oy or r 00
) |
Similarly, 2 = cosp. -2V SNY OV
OX or r 00
©)
ad Y _gng N, 050 o
or r 00
@ _
By Cauchy — Riemann Equations
ou ov ou —ov ou ov
ox oy oy OX ox oy
Consider,
u_ov_ o (cose)—iﬂsine—ﬂsine—iﬂcose

ox oy or r oo or r



or r oo or r oo
©)
and ﬂ-l-ﬂ:()
oy OXx
a—usin9+icos€).a—u+cose. v - sSnb - ov =0
or r 00 or r 00
ou 1 6vj (1 ou 8vj
sin@| —-— — |+cosf| — . —+— |- =
or r oo r o0 or
(6) - -
Multiplying equation (3) xcos6 and equation (6) xsin6 and adding.
cos? 0 ﬂ—iﬂ — sin0.cosO 8v+__u =0
or r oo or r 00
+ sin? ﬂ—iﬂ — sinf.cosH 6v+__u =0
or r oo or r o0

Multiplying eguation (3) xsin® and equation (6) xcos6 and
subtracting.

sn0.cos| ==V | _ gnze(ﬂ+i ﬂ] -0
or r oo or r oo

- sSin6.coso u AoV + cosze(ﬂ+i ﬂj =0
or r oo or r oo

r or
ov 1 ou
o 1 0
ov 1 ou
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6.5 THE FUNCTIONS e4,sin(z),cos(z) etc:

Exponential Function : The exponential function in Complex

Plane C denoted by e, isdefined by as
N Z2 Z3
Z —_1+z+—+
noo N 2! 3!

1) The exponential function f (z) =e”is analytic in the whole
Complex Planeand f'(z) = f (z)with f (0)=

n=0
E S 1
L A T
|
Re lim || jim | L () ‘
n—oo an+l n—ow| Nl 1
= lim | n+1)|

N—o0
The radius of convergence of the given power seriesis R=o.

". The power series converges for all zand convergence is uniform
for each compact subset of C.

". By using corollary.
[If f(z)=> a,z"has a radius of convergence R>0 then f is
analyticin B(0,R)]

f (z) =€? isanalytic in whole Complex Plane.

0 2n+1
Note: Similarly, sinz=) ———

L4 . .
COoSZ= are anaytic in
= (2n+Dr Zo 2n)! 7t

whole Complex Plane.

Definition :
Entire Function : If the function f is analytic everywhere in whole
Complex Plane C (except a «) is called an Entire function or

integral function. e.g. e coszsinz.

6.6. SUMMARY

1) A function f is said to be analytic (or holomorphic or regular) at a
point z=z, if fisdifferentiable at every point of some nbd of z,.
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2) If the power series > a,z" has radius of cgs. R>0, then
n=0

f(2) =X a,z" isanalyticon B(0; R).

3) Let u and v be real valued function defined on the domain G C
and suppose that u and v have continuous partial derivatives then

f:G— Cdefined by f(z)=u(z)+iv(z) is anaytic iff u and v

satisfy Cauchy Riemann equation. i.e. u_ o and u__ o :
oxX oy oy OX
o n 2 3
4) e =>" 2 o142+ 2y
= nl 21 3

6.7. UNIT END EXERCISES:

1) Give an example of a function which isnot differentiable at the
origin but the partial derivatives exist and satisfy the Cauchy-
Riemann equations there .

Solution: Consider f :C — C defined by

(¢ y) = YN (0 y) 2 0,0
XS +y

=0 (x,¥)=(0,0).
f,(0,0)=0similarly f,(0,0)=0

 f(@-f0) . Xy .
But ||m2_)of=||m(xyy)_)(0,o)wdoes not exist. FOI‘, on

y

F@-TO) _ o ¢5 .0 -The limit depends

the line y=ax".
zZ l+a

2

on real number a.

2) Check at what points does the function f(z):|z|2 is
differentiable.

Solution : f(2)=|7°. Let z=x+iy.

= f(2)=x°+Vy>. .. fy=2x, f,=2y

= f has continuous partial derivativesfor all -.
- fis differentiable at ze C, provided that f, =if,.

= 2y=2ix=2y—-i2x=0= (x,y) =(0,0) .
- f is differentiable only at the origin (0,0)
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3) Show that f(z)=x%+iy? is differentiable at all points on the
line y=x.

Solution: - f(2) =x*+iy®.... f, =2x, f, =2y

= fy, fyexist and are continuous functions of z=x+iy

= f, =2y=if, =2x iff x-y=0.

This is possible iff x=y.

= By proposition f is differentiable at all points on the line
y=X.

4) Supposefis analytic in aregion and at every point, either
f=0 or f2=0. Show that fis aconstant function.
(Hint: Consider The derivative of f2(z))

5) Find al analytic functions f =u+ivwith u(x,y) = x* - y?

Solution: -+ f =u+iv is analytic.
-+ f satisfies Cauchy- Riemann equations.
= Uy =Vy, Vi =—Uy oy Vy, -2y =-Vy
= Vy =2X, vy =2Y.
- V(X y)=2xy+c,wherec is any real constant.

= f =(x? - y?)+2ixy+ic

6) If fisaanalytic inaregion and if |f| is constant there, then
show that f is constant.

Solution: If |f|=0, the proof is immediate, otherwise assume
that |f|=0. Let f —u+iv= u?+Vv2 2 0.

~ Taking the partial derivatives w.rt. x andy, we see that

Suuy+w, =0, uuy +wy, =0.
Makinguse of the Cauchy- Riemann equations, we get,

.Uy —wvuy =0, vu, +uuy, =0

= (U2 +v?)u, =0 = U, =V, =0, smilarly u, =v, =0.
= fis constant.
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7) Show that i(sin(z)):cos(z). (Hint: Use

that sin(z) = —e7?))

8) Finda power series representation for cos(z) .

n
Solution: - cos(z) == (e +e?), e’ =y o—

iZ oo (iz)n iz o0 (IZ)
© a0 T a0
(e +e—IZ)_ & ( 1)n 2n
n= 0 (Zn)l
OO n 2n 2 4 6
..co8(2) = (D)2 I A
n= 0 (2n)! 21 4 6!

9) Show that log(x?+ y?)is harmonic in C-0.

Solution: Let u(x, y) =log(x? + y?).

2X 2y
=>U=—5—>,U,= C-0
X 2 1 y2 y 2 1 y2
g _2y2—2x2 y _2x2—2y2
XX~ , 2 22! yy_—
(¢ +y?)? (O +y?)?

:uxx,uyyexist and are continuous functions of z on C-0,
aso Uy +Uy, =0.
= u(x,y)isharmonic in C-0 .

10) For the function f(z) defined by

2)°

z

if z#0

f(2)=
= 0 if z=0

Prove that C-R eq. are not satisfied at the origin , but the function
f(2) isnot differentiable at the origin(2009)

11) Find the holomorphic function f(z) whose real part is 2xy+2x
(2008)

12) Find the analytic function f(z)=u(r,0)+iv(r,6) whose real

partis r2cos20.
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2
_ 2
13) For thefunction, f(z) definedby f(z)={——  2=0.
0, z=0

Prove that the Cauchy Riemann equations are satisfied at (0,0) but
the function is not differentiable at (0,0).

2 2
9 0 I Ret (2P =2| '(2)

2
o2 o2 |

14) If f:G — C isanalytic, prove that

15) Construct an analytic function f (z)=u(z) +iv(z), whose real part
is cos x cosh y. express the result as afunction of z

16) Construct an analytic function f(z)=u(z)+iv(z), whose rea
partis e (xcosy—-ysiny).

Express the result as a function of z
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COMPLEX INTEGRATION

Unit Structure:
8.0. Objectives
8.1. Introduction
8.2. Complex Line integrals

8.3. Integration aong piecewise smooth path, The Closed
Curve Theorem

8.4. Summary
8.5. Unit End Exercises

8.0 OBJECTIVES:

Through this unit we shall study the concept of complex

integration, an integration of the form | f(z)dz taken over a
14

piecewise smooth path y further we shall derive certain

properties of this integral. We would like to know further that

what can be the integral of an entire function aong a

boundary of a rectangle in acomplex plane, the answer is
givenin formof a closed curve theorem.

8.1 INTRODUCTION:

We have to recall theorem on differentiability of a power

series that states that a power series f (z) = f a,z" converges for
n=0

1ZCR. Then f (7)exists and f ()= f na,z"*on the open disc
n=1

ZCR . Therefore an everywhere convergent power series

represents an entire function. Our main goal inthis unit is to
study the converse of this result namely that every entire
function can be expanded asan everywhere convergent power
series. Thisresult has a consequence that every entire function
is infinitely differentiable. We shall also arrive at these
results by discussing integrals. Let us start by defining a
Line integral.



147

8.2 COMPLEX INTEGRATION:

Definition : Trace of acurve:
If x:[a,b]—>C is acurve, then the set {x(t)} is called the

trace x and is denoted by {x} ={x(t):a<t<b}
The trace of x is aways a compact set.

Definition : Contour : A contour is a piecewise smooth curve.
Definition : A complex valued function f is said to be continuous on

a smooth curve x:[a,b]—>C if, f(z)=f(x(t))=u(t)+iv(t) is
continuous.

8.3 INTEGRATION ALONG A PIECEWISE SMOOTH
PATH, THE CLOSED CURVE THEOREM :

Definition : Complex LinelIntegral :

Suppose f is complex valued, continuous and defined on open set
GcC and that x:[a,b]—>C is a piecewise smooth curve with
{ X} cG.
Then, the expression

n-1 j+1

b
jf(z)dz:ff[x(t)]x’(t)dt: > j fx(t)]x(t)dt
X a =1 i

where a=ty<t;<t<..<t,;=b is called the complex line integral
of f over x.

This curve x is called path of integration of thisintegral.

Connection between Real and Complex lineintegral :
If f(z)=u(z)+iv(z) then the complex line integral J'f(z)dz
X

can be expressed as
J'f(z)dz=_|. udx—vdy+i Iu dy + v dx
X X

X

Theorem : Let x be such that x(t)=x(t)+iy(t), a<t<b is a
smooth curve and suppose that f and g are continuous function on
openset G C containing {x} then;
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i) Ja f(z)dz= ocJ' z) dz where o isa complex congtant.

i) _[[ z)+9(z ]dz _[ dz+j

Example 1 : Evaluate I %dz, where x(t)=e'', t[0,2x].
X

Solution : By the definition of complex line integral.

b
jf(z)dz=f f[x(t)]x(t)dt
Here, f(z):%, x(t)=e', a=0, b=2n
f[x(t)]z—:.L, X(t)=id"
i% =I?|g”(dt Ildt—l[t] =2ni

Definition : Rectifiable Curve : A curveis rectifiable if it has finite
length.

Note : Every piecewise smooth curve is Rectifiable.
Definition : If xisst. x(t).a<t <bisrectifiable, then its length L(x)
us defined by L(x)z? | X (t) ot
a
Example 1 : Find the length of the curve x(t) = 4€", t [0, 2n].

2
Solution : Length of x=L(x ‘4| et =f|4||i|‘eit‘dt
0
2n
2n
=£ 4dt=4J(;?:

Example 2 : Find the length of the curve x(t)=(1+i)t, te[0,4].

Solution :
ox(t)=(1+i)t

X(t)=(1+i)
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Length of
4 4
x=L(x)=f|(1+i)|dt=j P+ d=[V2d=v2[t]i=4/2
0 0 0

Definition : Opposite Curve:
If x:[a,b] > C isagiven curve then, the opposite curve —x to x is

definedas —x(t)=x(a+b-t); te[ab]

Example: Let x(t)=€"; te[0,x].

A\ A

e N

A

Fig. 8.1

Definition : Let x:[ab]>Cand x;:[a,b]—>C be two smooth
curves such that x(b)=x(ay). Then we define the path
X + X :[a, by +b, —ay] > C asfollows.

(q+X%)(t) = (1) if telaby]
OR
(qUx)(t) = | x(t—-b+ay) if te[b,b+b—ay]

The path x + %, is called the sum of two curves x or x, or the
union of two curves x and x, .

Example 1: Let x(t)=t, t<[0,3] and xp(t)=3¢", te| 0,37, ].
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ah
N

pa
~

Fig 8.2

Theorem : Let x be st. x(t) = x(t) +iy,(t) be a smooth curve and

suppose that f is a continuous function on an open set G containing
{x}. Then,

i) _[ f(z)dz=—.[f(z)dz

i)

If(z)dz

<[[s(z)] | dz|

i) If M:tl\flaﬁ] f(x(t))| and L=L(x) (LengthofX)

then <ML.

J'f(z)dz

X

(This property is called standard estimate for the integral.)

iv) If xl and x, are smooth curves in G then,

I z)dz= j z)dz+ j z)dz, where x +x, are sum
X1 +X2 X2
of 2 curves.

Proof : i) By definition of opposite curve
—x(t)=x(a+b-t)
By defi nition of complex line integral.
j z)dz= I f[—x( X (a+b-t)]dt

-X
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Put a+b-t=u = dt=—du, When t=a, u="b
t=b, u=a

a b
J f(z)dz=—j f[x(u)].[x’(u)](—du)zj f[ x(u)]x (u)du
b a

i) If j z)dz =0, then there is nothing to prove.

Let [ f(2)dz=0

X

Put u=e'%, where earg[j f(z)dz}
X

lu|=1
_[ f(z)dz :eiej f(z)dz:u_[ f(z)dz (D
| z|=Re| z|

_[f(z)dz =Re If(z)dz Re[u_[ f(z)dz] from (1)

=Re_|' u f(z)dz=_|' re[u f(z)dz]
s”uf(z)dz‘ ("' Rez<|z|)

=[|ul| t(2)]| cz|

_[ z)dz

X

<_H z) || dz| (" |ul=1)

iii) Given that, M :tl\flaﬁ] f(x(t))] and L=L(x)

By using part (ii),

_[ f(z)dz SH f(z)Hdz|




b b
[ f(z)dz| =[] F(x(1)||x(t)[dt <M [|X(t)|dt=ML(x)

_[ f(z)dz|<ML

iv) Let x:[a,b] > G and x;:[a, b] > G with x(by)=x(a).
We define x + % :[a by +by —a] > G

x(t) if telay,b]
(% +%)(t) :{ .
xz(t—t{[+a2) if te[bl,bl+b2—a2]

x +X has derivative x(t) in [a,by] and (th+ay) in

[br, by +1, —ap]
by +bp-ap ,
j f(z)dz= j FLOq+%) (t)] (x+x%) (t)dt
X +X2 el
by by-+bp-+o3
= j (1) % (t) ot + j [Xo(t—by+ap) X(t—by +ap) dt |
by
h b+
=[ @+ [ f[xft-h+a)pt-hra)d]
% by
Put t-bp+a,=u = dt=du,then t=b, u=a,, t=b+b-a,

u=h,.
bp
=J' f(z)dz+f f[Xz(U)]X'Z(U)dU

X1 ap
:I f(z)dz+J' f(z)dz
X )

Note : i) If x is piecewise smooth then, there is a partition
Pra=ty<t <..<ty=b of [ab] st. therestriction x, of curvexto

[tx_1, tx] issmooth for 1<k <n.
X=X + x2+...+xn

L[ f(a= | z)dz= j 2)dz+ | f(2)dz+..+ [ f(

X X +X2+Xn X2 Xn

ii) ReL[f dz}the[ z) | dz

X
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Examplel: Let f(z)=1and x(t)=it, te[0,1].

[ f(z)dtz_tf f[x(t)] x’(t)dt:}l.i dt=i
0

Re[j f(z)dt]Rei =0 (1)
' 1

and [ Re[ f(z)]dz=[1idt=1 @
X 0

From equation (1) and (2)

Re[j f(2) dz}s_[ Re[ f(2)]dz

X

Change of Parameter :
Let x:[a,b]>C and o:[c,d]>C be two smooth curve.

Then the curve o is equivalent to curve x if, there is a function
&:[c,d]—[a b] which is contain non-decreasing and with J(c)=a
and J(d)=b st. c=xJ.

Here, we call the function & a change of parameter. This
new curve xo iscalled the Reparametrization of the curve x.

Theorem : Let x:[a,b] > C be a smooth curve and suppose that
@:[c,d]—>[ab] is a continuous non-decreasing function with
J(c)=a and P(d)=b. If f iscontinuouson {x} then

jf(z)dz: I f(z)dz

X XolJ
Proof : Given that x:[a,b]>C is a smooth curve and
@:[c,d]—>[ab] is continuous non-decreasing function with
J(c)=a and &(d)=b.

By hypothesis, there is a change of parameter @[c,d] —[a,b] st.
(x@)(s)=x[2(s)]
and  (xo@) (s)=x[D(s)]D'(s) for se[c,d]

d
_[ f(z)dz= I f [x(@(s))](m@)' (s)ds

XoD



Putt=g(s) = dt='(s)
when s=c, t=g(c)=a andwhen s=d, t=(d)=b

Fundamental theorem of calculus:
If f iscontinuous on [a,b] and F'(x)= f(x) in [ab] then

?f(x)dx:F(b)—F(a).

S

Primitive or Antiderivative of afunction :
A function f:G — C issaid to be primitive or antiderivative of f

inG if, F isandyticinGand F'(z)=f(z) inG.

Theorem : Let G be an open setin C and supposethat f:G — C is
a continuous function with primitive F:G—C. If x:[a,b] >G isa
smooth curve, then [ f(z) dz=F[ x(b)]-F[x(a)].

X

In particular, if x is closed then [ f(z)dz=0.
X
Proof : Given that, f:G—> C is a continuous function with

primitive f :G — C.

F'(z)=f(2)

If x isclosed, then x( ):x(b)

jf z)dz=F[x(a)]-F[x(b)]=0
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2
Example: Evaluatef 2% dz where x(t)=t+L, te[O, n].

s
X

Solution : Given integral is [ z* dz.
X

Here, f(z):z2
i
F(z):T is primitive of f.
a=0 b=m=x.
By previous theorem,

[t (2)dz=[F(x(t)]]

X

el 2]

3
%Hﬁﬂn—;] —O}:%[(RJA 71:)3:|

3
T A3
=——(1
(1)

Definition : The index of curve or winding number : If x is a

closed rectifiable curve in C and if oae{x}, then,

(xoc)—i dz
M= 27 ” Z— o

iscaled theindex of x w.r.t the point o.

It isalso called the winding number about o .

S 16 |3
n(xoa)=1 n(xo)=2 n(xc)=-1
n(xp)=0 n(xp)=1
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X

x:x(t):{z:z—a:reit, te[0,4n]}

|z-a|=|rd'|=|r||d'|=|r]

A
v

nex;on)=2
2\ %

Fig 8.4

Theorem : If x:[0,1] > C is a closed rectifiable curve and o ¢ {x}
then n(x; o) isaninteger.
Proof : Define g:[0,1] - C by,

t X (s
°0=1 )
9(0)=0,

]

)_dz te[0]

g is continuous on [0,1] and
dz
Z—q

9(1)= *)
(put x(s)=z = X(s)ds=dz)

To provethat g(1)=2rin for someinteger 7.
from equation (1),

g’(t):ﬂ, te[0,1]

X(t)—o
Now, %[e_ g(t)(x(t)—a):i:e_g(t)x’(t)+(x(t)—a)e_g(t)(—g’(t))

=e g(t)[x’(t)w[/xztgt)/ﬂ - e‘g(t)[x’(t)— X'(t)]

e 9 g0

e g(t)_(x(t)—a) = constant = K (Say)

OR x(t)-a=Ke (2)
TofindK, put t=0
x(0)-o =K e =Kk 2=k [red=1f

K=x(0)-a
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Putting the value of K in (2), we get
X(t)—a = (x(0)—a).e%)
Put t=1,
o) _XY=a (" xisclosed x(1)=x(0))

eg(l) _ eZnin ('.° e27rin =1)
g(1)=2rin
For some integer n substitute the above valuein (*), we get

dz
Z—a

2nin=j
X

i 1 dz
n=ntee)=il 5,
X

Component of a Metric space:

A subset D of a metric space X is acomponent of X if D isa
maximal connected subset of X i.e. D is connected and there is no
connected subset of X that properly containsD.

[ &
@Y

% G:C/{X}
Fig 8.5

Note: If G isopen then component of G also open.

Simply and multiply connected domains:

Definition : A domain D is said to be simply connected if any
simple closed curve which liesin D can be shrunk to a point without

leaving domain D.

Definition : A domain which is not simply connected is said to be a
multiply connected domain.
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Green’s Theorem :
Let M(x,y) and N(x,y) be continuous and have continuous

partial derivatives in a domain Q and on its boundary x, Green's
theorem states that,

OoN oM
J'de+Ndy ”(——W]d dy

Cauchy Theorem :
Let G be an open set in C and suppose that x:[a,b] > G isa

smooth curve. If f isanalytic with f’ continuousinside and on a
simple closed curve x then, [ f(z)dz=0.

X
G

Fig 8.6

Proof : Let z=x+iy,

f(z)=u(z)+iv(z)
and Q=Intx
_[ z)dz= I[u )+iv(z) ] (dx+idy)

X
=I(udx—vdy +|Ivdx+ udy (1)
X X
Giventhat, f isanalyticin Q and on its boundary x.

f 1s continuous in Q and hence u and v are continuous.
Also, given that, f’ is continuous inside and on a simple closed

curve X.

Partial derivatives of u and v are also continuous in © and on
its boundary x.

By Green’ s theorem

_[udx vdy = ” (———] dx dy
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and _[vdx+udy jj[——EJd dy

Subsntutl ng above valuesin equati ons (1), we get

j 7)dz = jj( —ov jdxdy |”(——%jdxdy

Given that, f isanalytic.
Cauchy Riemann equations are satisfied.

U —ov g v o
ox oy oy  ox
ou du . ov oV
f(z)dz= (———dedyﬂ [———jdxdy
'g o oy 'g gy oy

f(z)dz=0

X = X —

Note : In Cauchy’s theorem, Cauchy assumed the continuity of
derived function f'(z). It was Goursat who first proved that this
condition can removed from the hypothesis in the theorem. The

revised form of the theorem is known as Cauchy- Goursat theorem
which we shall study in the next chapter.

8.4. SUMMARY

-1 J+1

1) [ f(2)dz= jf[x (t)]x(t dt—zljjf[x
X =1
J'f(z )dz= _[udx vdy+|judy+vdx

X

2) If x:[a,b] > C isagiven curve then, the opposite curve —x to x

isdefined as
-Xx(t)=x(a+b-t); te[a,b]

3) If x is piecewise smooth then, there is a partition
P+a=tg<t <..<ty=b of [ab] st. therestriction x, of curvexto

[te_1, t] issmooth for j f(z)dz:—j f(z)dz:j f (2)dzes|h| < &
z+h : z ) Xzz+h XZZO z+h
F(z+h)-F'(2) = f(z)j f(w)dW—J'f(w)dW: j f(w)dw+jf(w)dW: j f (w)dw
Z z z

% %
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hLoF(Hhr),F(Z)‘ f(z)_lzih f(w)dw—fﬁlz)h
i jf(w)dw f(z)jdw —I(f(w)—f(z))dw

z

z+h z+h

Jf(w) f@). \dM< J\dM el=e

1< ksn.
[t(9ez= [ f(2)dz=[t(2)cz+ [ f(2)z+..+ [ f(
X X +X2+Xn X1 b)) Xn

X=X + X + ...+ X

4) Let x:[a,b]>C and o:[c,d] > C be two smooth curve. Then
the curve o is equivalent to curve x if, there is a function
&:[c,d]— [a b] which is contain non-decreasing and with &(c) =
and g(d)=b st. c=x-T.

5) Fundamental theorem of calculus:
If f is continuous on [a,b] and F'(x)=f(x) in [ab] then

?f(x)dx=F(b)—F(a).

6) Primitive or Antiderivative of afunction :
A function f:KC issaidto be Primitive or Antiderivative

of finG if,F isandyticinGand F'(z)=f(z) inG.

7) Theindex of curve or winding number :
If x is a closed rectifisble curve in C and if o¢{x}, then,

(xoc)—i dz
M) = 27 ” Z— QO

is caled theindex of x w.r.t. the point o.

It isalso called the winding number about o .

8) A domain D is said to be ssmply connected if any simple closed
curve which lies in D can be shrunk to a point without leaving
domain D.
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8.5 UNIT END EXERCISES:

1) Suppose f(z)=x?+iy?> where z=x+iy. Then evaluate
jef(z)dz, where

c:z(t)=t+it,0<t<1.
Solution: Consider c: z(t) =t+it,0<t<1. Then z(t)=1+i, and

I f(2)dz=[5(t%+it?)(1+i)ct :%.

2) Find the integral of the function f(z) = - taken over acircle
of radius R .

. 1 X iy
Solution: -+ f(2)=== -
( ) 7 x2+y2 x2+y2

"+ C: 2)t) = Reos(t) +iRsin(t),0<t <27,R>0. Then

J_f(2)dz= jg”{(c";(t)j—(iSi;(t)ﬂ(—st n(t) +iRcos(t)) = 2ni

3) Let c be any smooth curve in. Let f(z)=1. Then find
jcf(z)dz.

4) Let cbe the Unit circle and suppose that f <1 on c. Then
prove that jc f(2)dz< 21 .

(Hint: M =14,L=27. Apply ML formula.)
5) Let cbe any closed curve not passing through the origin,
then show that

jcizdz:o:jczkdz:o,k;t—Lk iIsany integer.
z

(Hint: - g(2)=—=F () where F(z):—% and F(z)is analytic
everywhere excezpt at theorigin .)

6) Evauate Jc(z—i)dz, where cis the parabolic segment
ciz(t) =t+it?,-1<t<1

Solution : Let f(z)=z-i. Then fis the derivative of an analytic
2
function F(z)=z7—iz.
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.. By proposition, jc f (2)dz = F(z(b)) - F(z(a))
' , i i .
3 jc(z—l)dz=[7—|z}_l+i —li?—lzLi =0- jc(z—l)dz=0.

1
7) Find jydez. Where (@) y is the upper half of the Unit circle

from +1 to -1.
(b) ¥ is thelower half of theUnitcircle from +1 to -1.

(Hint: (a) Let y(t) = cos(t) +isin(t),0<t<r
(b) Let y(t) = —cos(t) —isin(t),7 <t <2rx

8) Let y(t)=26", for -z <t<r.Find j (22-1)Ydz.

9) Prove the following integration by parts formula. Let f and
gbe analytic in G, let y bearectifiable curve from ato bin G.
Then show that jy fg'= f(b)g(b) - f (a)g(a) - jy f'g .

10) Evaluate the integral f(| z|-e’sinz+z|dz  where v isthe
gl
circle| z|=2.
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CAUCHY THEOREM

Unit Structure:

9.0. Objectives

9.1. Introduction

9.2. Cauchy Theorem for an Open Star shaped Domain
9.3. Cauchy Integral Formula

9.4. Summary

9.5. Unit End Exercises

9.0. OBJECTIVES:

Our main goal in this unit is toshow that a function
analytic in adisc can be represented as a power series. We
shall prove Cauchy's theorem for an open star-shaped domain
and Cauchy integral formula for an analytic function £ in a

disc.

9.1. INTRODUCTION :

We have seen that a function is anaytic on aclosed
curve chut [ f#0. For example consider the function

f:.C-0>C defined as f(z)=1. In this example
Z

jzzlf(z)dz=j221%dz=2ni. Whereas, the closed curve theorem

states that if fis anaytic throughout a disc, the integral

around any closed curve is 0. Weshal try to find the most
genera type of domain inwhich the closed curve theorem is
valid. We should note that f(z)=1 Is analytic in the punctured
Z
plane C-0. We shall see that the existence of ahole a z=0
adlows us to construct an example above, for which the
integral is non-vanishing. The property of a domain, which
assures that it has no holes is called simple connectedness.
The formal definition is as follows.
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Definition : A domain D is said to be simply connected if any
simple closed curve which liesin D can be shrunk to a point without
leaving domain D.

Definition :Singular point :
A point at which the function f is not analytic is said to be a

singular point or singularity of the function f.

Z2

eg. f(x)= —

Here, f is not defined at z=3 and hence not analytic at
z=3, therefore z=3 issingular point.

92 CAUCHY THEOREM FOR AN OPEN STAR
SHAPED DOMAIN :

Theorem : Let G be star like w.r.t. point z; and suppose that f is
analytic in G. Then there exists an analytic function F in G sit.
F'(z)=f(z) inG.

In particular,J' f(z)dz=0, for every closed, piecewise smooth curve
X

Xin G. (2008)

Proof : Giventhat, G isastarlikew.r.t point z, and f analyticin G.
By definition, [Zo,Z]CG wzeG

Fix apoint zin G and define
V4

F(z)= j f(a)da:jf(a)dg
[20. 2]

Piy)
Zz+h
20 E i:

Fig9.1
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Choose he C with | h|>0 st.
B(z(h))cG and [z, z+h]c G
Since G is starlike w.r.t. point z;.
Thetriangle A=[z, z, z+h] iscontained in G.

f isanalytic inside and on the boundary of the triangle A.
By Cauchy Goursat theorem,

] f(Z)dZ[= ] (ﬁ)dﬁj
da da

ft(e)de+] f(e)de+ I f(g)de=0
ZO z

z+h

z+h

F(z)+ [ f(g)de-F(z+h)=0

F(z+h)-E(2)

h |
Giventhat, F isanalyticin G.
.. f isdifferentiablein G.
.. f iscontinuous at apoint zeG.

Foragiven >0, 3 8>0 st.| f(&)- f(z)|<e whenever |g-2z|<3

Choose | £-z|=|h|<e
From equation (1),

F(z+h)-F(2) e N €
S PR
N T ATy
By definition 1im (> W=F(2) _¢ ()
h—0 h

F'(z)=1f(z) in B(z|h|)
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Since zisfixed but arbitrary.
F'(z)=f(z) inG. (2
= The derivative F' existsand is continuous at every point zin G.
Fisanayticin G.
From equation (2),
F isprimitive of f.
By using the theorem

j f (z)dz=0 for every closed, piecewise smooth curve x in G.
X

In Cauchy’s theorem, Cauchy assumed the continuity of derived
function f'(z). It was Goursat who first prove that this condition

can removed from the hypothesis in the theorem. The revised form
of the theorem is known as Cauchy-Goursat theorem.

Cauchy-Goursat Theorem : (Cauchy Triangular Theorem) :

Let f be analyticinanopenset G D. Let 7,2,z bepointsin
G. Assume that the triangle A with vertices z, z,, z3 is continuous

in G then J' f(z)dz=0 where A isthe boundary of atriangle A.
X

(2007,2008, 2009)
Proof : Given that, the triangle A with vertices z,z,,z3 is

continued in G. Let m;, my, my be mid points of line segment
[Zl, 22], [22, 23] ) [23, Zl] I’eSpeCtlver

Then we get 4 smallest triangles AL, A%, A3, A%,
Z3

mq

Fig9.2



oA My zym, 2amszy

= J- f(z)dz + f f(z)dz
m3zym My m 2, My My
+ _[ f(z)dz + _[ f(z)dz
m, 23M3M, mymy
+ J- f(z)dz + J- f(z)dz
mm, m,ms
= f(z)dz+ I f(z)dz+ J f(z)dz+ J f(z)dz
onl on2 on3 ont
4
= Z f(z)dz
K=1 grK

Among this 4 triangles, thereisone triangle, call it A, st.

[ f(2)dz|>| | f(2)dz] K=1234
0AL aaK
I f(z)dz|<4 I f(z)dz
OA 0A1
Let L(0A) bethe perimeter of atriangle A, then

L(&Al):%L(aA) and diam. Alzé diam. A (diameter of triangle

means the length of itslargest side)
Now, perform the same process on the triangle A; getting a triangle

Ao With analogus properties.
(l) AZAO:)A]_DAZ

I f(z)dz

OA

(ii) <& [ f(z)dz

0Ao

(i) L(8A2)=2—12L(8A)

(iv) diamA, = izdiamA
2

Continue the process and at the n™ stage, we get
0] A=AgD A DA D...DA,



(ii) j f(z)dz|<4" _[ f(z)dz
oA oAn
(i) L(@An)zz—lnL(ﬁA)

(iv) diamA, =——diama
2n

A metric space x is complete iff for any sequence {F,} of
non-empty  closed sets  with FoFoRo.. and

diamF, >0, () F, consistsof asingle point.
n=1
Since C is complete and {A,} is a sequence of non-empty closed

setswith Ag=A> A > ...

N—o0 n—oo

n
and lim diamA, = lim [(ij diamAn]

=0 { lim x" =0 if |x|<1}

N—o0
By using cantor’ s theorem,

] An consistsof asingle point say z.
n=0
In particular z; e AG.
Giventhat, f isanalytic on G.
.. f isdifferentiable at apoint z; e G forevery £>0, 35>0 st.

f(2)-1(2)
z-2
By increment theorem,
f(z)="f(z)+(z-2) f'(z0)+(z=2z9)n(z) with n(z) is
continuous and | n(z)| < for | z-z|<3.

I f(z)dz= I f(zy)dz+ I (z—zo)f'(zo)dz+j (z—29)n(z)dz

—f'(z)|<e where 0<| z— 7y | <¢

dAn dAn dAn dAn
=0+0+ I (z—2z5)n(z)dz (" J' f(z)=0 if xis
O0An X
closed cure and here 6A,, isclosed.)
[ 1(@)dz|< [ [z-2]|n(2)|| o
oAn dAn
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Choose n s.t. diamA, =indiamA< 3.
2

Zp e Ap=Ap < B(zy;9)

-y
- 7S

- W by
=" S

| Z& U4
AR N R
[N
S -’
.'~_._—"

Fig9.3
[ f(2)dz|<ediama, [ |dz]
oA dAp

¢ ‘n(Z)‘<s and | Z—ZO|<diamAn)
=ediamAp L(2A)
(" L(ean)= [ |da])
8An

—e. L diama. = L(an)
2" 2

- 1 1
( . d|amAn =¥dlamA and L(aAn)Z? L(@A)

4" [ f(z)dz|<sdiamA.L(0A)
OAN
[ f(2)dz|<ediama.L(o)
oA
I f(z)dz|<4" I f(z)dz|)
oA oAn
Since ¢ >0 isarbitrary.
[ f(z)dz=0

. 0A

( by (i),
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Check your progress:

1) State and prove Cauchy Goursat Theorem for a closed
quadrilateral.

2) State and prove Cauchy Goursat Theorem for a closed Rectangle.

Theorem: Let Gbeanopensetin C. Letf beanalyticin G except
possibly at a point z; e G. Assumethat f is continuousin G and that

the triangle A with vertex at z, is contained in G. Then
[ f(2)dz=0, where A isaboundary of thetriangle A.

O0A

Proof : Let A=[27,27,2)].

Let £ be apoint on the line segment [zy, 7] and &, be a point on
the line segment [z, 2,].

N\

N
A\ 4

Fig 9.4

Consider the subtriangles,
A =[&2.20.€1], A =[7, 20, E2], Az=[&1 7,&]

" I f(z)dz= I f(z)dz

oA 208228
= J' f(z)dz+ I f(z)dz+ I f(z)dz
€2208182 &12182¢1 122828
= I f(z)dz + I f(z)dz + I f(z)dz= I f (z)dz+0+...
O0A1 0Ao 0A3 O0A1

(by Cauchy Goursat theorem)
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j f(z)dz|< j |f(z)||dz|
OA oA
Put M = max f(z)|
Z€0A
[ f(2)dz|<M [ [dz|=ML(oAy)
OA oA

As g and &, tend to z, perimeter of the triangle A; tends to zero
I f(z)dz=0
oA

=

Ay

P —e——4
Fig9.5
Theorem : Let G beanopen setin C. Let f beanalytic G/ {a}

for some o € G. If f iscontinuouson G, then j f(z)dz=0, where

oA
OA isaboundary of thetriangle A contained in G.

Star Shaped Domains:

Definition : A set G in C is said to be convex if, given any two
points zand win G, the line segment [z w] liesentirely in G.

TV

Not a convex set

Fig 9.6
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Definition : A set G is said to be starlike (or star shaped) w.r.t.
points a.e G if for any point z(+a) in G, the line segment [a, Z]

liesentirely in G.

WK 4 C

Open sets, closed, half planes
Theaboveset is starlikew.r.t. o if Rez>0,Imz> 0 etc. are

Fig9.7
Punctured disk isnot starlikew.r.t .o

Note : Every starlike set is not convex but every convex set is
starlike.

Question : If f isanaytic in asimply connected domain D, then
)
I f (z)dz is independent of path in D, joining any two points z

2
and z, inD.

Solution : Let x and x,:[a,b]—>G be two smooth paths in G such
that x (a)=Xy(a) =2z and x(b)=x,(b) = 2.

Xl(tl) # X9 (tz), tl! t2 (— a, b)
Y N

N

Fig9.8
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Form a simple closed curve ¢ which moves from z to z, via x
and Z to 4} via —X2.

f isanalytic inside and on asimple closed curve o .
By Cauchy Goursat theorem,

[f(2)dz=0
[ f(2)dz+ [ f(2)dz=0
X1 — X2
j f(z)dz=—_|. f(z)dz
X - X2
2
I f(z)dz:J f(z)dz:f f(z)dz
X1 X2 4|

2]
[ f(2)dz isindependent of path.

Za

Cauchy Deformation Theorem :
Statement : If f is analytic in ¢ domain bounded by two simple

closed curves x4 and x, (where x, is inside x) and on these

curves, then [ f(z)dz= [ f(z)dz where x and x, are both
X X2

traversed in anticlockwise direction.

Proof : Join two curves x and x, by linesAB and CD. Denote,

x ¢ =lower section of x from AtoD.

"
X

%10
Fig9.9
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xu = the upper section of ¥ from D to A.
X! = the lower section of x, from B to C.
Xou = the upper section of x, from C to B.

Form a simple closed curve o, by transversing from A to B
then from B to C by x,u, then from C to D and finally from C to D
and finally from D back to Aby xu.

f isanalytic inside and on the simple closed curve o .

By Cauchy- Goursat theorem.

[ f(z)dz=0
o1
L[ f(2)dz+ [ f(2)dz+ | f(2)dz+ [ f(2)dz=0 1)
AB —xou CD xu

From a simple closed curve o, by transversing from Ato D by x/
then from D to C, then from C to B by — x,¢ and finally from B back
to A.
) f isanalytic inside and on the ssmple closed curve o,.
By Cauchy - Goursat theorem,

j f(z)dz=0
62
o f(2)dz+ | f(2)dz+ [ f(2)dz+ [ f(2)dz=0 ()
X/ DC —xol BA

Adding equations (1) and (2), we get

I f(z)dz+j f(z)dz{j f(z)dz+J' f(z)dz]:O

xu x1/ xol xou
_[ f(z)dz:—_[ f(z)dz}
X

[ f(2)dz— | f(z)dz=0
x2

I f(z)dz= j f(z)dz

Generalization of Cauchy Deformation Theorem :
Statement : If f isanalyticin a domain bounded by non-intersecting
simple closed curves x, x,..., X, Where x, x,..., X, areinsde x and

on this curves, then
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j f(z)dz=f f(z)dz+I f(z)dz+...+J f(z)dz where,
X X1 X2 Xn
X, X, X0, ..., Xy aretraversed in anticlockwise direction.

Fig9.10

8.3 CAUCHY INTEGRAL FORMULA:

Statement : Let f be analytic in a simply connected domain G,
GcD. If x isasimple closed curve in G and be any point inside x
then,

jﬂdhzﬂi[f(z)]

=2ni f(a)  where, x is traversed in
Z-o Z=a

anticlockwise direction.
Proof : Given that, f isanalyticin a simply connected domain G.

construct acircle ' with centreat o and radius r >0 so that T lies
entirely inside x.

Fig 9.11
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The function ﬂ Is analytic in a domain which is bounded

Z—a
by two simple closed curves x and T" and on these curves.
By Cauchy deformation theorem,
J- f(z) dz:j f(z) dz :j f(z)—f(a)+f(a) dz
Z—o r Z—Q r Z—Q
j—f(z) dz= [ 2= flo) dz+ f (a) [ - (1)
Z—Q Z—Q Z—Q
r r
Consider, j dz
r Z—O
Equation of thecircle T is, | z—a|=r
or Z=oc+erit,te[0,27t]
dz=ire'dt
| z—a|=r

z=r+rd?, 6 <[0, 2n]

=oc+reit, te[O,Zn]

Fig 9.12

[ dz =2jn rd! dtzizjn dt = 2ri
rze g oret 0

Equation (1), becomes,

I%dz:j f(zl%;(a)dprzm f (o)

1 Iﬂdz—f(a): 1 J- f(Z)—f(OL)d

2mi Z—a 2mi Z—a
X r

z

%il—?dz‘f(“) < 211[ |f(|zlifa)| dz| (2

(| 2ni |=| 2n|[i|=2n *|i]=1)
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Given that, f isanalyticin G.
) f isdifferentiablein G.
f iscontinuousin G.
f iscontinuousat apoint o eG.
For agiven ¢>0, 3 >0 such that,

J|z-a| <8 = |f(Z)—f(a)|<s
Choose, r st. |r|<&
From equation (2)

ijﬂdz—f(a)

27 Z—0o
X

€
<_
2n

——
o
N
-
N
|
R
Il
=
—

€ €
- dz|= L(T) =
oo ]l (7)

C o2 2nr

<g

N G N

2mi Z—o
X

¢ isarbitrary.
| 1@ o f (o)

Z—O

Theorem : Let f be analytic in a simply connected domain G.
GcC. If xis closed rectifiable curve in G and a G/ {x}, then

L1 Gt (wn(xa).

27 Z—0o
X

Proof : Given that, f isanaytic in asimply connected domain G.
Define F(z) asfollows,

(-t .,
F(z)= Z-a (1)
f'(x), Z=a

F(z)=M isanayticin G/ {a} .

Z—Q

(" f(z)-f(a) and

areanayticin G/ {a})

Z—Q
lim f(z):limwzf'(a):lz(a) by (1)
Z—0 Z—a -

.". Fiscontinuous at apoint a.e G and hence F is continuousin G.
Fisanalyticin G.
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By Cauchy- Goursat theorem [ F(z)dz=0
X

f Z )dz 0

-
{ f( z)dz I
[+

N
Q

- 27

N

1 f(z)
dz=f .
i | S = (@) ()
Example 1 : Use Cauchy integral formula, to evaluate I z +12 dz

wherexisacircle| z|=2.

2
Solution : Given that, j %2 o,
9 z-1
2
F(2)- HZ):Z +2
z-1 z-1

an
N

Fig9.13
F hassingular point at z=1.
Given equation of circleis | z|=2.
Centreisorigin and radiusis 2.
The singular point z=1, liesinside the circle.
We use Cauchy integral formula

I @ dz=2ni[ f(z)]

Z—O

=

2+2 2 . . :
I 1 dz= Zm[z +2}zﬂf:2nwl+2]=2nw3)=6nl_
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2)  Evaluate [cot zdz where xisacircle 7= 1.
X

Solution: Icotzdz jcosz

Snz

For fmdmg singular p0| nt put sinz=0
= z:sin_l(o):nn

Singular point z=0, liesinsidethecircle | z|:y2.

Hence by Cauchy’sintegral formula j%dz 27i (cos0) = 27i
3)  Evaluate ISH(Z;) where C is the unit circle oriented
4
2

clockwise.

Solution: Let I= an(m)

-1

z=}é isapoint of singularity and liesinside |7 =

.'.20:%, f(z)=sin(zr)

1 =2t (2,) = 2i sin (77

Theorem : Let f be analytic in a simply connected domain G,

Gc C and suppose x is a simple closed curve in G. If a is any
point inside x then,

F(o) =0 | f2 @, where x is traversed in
2m (Z_a)z

anticlockwise direction.

(Note: To prove the theorem we will need the following theorem
Boundedness Theorem :Let f be continuous on a compact set S.
then, f is bounded on S i.e. there exists a number M

st f(z)|<M » ZeS)

Proof : Given that, x is a simple closed curve in G and o is any
point inside x.
By Cauchy-integral formula,

__ 1 f(z) f(2)
fo)= g [ 5y dandflesh= anjz—(a+h)dz
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Fig 9.14
o f(at+h)-f(a)= 271ﬂ {J‘ ;Ei) dzf%dz}
_ 1 J.[z (a+h)]f(z)-(z- oc)f(z)}
2xi Z a [Z 0c+h)]
1 Mo
~ 2ni £ [z- a+h)](z—a) d}
f(ath)-f(a) _ 2
h 27i {[z (o+h)](z—ot) d
1 (z-a)f(2)-[z-(a+h)]f(2) dz}
2 h [Z (a+h)](z-a)?
1 I hf(z)
2ri [z oH—h)]( )
= h (2 dz
2 ')[[z—(owh)](z—oc)z
flath)=f(a) 1 f(z) _|_|h] | 1(2)]| dz|
h 2mi i(z_a)z 2m / | z—(a+h)|(z-a)?
1)

Theorem will be proved if L.H.S. of equation (1) tends to zero as
h—0. Choose r =inf {| z-a|:zex} =1 <[ z-a].
Choose\a—(a+h)\:|h|<%
| 2-(a+h)[2| 2-a|-|h|
{""|a-bl<[a[-|bl}
"

]
>Sr——=—
2
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f isanalyticin G.
f iscontinuouson {x} { x? is compact set}

By boundedness theorem, 3 M >0 sit.
[f(2)|<M. V-ze{x}

From equation (1),
f(oc+h)—f(oc)_ 1 J~ f(2) |h|J.M|dz
h 27i X (Z—OL / r

h{.M h|.M
LIRS n|r j|dz|=—| n|r3 L(x)
X

L.H.S. tendsto zero as h— 0.
lim f((x+h)—f((x): 1 J- f(z) dz

. h>0 h 27 " (Z_a)Z
f'(x)= Zici J‘(Zf_(;))z dz

Generalization of the above theorem :
Theorem : Let f be analytic in a simply connected domain G,
Gc C and suppose x is a simple closed curve in G. If o is any
point inside x, then

()= g [

2m 5 (z-a)

where n=0,1,2,... Xistraversed in anticlockwise direction.
Prove this theorem by induction on n.

Note : If a function f is analytic a a point oG, then its
derivatives of al orders are also anaytic at apoint o.

Example1:
Use Cauchy integral formula or theorem, to evauate
Jsinnz+005nz

(z1)(z2)

, , 3
dz wherexisacircle | z|:E

Sinmtz+ cosnz

-1)(z-2)

Solution : Given integral I
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By partia fraction,

J-sinnz+003nz :I SiNz+ cosnz dz+j SiINTZ+ COSnZ
" (z-1)(z-2) z-1 z-2
f(z) ) )
Here, F(z):F(z):m has singular point a z=1
and z=2.

(Note : If the singular points lies inside the circle then we use
Cauchy integral formula and it lies outside the circle then we use
Cauchy integral theorem.)

Given equation of circle, | z|= 3/ i.e x2+y2=%

Singular point z=1 liesinsidethecircleand z=2 liesoutside
thecircle.

For z=1, we use Cauchy integral formula

jﬂdz:zni[f(z)]

zZ-a z=a
X

J- SiNtZ+ CoSnz
z-1

dz=2ni[sinnz+cosnz],_,

= 2mi [Sinn+COS7t] = 2mi [0—1]
=—2mi ....(a)
For z=2, we use Cauchy integral formulatheorem
[F(2)dz=0
X

J- sinnz+coSnZ

— 0 (b)

X

Substituting (a) and (b) in equation (1), we get

[ ST 7= 02 = 2ni

} (z-1)(z-2)

2z
2) J-e—3 dz where x is the rectangle with vertices at +i

Solution : Here, F(z)=LZ)3 has singular point at z=}é of

=

order 3.
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N
i < L.y
R 1+i
< 5 . >
v2 A
- N 1-i
- >
Fig9.15

By Generalization of derivative of an analytic function.
f n ((X) _ nl J. f (Z)

- 27'C| " (Z_a)n+l

Iidz—z—ni ()

X(Z_a)n+l n!

e’ T . 2
{ ) dz= ZZ! fz(%j =T { ;jzz (ezz)L_l
z T2

Exercise: Use Cauchy integral formulato evaluate,
. cosnz
i) j

> where x is a rectangle with vertices at 2+i and
z7-1
—2+i.

X

i) [tanzdz wherexisacircle
X

T I
z——|=—.
2‘ 2

z
i)y | © =2 4z wherexisacirce|z|=3.

X (2_2)3
, 22 +1 : ,
iv)  [——F~—dzwherexisacircle | z-3|=1.

Z—— i
X7

Singular point is P=%+i and here centre c=(3,0)

d(c, p)=d[3,%+ij=\/(3—%)2+(O,—1)2 - /sz>1 .

Singular point p lies outside the circle.
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2
V) J'Z+—22+3 wherex isacircle | z—i |=2.
Z—|

Cauchy estimate or Cauchy inequality :
Theorem: If f s analytic in an open disk B(o;R) and

| f(2)[<M » zeB(o, R)
n'M
Rn

then | " («)|< N=012..

Proof : For O<r <R,
Construct a circle x with centreat o and radius vy .

By generdlization of the theorem on Derivative of an analytic
function.

f(ZZH dz n=0,12,...

x (z-a) '

\f”(a)‘< ”!j 1) | dz| 1)

T o " | Z_a|n+1

5
—
N—"

Il
=
—

Given that,
| f(Z)|SM v ZeX

For any point zon x, we have | z—o.|=r

From equation (1),
! M n M n! M
f(n) SL dz|=———+ || dz|=—. 2mr
‘ (oc) 21 " I,n+1| | 21 rn+1 ;[| | 21 rn+1 xen
. n n'Mm
.‘f( )(0) |< r“
r <R isarbitrary.
|
AsreR,Wehave‘f(”)(a) < MM n=0,12,..
Rn

Cauchy Integral formulafor Multiply connected domains:
Theorem: It f is analytic in a domain which is bounded by two
simple closed curves x and x, (where x, lies inside x) and on

these curves and if z, isany pointin G. Then

1 f(2) 1 f(2)
f = dz—— d
(z9) z XIZZ—ZO z

2ni 0 zZ-7y 2ni
Where x and x, are transverse in anticlockwise direction
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Proof: Construct acircle x with centre at zyand radiusr, so that x
liesinside x

- The function 2. is analytic in a domain which is bounded by

ZARR4)
non-intersecting ssimple closed curves x, x,x, where (x and x, lies
inside x ) and on these curves

Fig 9.16

By using Cauchy determination theorem,

[EERARCRRYNIC 0
X1 Y X1 Y X2 Y
By using Cauchy integer formula, | %dz =2 f(z0)
X
Put this value in equation (1),
f(2) . f(2)
% dz=27i f _\4
I dz =2ni (ZO)+Iz—zodZ

-7

X X2

-.f(zo):i_ J‘ﬂdz—i_ J.ﬂdz
P X Z-17y P % Z-7,

9.4. SUMMARY :

1) Let G be starlike w.r.t. point z, and suppose that f is analytic in
G. Then there exists an analytic function F inG st. F'(z)=f(z)
inG.
In particular, jf(z)dz=0, for every closed, piecewise
X
smooth curve xin G.
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2) Cauchy-Goursat Theorem : (Cauchy Triangular Theorem) :
Let f be analytic in an open set G D. Let z,2),2; be

pointsin G. Assume that the triangle A with vertices z,z,,z; is

continuous in G then j z)dz=0, where 0A is the boundary of a
X
triangle A.

3) Cauchy Deformation Theorem :
Statement : If f isanalytic in ¢ domain bounded by two simple
closed curves x and x, (where x, is inside x) and on these

curves, then [ f(z)dz= | f(z)dz where x and x, are both

X X2
transverse in anticlockwise direction.

4) Statement : Let f be anaytic in a ssimply connected domain G,
GcD. If x isasimple closed curve in G and be any point inside x

then, j )dz 2ni[ f(2)],_, =2mi f(a)
where, x istraversed in anticlockwise direction.

5) Theorem : Let f be analytic in a simply connected domain G,
Gc C and suppose x is a simple closed curve in G. If o is any

point inside x then, f'(a)= 21| I(f(z))z dz , where x is traversed
n zZ-a

in anticlockwise direction.

6) Generalization of the above theorem :

Theorem : Let f be analytic in a smply connected domain G,
Gc C and suppose x is a simple closed curve in G. If o is any
point inside x, then

f"(a)= n!. j f(zlﬂ dz where n=0,1,2,.. X is
2m 5 (z-a)

traversed in anticlockwise direction.

9.5.UNIT END EXCERCISES:

1) Suppose f :G — C be an analytic function, define &:GxG — C

by
f(w)

@(z,w):f(ziﬁ if zzw

=f'(2) if z=w.
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Prove that @ is a continuous and for each fixed w,
z— J(z,w)is analytic function of z.

(Hint: Take z=zy+h,w=wy+k and z,+h=w,+kfor any hk.
COﬂSiderlim(h’k)_)(O,O) @(Zo+h,W0+k) :@(Zo,W()) , Slml|al’|y
|im(h’k)_>(0’0) @(Zo'f‘h,WO-i‘k):@(ZO,Wo) fOI’ 20=W0 and h:k or
h=k.

2) Let 5be a closed rectifiable curve in C and a¢{y}. Then
show that for n>2,
jy(z—a)’”dz:o.

Solution: Use the lemma that, if y is arectifiable curve and
1 is a function defined and continuous on {y}.

For each m>1, Fm(z):jy@(w)(w—z)*mdw for z¢{y}. Then each
F, Is anaytic on

C-{y}and F =mF,,. Take m=10=1 on {y}. Then
F(2) = jy (w—2)dw.

S F2)=F,y(2) on C-{y}. Here aeC-{y}.

~F{a=F,(a)  F,(a)=0, since F(a)is constant number
independent of a

w1, (z—a)2dz=0Inductively jy(z—a)’”dzzofor n>2.

3) Let fbe analytic on D=B(0,;1). Suppose |f(2)|<1 for |z<1.
Then show that
| (0)<1

( Hint: fis analytic in a simply connected set B(0,;1).
Let y=boundary(B(0;%D, then yisasimple closed curve and

a=0 is a point inside vy.

Consider f '(0) :%jy%dz
T
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f(z)

Z

2 =1.

f(z)
SIECE ‘—J ‘ <o

>

27V

n
4) Let y(t)=1+€'for 0O<t<2z.Find | ( 1] dzfor al positive
Z_

integers n.

(Hint : Put f(Z)f(z)_z Then | ( ] dz=| (f(z)/(z—l)”)dz

Where y(t)—(l+cos(t),sin(t)) for 0<t<2z. Apply the following
Cauchy- Integral formula

@) =) (2

20 (2 )Mdz, for n>1.

5) Use Cauchy- Integral formulato evaluate

()] cos(nz) dz, v is a rectangle with vertices at 2Fi,-2i

(i1) |

dz y is acircle |7=3

7( _
Solution (ii) Let f(z2)=e*—z.

By generalisation of Cauchy formula for derivative of
analytic function

i @nia) = — @ g for n>1.

2 i y(z a)n+l
Here a=2 and we have |[4=3 and n=2.
e’—-z
f2(2 ) =—
()77(7 2) .[},( _2)3
eZ
jy( 23 dz 7if 2(2), since n(y;2) =1.
f@(z2)=€e?. 1 f?(2)=¢? [ i dz=ire?
. . ' 22y .

sinz

(z-7)(z-7)

(iii) _[

dz where y isthecicle |z=
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92 (0)=2/cos(20)| e’ for

6) Evauate the integral jy 7.4
Z +

0<60<2r.

7) Use Cauchy-integra theorem or formula to evauate
J»cos(1rz)+sin(7rz)

dz where Y is the circle |z]=2, taken in
. Z%+1

positive sense.

cos( e’ )

dz , where 7 isaunit circle.
z(z+2)

8) Evaluate |
Y
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10

THEOREMSIN COMPLEX ANALYSIS

Unit Structure:

10.0. Objectives

10.1. Introduction

10.2. Morera's Theorem

10.3. Liouville's Theorem

10.4. Taylor’'s Theorem

10.5. Fundamental Theorem of Algebra
10.6. Summary

10.7. Unit End Exercises.

9.0 OBJECTIVES:

In this unit we shall prove the important theorems in
complex analysis.

1) Morera stheorem

2) Liouville's theorem

3) Taylor's theorem

4) Fundamental theorem of Algebra

9.1. INTRODUCTION:

Given an entire function f, we saw that f has a power

f%(0)

series  representation as Y oa, , Where each a = . In fact

being an entire function the kth order derivative fX(z)exists
vk>0.

In this unit we propose to prove some important
theorems in complex analysis .Let us start with the Taylor's
theorem.
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9.2 MORERA’STHEOREM :

Note: thisisasort of converse of Cauchy Goursat thm.

Theorem:
If f(2) is continuous in a simply connected domain D and
jf(z)dz:O where x is rectifiable curve in D , then f(2) is analytic in

X

D

Proof: Suppose zis any variable point and z, is afixed in the region
D. Also suppose x; and X, are any two continuous rectifiable curve in
D joining z, to z and x is the closed continuous rectifiable curve
consisting of x; and -x,. Then we have

[ f(2)dz= [ f(2dz+ [ f(2)dz and [f(dz=0 (given)

X X X

j f(z)dz:-j f(z)dz:J. f(2)dz

X —-% X2
i.e. the integral along every rectifiable curve in D joining 7, to z is
the same

Now, consider afunction F(z) defined by F(z) = f f(wydw ........ Q)
7

As discussed above (1) depends only on the end points z, and z
If z+h is a point in the neighbourhood of 2z then we

haveF(z+ h):zj‘h f (w)dw ....(2)
Z
From(1)and (2), we have

F(z+h)-F(2) = Zj‘h f (W)dW—JZ. f(w)dw= Zj.h f (w)dw+ ]9 f (w)dw
z 7 z

z
z+h

- j fwydw ....... (3)

Since the integral on the RHS of (3) is path independent therefore it
may be taken along the straight line joining z to z+h, so that

F(z+h)-F(2) 1% f(2)
. —f(z)zﬁj f(w)dw—Th

z

1 z+h z+h 1z+h
= j f(w)dw—f(z)JZ' dw | == j (fw)-f(2)adw ... (4)

z

The function f(w)is given to be continuous at x therefore for agiven
g>0thereexist 5§ >0st. |f(w)- f(2)|<e St. (w-7 <5
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Since his any arbitrary therefore choosing |h| <5 so that every point
w lying on theline

joining zto z+h satisfies N ()]
From (4)and(5), we have

F h_F 1z+h
‘ (z+ ; @ _t(z smh(w)—f(z)l-ldWI

z+h

1 1
S VIR SR
e 1

z

Since ¢ is smal and positive, therefore we have
‘F(z+h)—F(z)_ (2 F(z+h)-F(2) _ f(2)
h

=0 or lim
h h—0
Hence F'(2) = f (2)
i.e. F(2) is differentiable for all values of z inD. Therefore F(2) is
analytic in D. Since the deriviative of an analytic function therefore
f(2) isanalyticin D

9.3LIOUVILLE’'STHEOREM :

Statement : If f is an entire and bounded function, then f is
constant. (2006, 2008)

Proof : Giventhat, f isan entire and bounded function.
AM>0st | f(z2)[sM » zeC

f isan entire function and hence f isanalytic everywhere in
Complex Plane C and C =B(a; R) (say)

‘ f(n)(a) n;l;/l

<

n=012,..

‘f(n)(z)‘s n:M n=0,12,...
, 1M

|f(2)|ST

|f’(z)|s%—>0 as R— .

| f’(z)|:0 v zeC.

= f isconstant.

Aliter :
Given that f is an entire and bounded function. Let z and z, be

any two pointsin C.
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Construct a circle x with centre at z and radius R so that point z,
liesinside x.

By Cauchy’sintegral formula
f f
()= [ e and 1(z)= L [T g

E_, p2} 2mi xE"_ZZ
! 1 f(
F(a)-f(z)=— J& 7 0 f
<——|z- d 1
27-[|22 Zl|;“(|&_22||&_21|| §| ()

Choose R, o large that | zz—zl|<%, since ¢ is any point on the
circle x.
[&-7|=R
R R

Now, |§—22|:|§—21+21—22|z|§—zl|_|22_zl|>|q_7:7

Giventhat f isbounded function.
| f (i) |S M v EeX

From equation (1)
[ f(z2)-f(z \<Z—|22 4[5 — R ldE]
xZ.R
_|z- Z1|
n R?
_|22—21|M><2nR _2l-z|Mm
- nR? - R

Mj|da|

‘ f(Zz)—f(Zl)‘S%|22—Zl|M —>0 as R—ow.

| 1(2)-f(z)|=0

f(z)= f(z) for any two points z and z, in C.
. f isconstant.

Note: If f isanon-constant entire function the f isunbounded.

Example: Let f(z)=u(z)+iv(z) bean entire function and suppose
lu(z)|<M - zeC. Provethat f isconstant.
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Proof : Giventhat, f(z)=u(z)+iv(z) isan entirefunction.

Define g(z):ef(z)
= g isanentirefunction.

|g(2)|:‘ef(z) — eU(Z)+iv(z) _ eu(z)
o
| 9(z)|<eM constant.

= @ ishbounded.
( lu(z)|<M ZE(C)

Thus, g isentire and bounded function.
By Liouvill€ s theorem,
g Is constant.

ef () is constant.
f (z) = u(z)+ iv(z) is constant.
= u and v are constant.

Note: If f(z)=> a,(z-a)" hasradius of convergence.
n=0

R>0, then f isanalyticin B(a; R).

94TAYLOR'STHEOREM :

If f isanalyticinadomain G, then for any point zeB(a,R)cG, f

has Taylor series expansion, f(z)=§an(z—cx)n where
n=0

f(n)(a)

n!

Proof : Giventhat f isanayticinG.
For O0<r <R, construct a circle x with centre at o and radius r so
that the point zlies inside x.

By Cauchy integral formula, f(z):% | 2(5»2) de (1)
e

Now, L 1 =

-z E-a+ta-z (&—a){l— E;:ZH




1 - ~ (Z—oc) -1

T | <a—a>}

S 1+ (z-0) +.ot (Z_a)n_l + (z—a)” +..

Ea [ 07 o™t (o)
{ (x)_1:1+x+x2+...}

— 1+ (z-a) +.t Z_a)n_l +(Z_OL)n ) 1

E-o)| " (o) 7 g™ (w20

(¢-a)

[ (1- x)_1 L XA XX

2

1 XA XX XD (1+ X+ X2 +)

1 X XX XD (1- x)_l}

[ 1, (zma) ()" (z-0) 1} 2

+..+ -

o emaf T e (gme)f G2

Multiplying equation (2) by % and integrating w.r.t. & over.
- 1(2)= 2711i {gd‘t’
- L lgfz dz + (22‘;‘) l(;_(i))z de ..
+(z-a)”‘1£ (;_(i))” dg + (Z;:;)n {(é—;)((ég—z) d (3

By generalization of the theorem on derivative of analytic function.
() (o= ] ©) g ooz

 2mi *(E—o)™
(n)
OR f (a): 1.'[ f (&)
n! 2mi (g_a)ml

Substituting all these values in equation (3), we get

(2-a)? ., (z-a)" (T

F(2)= o)+ (2o @) () + 25 (o) oty

+An



196

=3+ al( )+az(2—0c)2+...+an_1(2—(x)n_l+Ah
§(n)

1) ) 10
n! d A= 27i ){(g_a)”(g—z) .

oy =

The theorem will be proved if lim A, =0

N—o0

| z- 0‘|nj ‘f(é)‘ | de |

4
B T Py ey X
Choose [¢|>0st. [z-a|=$  (0<$<r)
Since ¢ isany point on the circle x.
Now, |§—Z|=|§—oc+oc—z|2|§—oc|—|Z—oc|=r—?
Giventhat, f isanalyticin G.
f iscontinuous on {x} (" {x} is compact set)

By boundnesstheorem, 3 M >0 st. | f(&)|<M + &ex
From equation (4),

g" M M s\
Al 1y () e

X

M

T 24(r-3) (%J”_%r

o \N
[—j —0 a8 n—>wo
r

Mr

<
[l (r-9)
( lim xX"=0, 0<x<landhence 0<$<1 = 0<§<rj

N—o0

lim A, =0

N—o0
Given seriesis convergent and we write

f(2)=f(a)+(z=a) F'(X)+(z=a)* F"(a) +...
f(“)(a)

n!

=> ay(z-a)" | where a,=

Put a.=0 in equation (1), we get,

£7(0)

n!

=>a,z" where a =
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Example1: Expand sin z in aTaylor series about z:%.

Solution : By Taylor series
f(z)=f(a)+(z—a)f'(a)+

Here, f(z)=sinz and a =

(2-a)?
2!

(o) +

T
4

. . T
f = = —_— —
(a)=sino.=sin 2

f'(z)=cosz= f’(OL)=COSOL=COS%=—

. . . -1
f"(z)=-sinz= " =—9n :_gniz_

) (@) ’ 4 J2
f"(z)=-cosz= f'"(a)z—COSoc=—cos%=_—1

J2
Substituting above valuesin equation (1), we get

+@m£j1 @_ZT(1J+&_ZT(1}N

. 1
Sr]Z=\/7 2 \/7 + 5 \/? 6 \/7
2 3
z-T 2-T
— \/1? 1+(Z_TE )_( ZA') —( fl) +...

Zeros of an Analytic Function :

Definition : A complex polynomial p(z) of degree n is an

expression of the form ay+az+ayz+...+a,2", where ag, &, ..., a,
are complex constants and a,, = 0.

Definition : Let G be an open set and suppose f :G — C isagiven
function. A point zyeG is said to be zero (or root) of f if

f(z)=0.
eg. f(z)=22—52+6=22—32—22+6=(z—3)(z—2). Here roots or
zeroof, f are z=2 and z=3.

Definition : If f:G— C isanalyticand o in G satisfies f(a)=0,
then o isazero of f of order (multiplicity) m>1, if 3 an analytic
function g:G - C st. f(z)=(z-a)"g(z) where g(a)=0.
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Example: Let f :G — C beananaytic function then f hasazero
of order m>lat z=o if f(z)=(z-a)" g(z) wheregisanaytic on
Gand g(a)=0. (2006)

Solution : Let f(z)=(z-a)Mg(z) where g is anaytic on G and

g(a)=0 (1)
By Taylor series,
For any ze B(a;y) =G, g has Taylor series expansion

(z-a)°
g(z):g(oc)+(z—oc)g’(oc)+Tg"(oc)+...
(Z—(x)m+2
f(z)=(z-a) | g(a)+(z-a)g'(a)+ o 9" (a)+
(Z—a)m+2

= (2-0)"9(0) (2~ o)™ g (o) + T2 g(a)+

_(Z—a)m " (Z—a)m+1 - (Z—oc)m+2
L A Gl mre e B Oy vy

£(M2) () + .
Clearly, thisisa Taylor series expansion about z= o and
f(a)=f'(a)=f'(a)=..= F(M Y (a)=0 and (™ (a)=0.

= f hasazeroof order m>1at z=a.

Conversely, assumethat f hasazeroof order m>1 at z=«.

f(a)=f'(a) == F (MY (a) =0

m+2

+ams1(z—a) T+ana(z-a) T+
:(Z_O‘)m[am+am+1(z o)+am2(z- oc)2+...:|

m+1

( zo tnm(z+a)’ 1(2)=(2-0)"9(2)  9(c)#0
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Note:  f'(z)=m(z—a)" " g(2)+(z-a)"g'(2)
m-1)(m-2)..x2x| g(2) [+ ...+

m!
Each of these terms have (z-o.) asoneform.

f(m) (7)™

£ () =mig(a)+0+0+...
(M ()= mig(a)

Definition : A zero of an analytic function f issaid to beisolated if
it has a neighbourhood in which there isno other zero of f.

Theorem : Any zero of an analytic function is isolated in the set of
its zeros. (2009)

Proof : Let f:G— C bean analytic function.
Suppose f hasazero of order mat z=oa.

f(2)=(z-2)"g(2) (1)
where g isanayticon Gand g(o)=0.
Let £>0 begiven.
Put | g(a)|=2:>0

g isanalyticon G.
= giscontinuousat o eG.
= for the above €>0, 38>0

st.|z-a|<8 = |g(z)—g(oc)|<s
When | Z—a|<8 i.e ze B(OL,8)
92| 2[g(@)|-|o(@)-9(2)| 2| g(a) [-| 9( )+9(a) |> 22 =2

|g(z)[>e>0

g(z)=0 ~w zeB(a,d)

g(z)#0 ~w zeB(a,8)—{a}
and |z-a|#0 -~ zeB(a,8)-{a}
or |z—a|#0 -~ zeB(a,8)-{a}

From equation (1)
f(z)=(z-a)"g(z)#0 ~w zeB(a,8)—{a}
o isarbitrary.

. Any zeros of an analytic function isisolated in the set of its zeros.



200

9.4 FUNDAMENTAL THEOREM OF ALGEBRA :

Statement: Every non-constant complex polynomial has a root.
(2009)
OR
If p(z) is a non-constant complex polynomial then, there is a

complex number and o with p(a)=0

Proof : Given that p(z) is a non-constant complex polynomial
T.PT. p(a)=0.
Assume that thisis not true.
Suppose p(z)#0  z.

) p(z) isan entire function.

1
P(2)
=  f isanentirefunction.

p(z) isnon-constant entire function.

= p(z) is unbounded (by contra positive statement of Lioville's

theorem)

lim p(z)=o
Z—>0

Let f(z)= 1)

From equation (1), lim f(z)= Iim{ 1 }:izo
Z—>o0 20| P(2) e
Let f bedefined on an bounded set E.
If for agiven ¢>0, 3 R>0 st.

| f(2)-¢|<e whenever  |z|>Rand zeE
Then, we say that f (z) > ¢ as z— .

lim f(2)=¢

Z—>0

3 +7 B(OR)
/ closed disk

s, Q
.
~, ','
~ -
Seeanfa-m

(closed disk B(O,R) iscompact set )

Fig 10.1
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For given £ >0, 3 R>0 st. | f(z)|<& whenever | z|>R
f isan entire function.

f iscontinuouson B(0; R).

By boundedness theorem.

f isbounded on B(0; R).

IM>0st. |f(z)|<M  ~ zeB(OR)

f isentire and bounded on B(0; R)

By Liouville' stheorem, f isconstant.

From equation (1),

1 1
P(7) f(z) constant eonstan

which contradicts the hypothesisthat p(z) is non-constant.

Our assumption iswrong.
“+ Thereisa Complex Number o with p(a)=0.

Exercise : Prove  that a  complex polynomial
p(2) =8y +az+aZ+.+a,2" has exactly n roots where ag, ay, ..., a, are
complex constant and a,, = 0. (Use fundamental theorem of Algebra)

Theorem : Supposethat f isanalytic in domain G. If z;, the set of
zerosof f inG, has limitpointin G, then f(z)=0inG.

Proof : Giventhat f isanayticinadomain G.
z¢ ={ze f(z)=0} and a isalimit point of z;.
Let {z,} beasequenceof zerosof f inG, suchthat lim z,=a

N—oo
f isanalyticon G, f iscontinuouson G.

f(a)—f( lim znj: lim f(z,)=0
N—oo N—oo
{7, isazeroof = f(z,)=0}
f(a)=0
zeros of an analytic function are isolated.
either f(Z):O ~w ze B(0,; )
OR f(2)#0 ~ B(w;8)—{o}
x is connected if the only sets of x which are both open and
closed are & and x.
Assumethat f(z)#0 in B(a;8)—{a}
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a is a limit point of z; = every nbd of o continuously
infinitely many points of z; .
For sufficiently large n, there is a point z, such that f(z,)=0 in
B(a;8)—{a}
) Our assumption iswrong.
Hence, we must have f(z)=0 -~ zeB(w;3)

Fig 10.2

Given that, G isadomain.

G isopen and connected.
We split the set G into two sets.

A:{aeG:g isapoint of zf}
B={£eG:E¢ A}, where z; istheset of zerosof f inG.
) ANB=g and AUB=G

& e A isalimit point of z; inG.

f(z)=0 -~ zeB(§;39)

= ze A
) zeB(§8)=>zeA
B(&,3)c A
= Aisanopensetand A= (CaeA)

Let £&'e B, then £ isnot alimit point of z; .

By continuity of f at £, 3 §>0 sit.
f(z)#20 - zeB(&;3d)

= ze B
Thus, ze B(i',S): zeB
B(§;8)cB

= B isanopen s&t.
G is connected.
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It can not be written as a union of two non-empty digjoint open sets.
= A=g or B=Y

But AzJ ( oe A)

) B=O
A=G (*."AUB=G and B=0)
Each point of G isalimit point of z; .
f(Z):O v z2eG

Theorem: Let f and g be analyticinadomain G. If T isa
subset  of G having limit point o in G and if
f(z)=9(z) ~ zeT, then f(z)=9g(z) -~ zeG.
F(z)=f(2).9(2), T={zeG:F(2)=0} and use of previous
theorem.

Theorem : Let f be analyticin adomain G such that for some o
in G and (" (0)=0, n=0,12,.. then f(z)=0 + zeG. (Use
Taylor’s theorem)

Exercise : Prove that the function f (z)=ze” -z has a zero of order
2 at origin.

f(z)=2e"-z2

.. by Maclaurin expansion

f(z)=2e"-z
2 3 4 5 6
:z(1+—+—+z— .,z Z—)—z
1 21 31 4 5 6!
2 3 4 5 6 7
:( Z_ _+Z_+Z_ Z_ Z_)_

Z2 Z3 24 Z5 ZG 7
— et —t—+—+
21 31 4 5 6!
1 z 22 22 2 7
=2 (+—+—+—+—+—
1 21 31 4 5 6

-.since lowest power of zis2

10.5 SUMMARY :

1) Morera’'s Theorem :
Statement : Let G be adoman in C and let f:G—>C be a

continuous function s.t. I f(z)dz=0 for any triangle A in G then
oA
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f isanadyticin G. (Thisis a partial converse of Cauchy — Goursat
theorem.)

2) Liouville'sTheorem :

Statement : If f is an entire and bounded function, then f is
constant.

1) Taylor’s Theorem: If f isanalyticinadomain G, then for any
point  zeB(a,R)cG, f has taylor series expansion,

o ()
f(2)= Y a,(z—a)" where %szI(OL).
n=0

3) Fundamental Theorem of Algebra:

Statement : Every non-constant complex polynomial has aroot.
OR
If p(z) is a non-constant complex polynomial then, there is a

complex number and o with p(a)=0.

10.6 UNIT END EXERCISES:

1) Show that an entire function is infinitely differentiable.

Solution: If fis entire, by Taylors expansion of f, fhas a
power series representation. In
fact fk(O) exist vk >1.

f(2)= (O)Zk, vzeC
kO k!

Wecan see that f(z)has an infinite radius of convergence.
f (z) converges for al zeC.

By the result that Power series are infinitely differentiable
within  their domain  of convergence, f(z2)is infinitely
differentiable.
°°kf K0 k1_ < 4(0) A
f(z
@)= kl k! kzl(k 1)'
k-1 (0) - 2 s t*0) x
k! 2 (k- 2)I

f2(2) =32, Z?and so on.
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2) Find the power series expansion of f(z) =z around z=2.

Solution: - f(2)=f(2)+f (2)(z- 2)+f"(2)(z 2)2 +

f(2)=4+4(z-2)+(z-2)?
3) Find the power series expansion for e about any point a.

4) Suppose an entire function fis bounded by M, aong |7 =
Show that the coefficients in it's power series expansion about

z=0 %tisfy|ck|s%. ( Hint: ck_fk(o),

by Cauchy formula .. f*(0)= L(Zi dz Vk>1)

27 J\ Z=R,

5) Let f be an entire function, if for some integer k>0, there

exist positive constants A and B such that |f(z)| < A+B|Z*, then

f is apolynomial of degree atmost k.
(Hint: Use Liouville's Theorem)

6) Using Morera's theorem show that the function f defined by
zt
e
f(z):jg"t—ldt is anaytic in the left half plane D:Re(z) <0.
+
Solution: - f’oﬂdt<j°°e’ddt——i for Re(z) = x<0
IR I R X! - '

This integra is absolutely convergent and |f(z)|sﬁ
X

Consider Ip f(2dz=] (jo dt]dz Here I'= The boundary of
some closed rectangle in D.
zt
e
Since, Ir j{fHdtdz converges hence we can interchange the order
+

of integration .

f(2)d - —deZt d “0dt=0, si —eZt i alytic insid
Z2)0z = tdz = t=0, sIince IS an IC INSide
IF 2 IO Il"'[+1 IO t+1

and on a closed curve T.
. By Morera's Theorem f is analytic inD.
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dtis an entire function.( Use Morera's

7) Show that 139”52”
Theorem. )

8) Show that o is azeroof multiplicity kif and only if
P(a)=P'(@)=...= P*}(a)=0 but P¥(a)=0.
(Hint : Use the Fundamental theorem of Algebra.)

9) Find the order of zero at z=0 of the function f (z)= z(zez — z).

10) Find the Maclaurin series expansion of f (z)=sin®z.
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11

MAXIMUM AND MINIMUM MODULUS
PRINCIPLE

Unit Structure:

11.0. Objectives

11.1. Introduction

11.2. Maximum Modulus Principle, Schwarz Lemma ,Open
Mapping Theorem

11.3. Automorphisms of the Unit Disc

11.4. Summary

11.5. Unit End Exercises

11.0 OBJECTIVES:

After going through this unit, we shall understand
1)Maximum modulus principle and open mapping theorem for
analytic functions . 2) Corollaries on open mapping theorem
and maximum modulus principle. 3) Possible Automorphisms
of the Unit disc B(0;). 4)Harmonic functions and their

properties.

11.1 INTRODUCTION :

In previous sections, we have studied the connections
between everywhere convergent power series and entire
functions. We shall now turn our attention to the general
relationship between power series and anaytic functions.
According to a theorem, every power series represents an
analytic function inside it's circle of convergence.

Our first goa is the converse of this theorem. We then
turn to the questions of analytic functions in arbitrary open
sets and local behaviour of such functions.
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11.2 THE MAXIMUM MODULUS PRINCIPLE:

Definition : Let G be any subset of C. A complex function f
defined on G is said to have local maximum modulus at a point o in
Gif, thereexists >0 s.t. B(a;8)=G and

f(2)|<|f(a) VzeB(a,d).

Similarly, f has local minimum modulus at a point o in G, if
3 §>0st B(a;8)cG and

| f(Z)|2| f(a)| A ZeB(a,S).

Theorem : Suppose f is analytic in a domain G and thereis a
point o in G st. |f(z)=|f(a)VzeG. Then f isconstanti.e. if

| f | attainsto maximummodulusin G then f is constant.

Proof : Given that, f isanalytic in domain G (open and connected
Set)
’ aeG and G isopen.

Ir>0st B(o;r)cG

where x =0B(a; )= boundary of closed disk B(a;r)

X

Fig 11.1

By Cauchy integral formla,

f(a)—ijﬂdz

27 Z—a
X

Herexisthecircle| z—a |=r

z=q+ret te[0 2n], dz=ire'ldt



o T e 2T )

D)
Giventhat, |f(z)|<|f(a)| ~ zeG

‘ f(oc+reit)‘s| f(a)|
From equation (1), we get

1 2n " 1 2n
— Hf(aﬂe )‘dtsz—n“f(a)\dt

- ‘ fz(:) Tdt: ‘ f(:)‘ [t]én
0

2
MACIRPRErI
2n
1 2n it
‘f(oc)‘gz—nj f(oc+re ‘dt<‘ |
2
:2_1n ch f(oc+re't ‘dt
21
211‘ f(a ‘ 'f f(oc+re ‘dt
0
2n )
J | f(a)|dt= I (oc+re't)‘dt
0
[-.-2n\ f(a)\=j | f(oc)‘dt}
0
2n )
[ D f(a)‘—‘ f(a+re't)Hdt=0
0
Here, the integra \ f(oc)‘—‘ f(oc+reit)‘ is continuous and non-
negative.
| oc |—‘ oc+reit ‘:O A«+'[e[0,27t]
‘ oc+re ‘ ‘f Avf—te[O,Zn]

‘ z‘_‘f )‘ v ZeX
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Thisequation holdson all circles | z—a |=§ 0<s<r

f (z) isconstantin B(o,;r)

f(z) isconstantin B(o;r)
("7 If f:G>C isandyticand | f(z)|= constant if zeG then, f
isconstant on G.

By using theorem [Let f and g be andyticin adoman G.
If T isasubset of G having limit point o in G and if
f(z)=g(z) ~ zeT then f(z)=9g(z) ~ zeG]

f isconstant in G.

Maximum Modulus Principle :
Suppose f is analytic in a bounded domain D and

continuous on D (Closure of D). Then, | f | attains its maximum on
the boundary oD of D. (2006, 2012)

Proof : If f isconstant, then there is nothing to prove. Let f bea
non-constant function.

Given that, f iscontinuouson D (D isacompact set).

| f | attainsits maximum value at same pointin D.
Maximum modulus principal,

| f | does not attain its maximum in D.

| f | attains its maximum on the boundary oD of D.
(D=DUaD)

Minimum Modulus Principle :
Suppose f is a non-constant and analytic function in a

domain G. If | f | attainsitslocal minimum G at a, then f(a)=0
or fisconstant (2006,2007)

Proof : Given that, f isanon-constant analytic function in adomain
G and | f | attainsitslocal minimum at apoint o in G.

|f(oc)|£|f(z)| v z2eB(0;8) =G Q)
Toprovethat f(a)=0

Assume that thisis not atrue.
i.e.  f(a)=0insomeopendisk B(a,r)cG.
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1
g isanayticin B(o;r)cG.
From equation (1),
1 > 1
()] [f(2)]
OR
|g(z)|£|g(oc)| A ZeB(a,r)

g hasalocal maximum modulus at apoint o in G.
By maximum modulus principle,
Gisconstant in G.
From equation (2),
]

1
(2 g(z) constant consen

= fisconstantin G.
which is contradictsthat f isanon-constant function.
Our assumption is wrong.
f(a)=0

Theorem : If f is a non-constant analytic function in a bounded
domain G and f(z)=0 for any zeG, then | f | can not attain its

minimumin G.

Example : Let f(z)=€* and T=B(2+3i,1). Find apointin T at
which | f | attainsits maximum value.

Solution : Given function, f(z)=e”

T=B(2+3,1)

B=BUdB

(3.3

Fig 11.2
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The boundary of T isthecircle.
| z-(2+3)]=1
By maximum modulus theorem, | f | attains its maximum
valueon B.

| f(z) |:‘ &2 ‘ _ e(2+3i)+(1)e'9 :‘ ez+cose.ei(3+sine) ‘ :‘ e2+cos(9‘
e
:e2+cose
We know that, the value of cos8 is maximum when 6=0.
‘ez ‘:ez+1:es

‘ez‘=e3 isthe maximum value of f atapoint (3,3) or 3+3 inT.

Exercise: Let f(z)=z and T=B(0;1).
Prove that the function | f | cannot attain its minimum value on the
boundary of T.

Schwarz'sLemma
Let D ={Z€(CI|Z| <1} be the unit disk and suppose f is analytic in D

with, () f (0) = 0 and (i) |f(z)|<ilforzeD. Then,

1f(2)|<|4 vzeD and |f'(0)|<1. Moreover, if |f(z)=|7 for

some z#0, then there is a constant C with |d=1 st

f (o) =Cco Vo e D.(2004, 2005, 2008)

Proof: Given that, f is analytic in D, with (i) f(0)=0 and (ii)

|f(2)|<1for zeD. Define g:D — C by
f(z)/z z#0

g(z):{ f('(z)) ' 2=0

=g isanayticinD

Chooser st. 0<r<1

- onthecircle |7 =r

(2= 2

z
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‘9(2)‘3—% onthecircle |z =r

........ (‘ f (z)‘ <land|Z= r)
. by Maximum Modulus theorem,

‘g(z)‘g? VZeE(O;r)
Asr 1 [g(z)<1 vzeD=B(01) = --------eee 2
AR C) e — (by (1))

:>‘f(z)‘3|z| VzeD

Again, from equation (1)

F(0]-lp(0)1 2

s | (o) <1

If‘ ‘ Z for some z=0 then,
f(2)_|2

g ==

8= )

~. |g| attainsits maximum value of some point z inside D.

. by maximum Modules principle,
g isconstant in D

i.e. g(z)=c where, cisconstant and |c|=1

i),
z

or f(z)=cz VzeD

or f(co):Cco YoeD

Example: o;z in D, definethe M.T. %(Z):l —
(0

Let f beanalyticin D and let | f ()| <1,then

. f(z)—f( )| -

(i) o0~ OR ‘q)f ‘ 60 (2)| vV @,2e D
(2 1 _

(u) I Z)‘z < e VzeD

Solution:

Fix apint o in D arbitrarily
Put o=2—% =0y (2) > z= oTa

1-az 1+ aw




Define ¢1(,)f(2)=9(w)= 1f_(fz 2;)2(?2)) -------------------- (1)
O f(2)= f(f:r&(;]_f(a)
) 1-f (a) f (ﬂ%‘;j

- gisanayticin D, g(0) =oand |g(w) <1

By using Schwarz's Lemma,

90 \<1and\g <o VoD
z
%1 % Il o?zi
OR
‘(I)f( ‘ |¢a |‘v’ZeD
From equation (1)

e )

io ){(1 a2) (1) +(2- ) ]

(2]’

<1 (-.-‘g’(o)‘sl)




215

f'(o) 1
1—‘ f (oc)‘z 1—|oc|2
f'(a) 1
1-[f (o) 1o
Put o=z f,(z)z 1 VYzeD
1-|f (2" 1-/4
i) |1 (2) < 1‘; ‘”
‘g ‘_|03| VYoeD
f(2)- ()] _y|z-a|
1-f(0)f ()| 1-oz
Put =0
f(z)-f (o) <4
1-f(0) T (2)
If |a] <1 and|b[<1
[al-lbl _|la=bf _ |al+]o
1-fal “[1=a| 1+
1@to) | ra-ro) |,
1- |f(z||f )| “|1- f (o) and f (z)|
‘ (Z)‘ ‘f( )‘ </
1-]f (2)][f (o)

1) £ @<F{a-] (2] )
At @<t o
Wl ol
]

[t (o))l

Counting zero
Definition : A zero of order oneis said to be asimple zero.

eg. Let f(z)=22—32+2
Here, f hassimplezerosat z=1and z=2.
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f'(z)=2z-3
f’(l)z—l #0
f'(2)=-1 20

Prove that al zeros of the function sinzare simple.
Tofind zerosat sinz put sinz=0

snz=0 = z=sn"1(0)=2", n=0+Ll+2.. neZ
f(z)=sinz
f'(z)=cosz
f'(z)=cosnn=(-1)"#0, ~ neZ
. All zerosof sinz aresmple.

Theorem : Let f be analytic in a domain G with zeros
aq, 0o, ..., 0y, (repeated according to order)
If x isa smooth closed curvein G which does not pass through any
Otk’S then
1 (2, O

—— dz=>) n(x o)

2mi 5 f(2) ]
Proof : Given that, f is analytic in a domain G with zeros
aq,09,..., 0 (repeated according to order or multiplicities.)

f(z)=(z-aq)(z-ay)..(z—oy), Where g is anaytic and

g(ax)#0, k=1,2,..,m

Taking log on both sides and differentiating w.r.t. z, we get
NN W S [
f(z) z-oq z-ap z-om  9(2)

Multiply this equation by ZL and integrate w.rt z over {x} on
i
both side.
f! ’
—1. (2) dz= 1_ I dz +..t 1_ I dz + 1. I g(2)
2mi ¢ f(2) 20 | z-oy 2ni Y z—oy  2mi
X X X X

gand g’ areanalyticin G.

9 s analytic in G and x is a smooth closed curve.
g

9(2)

By Cauchy theorem, | 9(2) 4, _g
X
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1 f f'(z)

2—7Tix (2) dz=n(xay)+n(X0p)+...+N(X o)

M=

n(x; oy )

k=1

Note:

1 f'(2) i _ .
— dz=) n(x ax)= Number of zeros of f inside x,
2 f(2) =
where each zero is counted according to its order.
eg. for f(2)—(z—oq)(z—a2)? 9(2)

Zim!( %dZﬂ](x; op)+n(X ap)+3n(x a3) =1+0+3=4

G

.az

Fig11.4

Corollary : Let f, G and x be asin the preceding theorem except
that o4, op, as,...,a, are the points in G that satisfy the equation

f(z)=o then,

R G
dz= : Number of zeros of
2ni£ f()-a z kZ::ln(x ay) u Zeros

f(z)=o insidex.

2
Example : Evaluate J'Mdz where f(z)=M and x is
X

f(2) A5
thecircle | z|=1.2.
z(z—l)2
Here, f(z) hassimplezeroat z=0 and z=1 isazero of order 2.
Given, equation of circle, | z|=1.2.

Solution : Given function, f(z)=

Zero z=0 and z=1liesinside x.



i
N

C
Fig 11.5

12

By theorem, —— j () dz = number of zeros of inside x where

(2)

each zerois counted according to its order.

21i [ ];((ZZ)) dz=1+2=3 = | ff((zz)) dz = 6ri
T
X
' 2. (z—
Exercise: Evaluatej ];(Z) dz where f(z)= z (23 b(z+3) and
" (Z) z°+2

x isthecircle | z|=15.

Note : Let x:[0,1]>G be a closed (Smooth) curve in C and

suppose f:G— C isan anaytic function. Then c=fox isaso a
closed curve in w-plane. If o is a Complex Number
= f({x}), wewrite,

=
qQ —
o
=
=
O —
Q
Q
—_
—
~
o
=3

, 2
Exercise: Evaluatej ];((Z) dz where f(z)= z
X

isthecircle | z|=1.5.
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Note : Let x:[0,1]]—>G be a closed (smooth) curve in C and
suppose f:G— C isan anaytic function. Then c=fox isasoa
closed curve in w-plane. If o is a Complex Number

)
];(Z) dz=1+2=3

m

=Y n(x ax)= numbers at zeros of f(z)-o inside x where each
k=1

zero is counted according to its order.

c -

X

L) C

o=foXx

C-plane \/

z2—plane w—plane

Fig 11.6
where oy, ay,...,a, arepointsin G with f (o )=o.

X f

N
[0, 1] G C

\%x

Fig 11.7
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Theorem : Suppose that f is analyticin B(a;R) and let f(a)-o
has a zero of order mat z=a then thereisan ¢>0 and 5>0 sit.
| £—a|<8 and the equation f(z)-¢ has exactly m simple roots in
B(a¢).

Proof : Giventhat, f(a)-a hasazeroof order mat z=a.

Zeros of an analytic function are isolated.
We can choose £>0 st. e< R/,

f (z)—a has no solution with 0<| z—a|<zs and f'(z)=0 if

0<|z-a|<2¢.

N

_____________
-

R ~
-

.
T
.
.
e

-~ -
DL LTS

N
m
oo

~
-
~ -
Sw -
----------

N

\ 4

Let x bethecircle, | z—a|=¢
i.e. x(t):a+se2“it, te[0,1].
x:[0,1] - B(&; R)

f isan analyticon B(a; R)

o= fox isasoaclosed curvein w-plane.
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N
v

Now, a ¢{c}

$0, 38>0 st.B(0;8)n{c}=0

(It means open disk B(«a; &) does not touch trace of o .
B(a;8) iscontained in the same component of w/ {c} .

For £eB(a;d) i.e |[E—a|<d

= n(oa)=n(c;§) )

1 dw

— vo=Tf(z2)=dw=f'(2)dz
2mi S W-a

Now, n(c;a)=

1 f'(z
=n(c;0) =—— I f(z()—)oc dz
Number of zeroes of f(z)—a inside x, where each
zero is counted according to its order.
Thm f(2)- o hasazero of order mat z=a)
1 dw

Again, 1’]((5, é)zz—m W—_&

n(o; &)= 2711;i I f;;()z_)g dz
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f'()z)é> dz:n(c;g):n(c;a)zm By (1) and

n(c;o0)=m
= f (z)=¢ hasexactly m-rootsin B(a;&)
f'(z)#0 for 0<|z-a|<e

=  Theequation f(z)=¢ hasexactly m-simplerootsin B(a,&).

Definition : If x and o are Metric spaces and f: X —Y has the
property that f (0) is openin a whenever U isopenin X, then f is
called an open map.

Open Mapping Theorem :

Statement : Suppose G is a domain in C, f is a non-constant
analytic function on G. Then for any openset U in G, f(U) isan

open. (2007, 2009)

Proof : Given that, f isanon-constant analytic function on G.
Let acU and f(a)=a
Uisopen = 3 ¢>0st. B(ae)cU.

f isnon-constant analytic function on G.
by fundamental theorem of algebra, 3 an integer m>1.
f (z)-a hasazeroof order mat z=a.

by using previous theorem, for the above ¢>0, 3 §>0 sit.
for theabove ¢ >0, 3 §>0 st. |E—a|<38 and the equation f(z)=¢

has exactly m simplerootsin B(a;¢).
Thus + E£eB(w;8), wean find m pointsin B(a;e) which
are mapped to ¢ by f.
B(a;8)c f(B(a; e))
B(o;8)= f (V) (" B(asg)cU)
o isinterior point of f(0).
But o isarbitrary.
- f(U) isopen.
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11.3 AUTOMORPHISMS OF THE UNIT DISC:

A function f:D— D is said to be an Analytic automorphism or

Automorphism of the Unit disc D if fisbijectiveand if both f, !
areanalyticinD.

Note: Let O;taeD:{ ZeC:|Z|<1}

For a,zinD, define the Mobius transformation ¢, (z)= ¢

1-az
This Mobius transformation is analytic in D and also in D =DUD,

o, (Z) isnot analytic at a point 2=t
a

Which lies outside the disk D . (vae D:>|a|<1 )
:>i i>1and|z|:‘2‘

of "ol

Note: ¢, :0— D isan analytic automorphism.
1. ¢4 (0)=—cand ¢, (a)=0
2. for any point ze D, ¢,(z)eD

- = - _ 2 2 — - — -
_Z'Z—ZO(—OLZ+OLOC _ |Z| +|OL| —(ZOL-i-OLZ) 2—(Z—OL+OLZ)
C1-0Z-Gz+0d Z 1+|oc|2|z|2—(oc2+6cz) 2—(Zo+az)

( 7o € D:>|Z|<l,|oc|<1)
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“[oa (2) <1
-'-‘d)oc (Z)‘ <1
= ‘(I)OL (Z)‘ <D
- ¢, Maps D ontoitself i.e. ¢, (0)=

(3 If aeD, sois —a andforany ze D,
(00900 ](2) = 2=[0_¢ 204 ] (2) T8 d5" =0y

(Z_aj+a
Now{¢_ao¢a}(z)=¢a[¢a )] =0 L az} 11—(Ezz—ocj
+ao| —
o
(b 0,](2)= Z-o+0-— |oc| (1_|a|2):
* 1-o0z+oz— |a| 1—kﬂ2
Similarly, [¢q 2¢_](2)=2
=g

= ¢, maps D onto D in a one-one manner Hence, ¢, and ¢ are
automorphisms of the Unit disc.
4.For zedD,¢,(z)edD i.e |, (z)=1vzedD

since, [0, (7)) = | 2= b
1-az
+zeoD
. For any point zedD
z=€d% , 0¢[0,2n]
| | ‘e ‘“4 ‘eie z 11
‘(I)(x ‘1 aee ‘IGH i0 _‘ ‘_e 11

( ‘eie‘ —1and € = e‘ie)

b (2) -2 (+ 1d=[4)
= ¢y (z)edD
. ¢, mapsoD onto oD
i.e. ¢y (0D)=0D
combining results (2) and (4), we get
¢, mapsDonto D.
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5. Mobius transformation ¢, () =1Z__a isanalyticin D,
-—aZz
' (1_62)(1)"'(2_0‘)& 1—|OL|2
(1-az) (1-a2)
In particular,
¢:x(0):1_|0¢|2 #0 ( aeD=|o/<1
1
o, (o) = #0
R

= o <1 1-[af +0)

Proposition: If |7 <1 then, ¢, is one map of D onto itself. The
inverse of ¢, is ¢_, . Furthermore, ¢, maps oD onto oD,

o () =0, 1, (0)=1-|2% and ¢}, (@) =——.
1o

Theorem: Let f:D — D be a one-one analytic map of D onto itself,
with f (a)=0 and suppose that ¢, is a one-one analytic map of D
onto itself with analytic inverse ¢, . Then, there is a complex no. C
with [C|=1st. f =C¢,.

Proof: Giventhat, f:D - D isan one-one analytic map of D onto
itself with f (o) =0.
Z—Q

Put o="——=¢_q (o) o Jal<1

1-ow

Define,

g:fod)—oc

=g Iis a one-one anaytic map of D onto itself and
9(0) = [¢_4(0)]=f(a)=0
..... -+ f(a)=0and :"”_“j

( (a)=0and ¢_, (o) o
and |g(m)|:|f [¢_a(w)]|=|f (z)[<1 ... (v z=¢_o(w) and
f:D— Dand D isunit Disk

ZeD:>f(Z)eD:>|f(z)|<1)
. by Schwarz’'s Lemma,

|g(m)|£|03| VweD

and [g'(0) <1
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let |g ()| =o| for some w=0 inD

.. by second part of Schwarz's Lemma,
Thereisacomplex no. C with |C|=1 st.

g(w)=co VweD
= f[¢_q (0)]=co
= f(z)=cdy(2)
= f =cd,

11.4 SUMMARY :

1) The Maximum Modulus Principle:
Let G be any subset of C. A complex function f defined on G is
said to have local maximum modulus at a point o in G if, there

exists 5>0 st. B(a;8)cG and | f(z)|<| f(a)| =+ zeB(w;3).
Similarly, f has loca minimum modulus a a point a in G, if
3 8>0st B(w;8)cG and | f(2)[2| f(a)| ~ zeB(a,d).

2) Minimum Modulus Principle : Suppose f is a non-constant
and analytic function in a domain G. |If | f| attains its local

minimum G at o, then f(a)=0.

3) Schwarz's Lemma: Let D={zeC:|Z<1}be the unit disk and
suppose f is analytic in D with, (i) f (0) = 0 and (ii)
|f(2)|<1for zeD. Then, |f(z)<|4 vzeD and |f'(0)<1.
Moreover, if |f(z)|:|z| for some z=0, then there is a constant C
with |d|=1st. f(0)=co VeeD.

4) Theorem : If f isanon-constant analytic function in a bounded
domain G and f(z)=0 for any zeG, then | f | cannot attain its

minimum in G.

5) Theorem : Let f be analytic in a domain G with zeros
aq, 0o, ..., oy, (repeated according to order)

If X is asmooth closed curvein G which does not pass through any
Otk’S then

1 _[ Mdz: in: n(x; o)

2mi ” f(z) 1
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6) Open Mapping Theorem :
Statement : Suppose G is a domain in C, f is a non-constant
analytic function on G. Then for any openset UinG, f(U) isan

open.

7) A function f:D — D is said to be an Analytic automorphism or
Automorphism of the unit disc D, if f is bijective and if both
f,f L areandyticinD.

11.5 UNIT END EXERCISES:

1) Find the maximum modulus of z°-zin the disc |7<1.

Solution: . z%-z=2z(z-1)
.. The maximum modulus is assumed at the boundary of the disc
|7<1 That is at z=-1.

. 2_ 5
ComaX) g Z -z=2

2) Show that the maximum modulus of e* is aways assumed on
the boundary of the compact domain.

Solution: Since |e*|=¢€* where z=x+iy

€’l is maximum at apoint inthe domain with maximal x.

(At a point farthest to the right.)

3) Supposef,g both are analytic in acompact domain D. Show
that | f (z)|+|g(z)| takes it's maximum on the boundary.

(Hint: Take f(z) = Ae™*, g(z) = Be’ then put

h(2) =|f (2)|+|9(2)

= |h(2)|=|f (2)|+|9(2)|<|f (2)|+|9(2)|

Let z, be aninterior point of a compact domain D. Assume that
| f|+|g| takes maximum values inside D, say |f(z)|+|9(z)|
~|h(2)|=|f(2)|+]|9(2)|

<|f(2)|+|9(2)| <|f (z0)]+]|9(z)| = |n(2)|

- |h(@)|<|n(z)]

~.The analytic function h(z)assumes it's maximum at the
interior point z, ( not onthe boundary), which is not possible.
~.|f(2)|+|g(z)| takes it's maximum on the boundary.
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4) Let f be analytic and bounded by 1 in the Unit disc and

-

f(zj=o Estimate
Solution: Since f(%jzo, define g:C — C asfollows:

f(2) 1
9(2) = for z==
(=23
2 2
=§f (lj for z=1
4 2 2

Then g is analytic in |7<1 Letting |7 »1we find that |g/<1 on
the disc.

1
Z_i
3 3 2
1 (2) < 2 - for z==, . |f|=]c=
@l 5 ARIHE:
2

5) Show that among all functions, which are analytic and

bounded by 1, inthe Unit disc, Max ‘f GJ is assumed, when

f(2)- f @)

Solution: Suppose f(}]q&o, consider g(z2)=—————~
3 1
1—f()f(z)
3
w—f(l)
o 3211 when [w=1 and |f|<1 in|Z<1,
1
1—f()w
3
. By Maximum-Modulus Theorem |g|<1in|Z<1.
1
2 gl =]
2 3 3
3

6) Show that the automorphisms of the Unit Disc are of the

By direct calculations g (%) =

This is a contradiction.

form g(z) =€’ (Z_—aj,|a| <1.
70
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Z—x
1-za
Since g(a) =0= gis an automorphism of the Unit disc.
Assume that fis an automorphism of the Unit Disc with
f(a)=0.

. h=fog~tis an automorphism with h(0)=0.

. By the lemmathat describes automorphisms of the Unit disc,

- h(z)=€%zor f(z)=ei9(1z_aj :

Solution: Let g(z)=( ) Then |g(2)|=1for |7 =1.
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12

SINGULARITIES

Unit Structure:

12.0. Objectives

12.1. Introduction

12.2. Three Types of isolated Singularities
12.3. Laurent’'s Theorem

12.4. Classification of Singularities by the Principa Part of
Laurent’s Expansion

125 Casorati- Weirstrass Theorem
12.6. Summary
12.7. Unit End Exercises

12.0. OBJECTIVES:

After going through this unit, you will understand the
concept of continuing an analytic function to another region.
We shall also study three types of singularities of a function
f(z) and the theorems like Casorati-Welirstrass theorem and the

Laurent’s theorem.

Given asingularity z, of a function f(z), we shall try to classify
the singularities by finding the principal part of Laurent series
expansion of a function f(z).

12.1. INTRODUCTION :

We shall recall the uniqueness theorem that states that if
f is analytic in a region D and {z,}is a sequence of distinct
points such that f(z)=0 vn and {z,}converges to some
z,eC, then fis identically zero in a region D. Suppose we are
given a function f, which is analytic in region D. The
question is that of continuing f analytically to a region D, such
that g=fon D;ND. By the uniqueness theorem  such
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continuation  of fis wuniquely determined. The Schwarz

reflection principle is an example of how, in some cases, an
analytic function can be continued beyond it's origina domain
of analyticity. In this unit, we shall examine the possibilities
of such extensions for functions given by power series.

122 THREE TYPES OF ISOLATED SINGULARITIES

Definition :
A point at which the function f is not analytic is said to be a

singular point or singularity of the function f.

Z2

eg. f(x)= 3

Here, f is not defined at z=3 and hence not analytic at z=3,
therefore z=3 issingular point.

Definition : A point at which the function f is analytic is said to be a
Regular point.

Definition : A function f hasisolated singular point a z=z, if 3
an R>0 st. f isdefined and analytic in 0<|z-z |<R but not

B(z. R).

4
0. 1 f(z)=————
eg- 1) (=3
z=1and z=3are points of singularity
2) f(z):cotz:ﬂ
COSz

Putcosz= 0= z=nr
-.Singular pointsare nr, neZ.

Definition : Let f beanalytic 0<| z—z5|<R. Let z, beanisolated
singular point of f. A point z=z, is said to be a Removable
singularity of f, if 3 an analytic function g:B(zy, R)—>Cg st.
f(z)=g(z) for 0<| z—zy | < R.(2007)

Or
Definition : If a single valued function f(z) is not defined at a

point z=zy but lim f(z) exists. Then z=7, is said to be a
-7
removable singularity of f.

eg. f(z)= SirZ]Z, z#0
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In this case, f is not defined at a point z=0 but lim SNz _g

z—0 Z

exists.

) z=0 isaRemovable singularity of f.
OR

Define g:B(0; R) > C st.

sinz

#0

=g z) f0r0<|z 0|<R
2

,Z#3

ua_z_

Here, f isnot defined at z=3.
2 _
But, lim f (2)= lim 2—2 _ jim {2=3(2+3)
73 z>3 z-3 753 z-
z=3 isaremovable singularity of f.

=6 exist.

Definition: A singular point which is not isolated is said to be Non-
isolated singular point.

eg. f(z)= COSGC@ = Yan(2)

In the delta nbd at zeros, there are other singular point of f -~.z=01s
anon isolated singular point of f.

For, Singular points, Put sin(ij =0
z

—=nt heZ
Z

z:i—>0n—>oo, n=0,+1+2,... .Since z:i—>Oas n— o
nm nm

Here, z = 0 is a non-isolated singular point, whereas other singular
points are isolated.

Theorem: If f has an isolated singular point at zy, then z=zjis a
removable singularity of fiff lim (z-z)f(z)=0
-7
Proof: Let lim (z-z5)f(z)=0
Vo &)
T.P.T. z= zyisaremovable singularity of f.
Given, f has an isolated singular point at z= z,
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~. there exists R > 0 st. f is defined and analytic in B(zy; R)\{zy}
but not in B(z;R)

Define
J(z-79) f(2) z#7
O 0
- hisanalyticin B(zy;R)\{z} and
lim h(z)= lim (z—zy) f (2) =0=h(zy) from (1)
-7 zZ—7p

- hiiscontinuousin B(zy;R)

T.RP.T. hisanalyticin B(z;R)

i.e. T.P.T. [ h(2)dz=0 for every triangle A=intA+dA in B(z;R)
oA

There are four cases:
. By Morera's Theorem,

hisanayticin B(z,R)

from equation (1), h(z)=0

. Zg isazero (root) of h

- fananalytic function g:B(z;R) > Cst. h(2) =(z-2)9(2)
whereg(zy) #0

- for 0<|z-7 <R

h(2)=(2-2)9(2) =(2-2) f(2) by (1)

- f(2)=9(2) for 0<|z—z|<R

= z= 1z, isaremovable singularity of f.

Conversely,
Suppose z = zyis aremovable singularity of f.
T.RPT. lim (z-2)f(2)=0
-7
By definition, f an analytic function g:B(zy,R) > C

st. 1(2)=9(2) for 0<|z—-7|<R

lim f(2)= lim g(2)=9(z)#0
z—70 z-79

Zingo(z— Z9) f(2) =0xg(zy) =0
s lim (z-7)) f(2)=0
-7



234

Definition:
If f hasanisolated singular point at z,,then z=2z, isapoleof f
if lim f(2)=wi.e forany M >0,
=7
386>0 st. | f(2)|>M where 0<|z-7z|<$§

Definition:

If f has a pole at z=zzand m>1 is the smallest positive
integer st. (z—zy)™ f (2) has aremovable singularity at z =z, then, f
has apole of order mat z= z,.

Definition:
A pole of order oneissaid to be asimple pole.
3
VA
eg. f(29=——
9 1(2)=——,
Here, z = 4 is an isolaed singular point at f.
3
lim f(2) = lim —“— =
724 24 z-4

s.z=4 isasmple pole of f.

Z2

(z-2)(z-1*
Heref hasssmplepoleat z= 2 and z=1 isapole of order 4.

f(2)=

Essential Singularity:
An isolated Singular point which is neither a pole nor a
removable singularity is said to be Essential singularity. e.g.

f(z:):ey’yZ

Here, f has essential singularity at z= 0. T.P.T. z= 0 neither a pole
nor aremovable singularity.

Theorem: If a function f(2) of analytic for all finite values of zand as
|z|—>oo,|f(z)|=a|z|k then f(2) is a polynomial of degree < k.

Proof: Since f(z) is analytic for al finite values of z therefore it can

be expanded by Taylor's theorem in the form f(z)=ianz“, for

n=0
|7 <R, whereRislarge.

Let max |f(2)|=M on the circle |Z=r(r <R). Then by Cauchy’'s

inequality , we have |an|s'rv|—n for all values of n
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k

= Arn = Ar"¥r —>c>ovn>ksk,since|f(z)|:A|z|k when |7 —»

r

Ar* ko .
=—=Ar"™, which tendsto zero when r — wo since n>k.

r
Thusa,=0, n> k.
Hence, we have f(2)=ag+ awiz+ @ Z+.......... +a, Z, which is a

polynomial of degree <k.

12.3 LAURENT'S THEOREM :

Theorem: If fisanalyticin G=a,,(a;Ry,R), Ry >0 then for any
point z in G, f has unigue representation

® ®  bn 1 f (&)
f(2)=) a,(z—o)" + where, a, =— [ ——=2—-d&¢,n
nz=:o r%ll(z_a)n 2 Jl(é—ot)ml
=0,1,2.. and bh:ij&da, n=1,2, ...

2mi % (a_a)—n-%l
and x,x, are circles |[E—o|=n, |—a|=r, respectively with

R<rnp<n<R

Proof: for agiven ze G, choose rpandr, st. Ry <ry <|z—o|<n <R
by using Cauchy integral formula for multiply connected domain

(= [2 ge- L [ T8 (g

2mi Xl&—z 2mi X2§—2
Consider, i j@d
2mi X1§—2
For any point &on x
Consider &izzﬁ—aia—zz 1(z ‘)
—a)l 1=
¢ “){ (a—a)}
-1 1+(Z_a)+ ...... +(Z_a ”—1+(Z_a)”_ !
a0 e (ea) 5 (9)
(&-o)
=1+x+x2+x3+1....+xn"l+x”iJ
1-x

-o
|—\

I =
<



1 (z0) | (Z—oc)n_1+ (z-a)"
(E-a) (-a)*  (6-a)" (e-0)"(t-a)
Multiply the above equation by %// and then integrating w.r.t.
T

gover xq
1) ) e, (22) (_F(O)

R d : dé+....
2mi )’2&—2 5= 2mi )'L@ o ya )'!1(5_,—()( 2 S+

...... + (Z_a?n_l fe) de + (Z a) f(¢)
2mi i(é_a)n ),([1(% oc) (E, a)
(

Given that, an= 1 I f(8) -
21I| Xl((g_m)n+

de=ap+a(z-a)+0..+a,1(z-) " +R, (2

d¢  n=0,123.....

1 I ()

U 2omi é z

(z-a)" (&)
Where, = i
" e

TPT. lim R,=0

n—oo

2= O‘| (ﬁ) |d¢~|
< 3

Choose ¢ >0 st. |z—a|=‘§ equation of thecircle x is, [¢-a|=r,

Now, |§—Z|=|§—a+a—z|2|§—a|—|z—a|=I’1—?
Giventhat, f isanalyticin G

- fiscontinuouson x4  (Compact set)

By boundedness theorem

IM;>0st [f(g)<M VEex
Put all the above valuesin equation (3) we get

?I’I Ml ?an
<3 de| = de
R 2n Xlrln(r1—€)| | 2nr" (r-9) 'H |

n n
-2 My -275r1=m *| Soasnoow
n) 2n(rn-3) n—-s\n

~ lim R,=0

Nn—oo
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. from equation (2)

10 f) o,
RIS X
Consider,
-1 ¢ f(§)
— [—=Ld
2mi )!Z(ﬁ—z) .
For any point & on x,,
Consider —+ -1 _ 1 = 1
E-z z-¢ z-oa+a-§ . 1_(&—(1)
(z-a)
S POt R ol Al A
(z-a)|  (z-a) (Z—oc)n_1 Z—oc)n 1 5o
Z—0O
1 (e, o™ (o)
Z=0 (z-a) (Z—oc)n (z-a) (z-a)
Solvinginthesame manner as above, we get,
—1
(*)
21I| 2( - oc)
From equation (1), (4) and( ), we get
f(z):Zan(z—on)n+z . ()
n=0 n:l(Z—(X)
Note: (i) equation () can also be written as f ( Z an(z-a)"
N=—o0

for Ry <|z—o|< R

1) Where x isthecircle [¢—o|=r with Ry<r<R

1 ()
- = (&) g n=0,+1+2
2 gy
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Proof: If xisthecircle [¢-a|=r st. Ry <r <R, then both functions
f
(@ ., 1@

(E“_a)n+1 (&_a)—ml
Cauchy De-formation Theorem,

are analytic in Ry <|¢—a/<R by using

1 ) 1 f(E)
 2ni )-(‘;(&_a)ml d& = 2mi S[(i—oc)nﬂ dg
1 f (&) 1 f (&)
= [ —F—de=—[——d
21 )!Z(é_a)—n+1 a 2mi ;‘;(é—a)mﬂ a
X1
F
fF:JZF
"
Fig12.1
We observethat, b, =a_,
From (=x)
f(2)=Y an(z-a)"+ 3 an(z-a)"
n=0 n=1
=Y an(z-0)"+ X ay(z-a)"
n=0 n=-1
f(2= Y ay(z-a)
] f(g)
Where ay =—— )j(( _a)mld&_, n=0,+1+2

2. The Laurent Series expansion is Unique.

Proof: Suppose that we have another Laurent series expansion

f(2)= i An(z-a)"  for Ry<|z-a|<R (@)

M=—c0
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We prove that equation (1) isidentical with

f(2= > a(z-a) for Ry <|z—al<

N=—o0

1 f(9)

Where ap=—— | ———=—=dg, n=0,+L+2....
2 Loy

To provethat a, = Ay,

Let x bethecircle |€,—0c|:r with Ry<r<R

IO .
_Zni ')[(&_a)nﬂ_ ZTEI ')[m_z_ Am - a) (&_a)m’l dg
m n-1 4 1 & m N1
27'c| {m_z_oopm a_ :2_ _Z_: _)[ dg
X m-n-1_ .
N (et
|&—0(,|=r

:>§=a+reieee[o 2n]

Z AN Ie'(m 049 . Thisintegra =27 ,m=n
M=—o0

2n|

=0 m=n

=— r 2n
2n| A

= An

. Laurent seriesisuniquein G.

Note:
1. The Laurent seriesfor given function

—00

is 1(2)=3 an(z-o)"+ Y an(z-a)  Ro<|z-o/<R

n=-1 n=0

1) Thepat > a,(z-a)" of Laurent seriesis called the
n=-1
principa part of f(z) at z=«.

2) Thepat Y a,(z-a)" of Laurent seriesis called the
n=0
Anaytic part of f(z) at z=a..
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9(2)

(z )m where, g
—

2. If f hasapoleof order mat z=a, then f(z)=
isanalytic at apoint o and g(a)=0
2

(z-3)°

9(2) = z° isanalytic at point 3and g(3)=3%=9+0.

eg. f(2)=

124 CLASSIFICATION OF SINGULARITIES BY THE
PRINCIPAL PART OF LAURRENT’S EXPANSION

Corollary: Let z=a be an isolated singularity of f(z) and let

f(2= Y ay(z-a)" be its Laurent expansion in ap,(o;0,R)
N=—o0

0<|z—a|<R (Punctured disk or  deleted nbd of o).

Then,

i) z=a Is a removable singularity of f iff a,=0for n<-1 i.e
(Principal part is zero) (2008)

i) z=o isapole of order miff a_,#0and a, 0 for n<—(m+1).
i.e (Principal part isfinite)

i) z=a isan essential singularity of f iff a, = 0for infinitely many
negative integersn. i.e. (Principal part isinfinite)

Proof: Given, f(z)= Y a,(z-a)"

N=—o0
0

f(2)= _ZOO an(z-a)"+ Y ay(z-a)" (1)
n=-1

n=0
i)Let a,=0 for n<-1
T.P.T. z=a isaremovable singularity of f.
From equation (1)

f(z)= ii)an(z—oc)n (- ap=0 for n<1)

f(2=ag+ > an(z-a)"
n=1

lim f(2)= lim l:a0+2an(z—oc)n}:a0+0:aoio
zZ—o z-a ]
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lim (z-a) f(z)=lim(z-a)«lim f(z)=0+39=0

Z—>o Z—>o Z—a
-.Zz=o isaremovable singularity of f
Conversely, suppose, z=a isaremovable singularity of f.
- 3 an analytic function g:B(a;R) > C sit.

f(z)=9(2) in 0<|z—o|<R
-gisanalyticin B(a;R)
- for any point ze B(a; R)
g has Taylor series expansion
£ 9= an(z-o)"

n=0

. the Laurent series expansion for f(z) must coincide with the
Taylor series expansion for g(z) about z=a

A @)= ay(z-a)"

n=0
=a, =0 for n<-1 (Compare eguation (1) and above equation)

Z-sinz

Eg f(2)= 3 , z#0
z
|,z 7
RIS L2 A
f(2)= =t — — e
23 3 5 7

Principal partiszeroi.e. a, =0 for n<-1.

Thisis a Laurent series expansion for f(z) but principal part contain
no negative power of z.
i.e.a,=0 for n<-1

. z=0 isaremovable singularity of f.
if) Given a_,,,#0 and a, = for n <-(m+1)

f(@)= Y ay(z-)" = Y an(z-)"+ Y ay(z-a)"
n=-o n=-1 n=0

f(z)=—2m Z

(z-0)"

n=
Multiplying above equation by (z- )




(z-a)" f(2 =@+t a_l(z—oc)m_l+(z—oc)mz an(z-a)"

lim (z—a)" f(2) = lim | a_m+ ... +a_1(z—a)m_1+(z—oc)mZan(z—a)n

z—a z—a n=0
=a+0+0+...+40+0 =a_,#0
o lim (z—a)™™ £(2) = lim (z—a)ay, =0
Z—a Z—a
-, thefunction (z-a)" f(2) has aremovable singularity at z=o,
s Z=a isapoleof order m

Converse, (Exercise)

eZ

E.Q. f(2) ==, Heref haspoleof order 3atz=0
4

This is a Laurent series expansion for f (z) but principal part of
Laurent seriesisfinite,
.~ fhasapoleof order 3atz=0

iii) Combine part (i) and (ii) and by definition essential singularity,
we see thatz—a is an essential singularity of f iff a,=0 for
infinitely many negative integers n.

eg. f(2) _e

1 1 1 1
=1+—+ st ——3+t—
2 217 377 4z .

Prinicpal part
This is a Laurent series expansion for f(z) and principal part of
Laurent seriesisinfinite.
-.z=0 isan essential singularity of f.

Theorem: Let f be analytic in 0<|z-o/<R (R>0). Then, f hasa

pole of order m at z=a iff there exists an analytic function,

g:B(o; R)>C st. f(z):i)m where g(a)#0

(z-a)
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e}
(Note: We know that the geometric series >’ Z" converges for
n=0
|7 <1 and we write L > 2"=1+z+ 244
1-z =0

Similarly, the geometric series »_ (-1)"z" converges for |z <1 and

n=0
we write — = — Y ()" =1-z+ -2+ 20)
1+z =
n=0
Example:1

Expand f(z)=2L inaLaurent seriesvalid for (i) 2<|Z<3
Z°+z-6

(i) |[4<2 (i) |2>3 (iv) 0<|z-2<4

Solution: Give function
f(2)= ; 5 5 1 1

7 +Z_6:(z—2)(z+3):z—2_z+3 1)

1) For 2<|Z <3, if 2<|Z then é<1
11 _1°°(zj”_°° 2"
z2-2 2(1_2) znz“:0 7 nz‘z) S+l

z

if |7<3 then %<1

1 1 12 N AN n Z"
e M I R
2+3 3[1+Z] 3120 3) 2o 3"

From equation (1), we get

o0 2n 0 n Zn
f(Z):Z n+1_2(_1) n+1

n=0 Z n=0 3
_ 22 2101 2z 2
......... R R A e R B

222 211 z 7 . _
S gt gttt T e (In thiscase, z= 0
2 2z 3 F 3B
isan essential singularity)
Thisisthe required Laurent seriesfor 2<|z<3
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i) For |7 <2

|z|<2<3:>| |<1 and | |
2 3

1 -1 1& (2" & A

i 2_2( —%) 220(2) B nZ=:o on+l

1 1 1 & n(zY &, . 2"

= == N L] = _
2+3 3(1@ ) )@ T
- from equati on (1)
f(z):_z n+1 Z( ) 3n+1
n= 0

This is the requwed Laurent series for [7<2 (Inthiscase, z= 0 is
removable singularity)

iii) For |>3

vl4>3>2=>= 2 <1and 3

2 47

n
1 1 1&(2 x, 2N
z-2 2(1—22) Ené‘)(;j _r]z‘)z”ﬂ
1 1 1&(3) & 3"
z+3 2(1+3) - E%{Ej _nzz‘b L
from equation (1),
o0 2n 0 3n
f(2)= Z n+l Z n+1
n=0 Z n=0 Z

This is the required Laurent series (In this case z = 0 is essential
singularity)

iv) For 0<|z-2/<4
putz—-2=u—z=u+2
. from equation (1)

- 5 _ 5 _ 5
f(Z)_(Z—Z)(z+3) (z-2)(z-2+5) u(u+5)

0<|u|<4<5:>

o ]
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Example: 2
Expand f(z)=2L in alLaurent series valid for
z°+2z-3
(i) 1<|Z <3 (i) |[7>3 (iii) 17<1
(iv) 0<|z-1<4
Example 3:
Expand f(z):cos;(i)_l in a Laurent series about z = 0 and name
V4
the singularity .
Solution: f (2) = 2%~
4
e AR S WY
TR Lo P2
= 24 = " 22 +Z—E+ ..........
Z =0isapoleof order 2
Example 4:Find the Laurent series of f(z):; in the
z(z-1)(z-2)

annular region 1<|7<2. (2012)
. 1
Solution: f(z= ——
ution: f(2) (2-1)(z-2)
By partial fraction for 1<|z<2, §<1 & §<1
1 1 1
(7)==~ -
2 Z1-}) 41-%)

1 (Y -z

27

Definition:
A set D in aMetric space X is said to be Denseiff D = X, where D,

is closure of D.
OR
Let D be a subset of C(D cC), we say that D isdense in C if, for

any mgeC ande>0 B(wg,e)nD#¢
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12.5 CASORATI -WEIERSTRASS THEOREM :

If f has an essential singularity at z=a, then for every 6>0,
f[ann (o 0,8)] isdensein C. (2005, 2008) OR f (a,,(a;0,5))=C

Proof: Let Gzann(a;0,8)=0<|z—oc|<8= B(OL;S)\{OL}
Given that, f has an essential singularity at z=a
- fisanalyticin G.
T.PT.f(G)isdensein C i.e. {f(G)}=C
i.e. T.P.T. for given wgeC ,e>0, §>0,3z
s.t. |Z—oc|<8 and |f(Z)—(00|<e

/

,\ [

he -’
........

N
A\ 4
N
A\

C—plane
o—plane

Fig 12.1

Assume thisis not true
i.e. Assumethereis oge C and e>0 St.

| f(2)—wp|2e V2eG=ap,(a;0,8)

o im @00

Z—>a |Z—OL|

The function f(2)-o, hasapoleat z=o
Z—C
z=1z, isapoleof fif lim f(z)=w
-7

Note: If lim [x—o/=0 then lim [x—a|*=0
X—>o X—>a
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If m>1 is the order of this pole then, (Z—a)m{%:l has a
— Qo

removable singularity at z=a..

clim |z=of™ [£(2) | =0 (1)
Z—>a

Now, [z—o™™ | (2)|=|z- o™ f (2) -c+(

2 tim {[z-of ™1 (2| < tim | |z-0™|f @) ~c|+]z- o™ c]
Z—>a Z—a

=0+0 - by (1)
o lim |z=o ™ £ (2)| =0
Z—>a
~.thefunction (z—a)" f (z) hasaremovable singularity at z=a
-.f has a pole of order m at z=a which contradicts the hypothesis
that z=a isan essential singularity of f.
. Our assumption was wrong

Hence, | f(2) - wg| <e VzeG
= f(G) isdensein C i.e. {f(G)}=C
*z2= 17 isaremovable singularity < lim (z-z)f(2)=0
Vand )
*+ |f z=qa IS an essentia singularity of f then f has Laurent series
expansion about z=a.

++% |f f is analytic in B(a;y) than for any zeB(o;y) and has a

Taylor series expansion about z= «..
m-1

9@ = 8" V) - (2w 1
-1
= g™ ()= lim g(MP(z) = Iim mz (z-a)" f(2)
Z—o Z—>a

12.6. SUMMARY

1) A point at which the function f is not analytic is said to be a
singular point or singularity of the function f.

2) A function f hasisolated singular point at z=z, if 3 an R>0
st. f isdefined and analyticin 0<| z- 75| <R but not B(z, R).
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3) If f has an isolated singular point a zy, then z= zyis aremovable
singularity of f iff lim (z-z5)f(z)=0
279

4) If fhasapoleat z=zyand m>1 is the smallest positive integer

st. (z—z))™f(z) has aremovable singularity at z=z, then, f has a
pole of order mat z= z,

5) Laurent Theorem: If f is analytic in G=a,,(o; R, R), Ry >0
then for any point z in G, f has unique representation
t(2)= an(z-0)"+ bn

n
n=0 n=1(z—a)

Where, a, 1 I&dg n = 0 1, 2

i +1
27 3 = a)”

L MO e on=123
b 2niX£(g_a)—”+1 M lahe

and x,x, are circles [E—o|=r, [¢—a|=r, respectively with

R2<r2<r1<R_L

6) Let f be analytic in 0<|z—a/<R (R>0) Then, f has a pole of
order mat z=o iff there existsan analytic function,

g:B(o; R)>C s.t.
f(z):% where g(a)#=0

7) Casorati Weierstrass Theorem:
If f has an essential singularity at z=o, then for every §>0,

f[ @y (a;0,8)] isdensein C.

12.7. UNIT END EXERCISES:

1) Each of the following functionsf has an isolated singularity
a z=0. Determine it's nature, if it is removable singularity ,
define f(0), so thatfis analytic a z=0 if itis apole, find the
singular part; if it is an essentiadl singularity determine
f({z:0<|4<s})for arbitrarily small values.
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S n(z)

@ f(2)=

(0) f(2)= 222

22 +1

z(z-1)

© f(2)= (d) f(z):zsin(%j.

sin(z)

Solution: (&) .. lim,,, f(2)=lim,_ ,——==1exXists.

. z=01s aremovable singularity of f.
Define g:B(0;r) > C as g(2) = sin(z) ,220=12z=0.

Then f(2) = g(2)for 0<|z < Rand gisanalytic on B(O;r) .

z—0

(b) - lim,_o(z-0)f(2) =lim ww

.. By theorem on removable singularity, z=0 is aremovable
singularity of f. .. Define f(0)=0.

cos(s)—1

Define g:B(0;r) > C as f(z) = z#0

=0 z=0
Then f(2)=g(2)for 0<|Z<Randgis analytic on B(O;r) .

(c)f has a pole at z=0.

2) Classify the singularities of (3) cot(z) (b %_’122)
f(z)=_ SNz 2005
©1(2) 2(z-1)(2-2) (2005)

exp 1)
Solution: (b) Let f(2)= Z

z-1
expﬁlj
2
||mH1|f(z)|—|Z|le—_Z1 == f(z)hasapoleat z=1.

N

A(2)

Since f(z)_ B(2)’ , Where A(z) = exp( 1} B(z)=z-1.

AD)=0,B()=0=Bhas a zeroof orderl at z=1[1
f(zhas a pole of order 1 at z=1.

We know that f is analytic in a deleted neighbourhood
B(OR)-0 of O andfis not anadytic a z=0= z=0Iis a

1
i)
singularity of f. Since we know that Iirrl1—1 does not exist .
zZ- Z—
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-.z=01s not a removable singularity of f.

f(z)cant be written as f(2) = SEZ; &22), where A and B are
VA

analytic at z=0 .. z=01is not apole of f.

-.z=01s an essential singularity of f.
sinz
(© f(2)=

z(z—l)(z—z)2

Solution: f(z) haspoleat z=0, z=1, z=2 of order 1,1,2 respectively.

1

22+Z

3) Find the Laurent series expansion of (a)

5 about z=0.

(b

Solution:

(@
Let f(2)=— t 1 12=z_2— 1 5
+? P 1tz 1-(-29)

=Z_ oo ( 1)k 2k

— ozo: (_1)k+122k
k-1
4) Check whether z=0 is a removable singularity of

f(2) = S'”( 2 or not.

Solution: f(z) =32

2 4
. f(z )_s‘”(z) o

3 5l
Here all the coefficients ¢, =0for k> 0.
. f(2) hasremovable singularity at z=0

5) Show that the image of B(0;1)-0 under the function

f(z)=cosec(1j Is dense in the Complex plane. (Hint: z=0is
z

essential  singularity of sin(%]. Make use of the following

theorem: If f is anaytic in a deleted neighbourhood D of z,
except for poles at all points of a sequence {z,} - z,. Then
f (D) is densein the Complex plane.
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6)Expand f(z)= ze/]/z2 in a Laurent series about z = 0 and name the
singularity.

2z
7) Expand f(z):( © )3 in aLaurent series about z = 1 and name
z-1
_ _ _ 27 Q27 g2 ez(ez(z_l))
the singularity. (Hint: f(2) = = = )

(- (z1)° (29

8) Determine the number of zeroes, counting multiplicities, of the
polynomial 2-22°+97+z1 inside thecircle |7/ = 2

9) Expand f(z)=W?2_z) in a Laurent series valid for

()o<|d<2 (i) |4<1  (2008)

27

10) Expand f(z)=( © 1)3 in a Laurent series about z=1 and name
Z_
the singularity. (2007)
11) Expand f(z)=m in a Laurent series valid for
(N1<|z<2 (i) |4>2 (2007)
12) Expand f(z):ﬁ inaLaurent seriesvalid for
(i) 1<|z|<2, (i) 2<|z|< .

. 1
13) E d f(z)=(z-3
) Expan (z)=(z—3)sin —r

] in a Laurent series about
z=—2 and name the singularity.

1
2

14) Expand f (z)=
(14) Exp ()z+4z+3

inaLaurent seriesvalid for

(i)1<|Z <3, (ii) |7 <3.
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13

RESIDUE CALCULUSAND
MEROMORPHIC FUNCTIONS

Unit Structure:

13.0. Objectives

13.1. Introduction

13.2. The Residue Theorem and it's Application

13.3. Evaluation of Standard Types of Integrals by the Residue
Calculus Method

13.4. Argument Principle
13.5. Rouche's Theorem
13.6. Summary

13.7. Unit End Exercises

13.0. OBJECTIVES:

In this unit we shall study the generalisation of the
Cauchy closed curve theorem to functions having isolated
singularities. We shall provethe Residue theorem and further we
shall use it to evauate the standard types of integrals like

w SIN(X) » OX
—2dx, [y — f (2)dzetc. . We shal a th
[ » X, lo 1+x2’J\Z\=1 (2)dzetc e SO prove e

Argument Principle and Rouche’'s theorem for Meromorphic
functions in the complex plane C.

13.1. INTRODUCTION :

In this unit, we now seek to generalize the Cauchy closed
curve theorem to functions, which have isolated singularities. If isa
circle surrounding a single isolated singularity zyand

f(2)=3F ,.c(z-2)<in a deleted neighbourhood of z, that
contains trace of acircle y, then f f=2zic,. Thus the
coefficient ¢, is of gpecial significance in this context. We
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shall see some of the applications of the Residue theorem.
Let us start defining the Meromorphic functions.

Residues: Letfhas anisolated singularity at z=a and
Let f(2)= Y a,(z-a)" beitsLaurent expansion about z=a Res

N=—o0

(f;0)= Coefficient of (z—o) ™" in Laurent series = a ;.

132 THE RESIDUE THEOREM AND IT'S
APPLICATIONS:

Proposition: If f has a pole of order m at z=a and
g(m_l)(oc)
(m-1)!
Proof: Given that, f hasapoleof order mat z=a
~.z=o Isanisolated singularity of f
. by definition, 3R> 0 sit.
~.fisanalyticin 0<|z—a|<Ror B(o; R)\{a}

9(2) =(z—-a) f (2) then, Res (f;a)=

" fhasapoleof order mat z=a

f(z)=£)m ,where g(a)=0 and gisanalyticin B(o;R).
z-a

- forany ze B(a;R), ghas Taylor expansion about z=a

0 ()
(2=, an(z—a)"where a, :ngm) --------- 2
n=0 )
9(2) = 89 +8(2=0) + oot By (2= )"+ By (2— )™+ Byyg (2-0) ™
~ (2= 9(2) __% o 8m-1
@ (z-a)" (Z—oc)m+(z—oc)m_l+ (z-0)

+am+am+1(z—a)+am+2(z—oc)2+ .........
ThisisaLaurent expansion for f(z) about z=«
. by definition of residue,

Res (f;a)= Coefficient of (z—o) ™" in aLaurent series =apy, ;

(m-1) (n)
Res(f;“)=(gm_1)! ---------------------- ['.'an:—g n!(a)]
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Calculation of Residues:
1) If f hasapole of order mat z=a then,
m-1

N d m _

2) If f hasasimple poleat z=a, then,
Res (f;a)=lim [(z-a)f(2)]

Z—>0
2
Example: Determine the residue of f(z)= € 5 a its
(2-2)(z-3)
poles
Z
Solution: Given function, f(2)=—————
(z-2)(z-3)

Heref hassimple poleat z=2 and z = 3isapole of order 2.
For z= 2:

Res (f;0)=lim [(z-a)f(z)]

2 _ e?
Res(f;2)= Zli_r)nz[(zz)' m}: zlinz(z_s)z
_ e €
—(2+3)2—(_1)2 =€
For z=3 ]
m-1
R%(f?@):(m—l)! zlmc{:zm—l(z_“)mf(z)
a=3 m=2 _

. d[c2 J]
= lim| | ——
73| d?| z—

= lim| &% _12+ 1 e? | =—e3x 1 - 848 -0
z—>3 (2_2) (z-2)
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Example: Determine the residues of f (z) =cot(z) at its poles
Solution: Here
_[ f (z)dz:j f (z)dz+j f (z)dz+....+j f (z)dz
X X X Xm
© 2
j f(z)dz= ) anj (r.e’)ir e’do
X n=-» 0
0<|z—-7|<60<|7<1

27

f(z)=—

(z-1)

f(2)=cotz=—22
sinz
. f hassimple pole a nr,where nis an integer

Res(f;a)=lim[(z-a)f(2)]

Z—0
Res(f,nn): lim {(z—nn).%} % form
Z—>Nm

—(z-nm)sinz+cosz

By using L’ hospital rule, lim 1
Z—nn COosz
f(2 _sinz
Example: Compute the residue of z' at the pole z=0.
(2012)
Solution:
snz 1 22 7 7
f( ): Z4 :?[Z—g 5—7 ....... j
11,z 7
7 6z 5 717
-1

Res( f,0) = coefficient of 3/ = -

Residue Theorem or Cauchy Residue Theorem

Let f be analytic in a domain G except for the isolated singular
points z,z,,........ z,..If x isa simple closed curve which does not pass

through an of the points z, then

[ f(z)d z=2ni g Res(f;z)
X k=1 =2ni x[sum of residue of f at its pole

inside x ], where x istraversed in anticlockwise direction. (2008)
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Proof: Given that, z,z,,z......... z,, areisolated singular pointsin G.

Assume these points lie inside x

Choose positive numbers r,r,....... rm SO small that no two circles

xk'|z—zk|—rkintersectk—1,2 ........ m and every circle
k—12 ........ |S|n5|de X.

clelele
SOOO0

Fig 13.1

. the function f is analytic in a domain which is bounded by non-
intersecting closed curves x X, ......... Xy and on the curves.

By using Cauchy Deformation Theorem

Jx.f()dz—f dz+I z)dz+... +I (z)dz
I z)dz= ZJ .............. (1)

kl&
-. f hasanisolated singular point at z= z
. f has Laurent expansion about z= z,

o0

L f(2)= D an(z-%)" 0<|z-z(<ry
N=—o0
Any point on the circle = centre + radiusx e®
Consider,
IS aza) .
ijf(z)dz=xk n=—o0 =y ka(Z—Zk) dz
N=—o0
Any point on the circle x, is,
z=27 +ne® 0€[0,2n]

dz—lrkeede
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0 0

2r 2n A
J‘ f (Z)dZ: Z anj (r.€°)"ir &°d = Z an _irkn+1 J‘ el(n+1)ede
*« =0 N=—o0 0

. 2r
Note: [erdg =27 n=-1
0

0 ,nx-1

I f(z)dz=aqin " (2r) = 2ni a_; = 2ni .Res(f i %)
XKk

definition of residue.

Put this value in equation (1) to get.

by

jf(z)dz: ézni Res( f;z) = 2ni g“l Res( f,z)

Example 1. Use Residue Theorem to evaluate
J' 22 +1
X z(z—2)(z+4)2

where x isthecircle |7 =3

Solution:- By using Residue Theorem
[ f(2)dz=2ri sum of residuesof f at itspolesinside x]

........ (1)
2

H F(7) = z7+1

e () 2(z-2)(z+4)?

- f hasasimplepoleat z=0 and z=2 i and z=-4 isapole of
order 2.

But, ssimple poles z=0, z=2liesinside x

)
SN

Fig 13.2
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For smple pole at z=0
Res(f;a)=lim(z-a)f(2)

Z—>0
2
Res(f;0)=lim(z-0)x 27+l 5
z-0 z(z-2)(z+4)
2
. 2(2 +1) . 22 +1 0+1  _
= lim = lim =

250 7 (z-2)(z+4) 250(z-2)(z+4)° (0-2)(0+4)
1
R

Similarly,
e +e’
2
= e =—1= e = 27=(2n+1)7i

=0=e+e’=0=>e*=-¢6"

= z:(2n+1)%i 17=3

zex

Res(f;2):7—“':)2

-.from equation Q)

22 +1
')|.(z(z—2)(z+4)2

-1 5 -1 5 [-9+20 .on
:2m[——+—122m{ + }=2m[ }zZMx

32 72 8x4 8x9 72x4 2x A,

I 72 +1 11 .

3 =—mi

xZ(z2-2)(z+4) 144

= 2mi| Res( f;0)+Res( f;2)]

(2) Use Residue Theorem to evaluate

J- sinz
3

x (2-74)

y=12

dz where zis a closed square bounded by x=+2, and

Solution : By using residue Theorem,

[ f(2)dz=2ri [sum of residue of f at its polesinside x]
X
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Here f(z)= (;":Z)g
/4

- f hasapoleof order 3at z =7,

But, the pole z:% liesinside x

For pole of order m=3,

Res(f;o = ! im d™ z—a)" f(z
’a_(3—1)!z—>cx dzg_l( * ( )
A
12
1
f z=1
pd (Z) 1 1L % N
< T ' T rd
21 L4 o1 |2
L -2
v
Fig 13.3

n 1. d3t sin2
Res f,— = lim 25— | —mmm
4) (3-1)'zadA 1V 4 M

4

N 1. .
=5 lim —2(smz) == lim (-sinz)

T
zZ—>—
4
—1 _Sinﬁj—lx__l
2 4) 2 22
T -1
. |Res| fi= |=—=
( 4) 2.2
sinz

mdz=2ni L_—Jlﬂ:%m

—_—
—
—_
N
~
o
N
Il
X —

VA
(3) jcoihzdz where x iscircle|Z=3
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Solution :- by using residue Theorem

[ f(2)dz=2ri [sumof residueof f atitspoles

X
z

Here f(2)=—2
cosh z
Let coshz=0

e+e’ _ _
=0=2e+e’=0=>e’=-¢e"

2n+1) i

=e7=-1=¢ = 2z=(2n+Dri

:z:(2n+1)%i

-. f has simple poles at Z=i(2n2+1jn

But , the simple poles Z:iig liesinside |7 =3

For simple pole
Res(f;a)=lim(z-a)f(2)

Z—>0
2
Res(f;iE = lim | z=iZ € 0 form
2 T 2 Jcoshz 0
Z——
. TC Z 2
i (Z_'z)e +e(1) _cos%+isin7/2 _o+il
25i T sinhz ign™ i1
2 2
3
Res(f;—iEJ: lim (z+i£) €
2 T 2 )coshz
z—>—|E

— lim (Z+igje2+e2(1) :0+e_i% :COS(_%)Hsin(%)
217 sinhz S”‘h(igj isin(7,)

=1

V4
[ = 2ni[1+1] = 4ni
X
2 +1 . .
(4) J' 5 where x isthecircle|Z =4
x(z2-1)(z-2)%(2+5)
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13.3 EVALUATION OF STANDARD TYPES OF
INTEGRALS BY THE RESIDUE CALCULUS
METHOD :

* Application of Residue Theorem to evaluate real Integrals.

Type-l
2n 2n
Integral of the type [ F(cos,sin6)do, Where [ F(cosd,sin6) is
0 0
rational function of cos6 and sn6
2n
Consider, IF(cose,sine)de
0
Put z=¢® . 0e[0, 21], dz=i-e®do= do=2 - %
idd iz
@O0 1 z4l) 2
Cose‘_ezle =2 T 2722
sno=& —€" =Z+Z__1=Z__}/Z=ZZ__1
2i 2i 2 2z
2n 2 2
J F(cose,dne)desz 2+l 7+l z,Where
5 9 2z 2z iz

2 2 .
f(z):F z+1,z +1.|_
2z 2z iz

= 2ni [sum of residue of f at its poleinside x]

(by residue Theorem)
(-b) £+ b2 — 4ac

ax? +bx+c is polynomial than the root are x =

2a
2n do
(1) Use Residue Theorem to evaluate |
0 2+cosH
2n do
Solution :- thegivenintegral is |
0 2+cosH
Put z=e" , 0¢[0,2n], dz=i-€% o
do=-2 — go-%
|eIe 1Z
doe® 21zt 241
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21
I do =I ! |& where x isthe unit circle |7=1
2+ c0os0 2241 |iz
2z
1 Ii 1y ——I
i XZ 4z+7% +1 2+4z+1
2/
......... (1)
Put f Z _2;
z+4z+1
. _4)+16-4 Z(-2+N3)
f has smple pole a z=( ) 6 = ( ) i.e.
2 4
z=-2++/3

but, the simple pole = —2++/3~-2+1.73 liesinside x

For smplepole,  Res(f;a)=lim (z-a)f(2)
Z—>Q

) 1 0
ReS(f;—2+\/§)=Z_>|1£T2L\/§[Z—(—2+\/§)Jxm (ajform
z>-2+/3 2z+4 2(—2+\/§)+4 23

. by using Residue Theorem
J'f( z)dz=2ni [sumof residueof f atitspolesinside x]

in
I 2+4z+1 {Z\f}_ V3
Put this value in equation (1)
an o 2 in

=— X —

o 2+C0s0 | J3
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27'C
(2) use residue Theorem to evaluate | _do a>|b
0a+bsme
2n
Given, Ii
a+bsno
0
0 0 d?  dz
Put z=¢ 6e[0,2n] = dz=ie"do —=do=— = =
id? iz
. e_ie z—z_1 22—1
sng=—— = - = —
2i 2i 2iz
21 dzl
J' do :J' i where x isthe unit circle |7=1
a+bcos6 221
X Xa+b| —
2iz
dz
- = =2 Q)
ny 2alz+bz2 b ')[b222aiz—b
- 24
1
Put f(z)=—+7-——
(2 bz? + 2aiz—b

/ 4b2
. f hassimplepoleat z=-2ai + i

—2a| +2 b —a?

2b

2 .2 2 12
i.e. f hassmplepoleat z=-ai+ b ba —i[a+ ab b }

2 2—.2
Let ag= i [a—_ \/1—&)} and B:i[a+— \/Eb}
'.‘aB=1:>|oc||B|:1:>|oc|:ﬁ<l ............ (b <a)

But the pole o liesinside x
For smple pole,
Res(f;a)=lim(z-a)f(2)

Z—>a
Res(f;aq)= lim (z—al).; (gjform
o0 bz? + 2aiz—b \ 0
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z->aq 2bz+2ia

_ 1 _ 1
B
1

Res(f;ay)=

2ivaZ —b?
By using Residue Theorem,

[f(2)dz=2ri [sumof residueof f atitspolesinside x]
X

=27 x

1
2i\/a2—b2
f zdz:L
[t @

Put this value in equation (1) we get
21

do T 2

£ a+bcoso =2x \/az_bz =\/a2—b2

T
3. Use residue theorem to eval uate j% a>h
s a+bcos

21

Hint: First evaluate I do
0

a+bcoso

do

T de
a+bcosH

e ]
0 a+bcosO

Then use the property

S =3

1+ 2cos6

T
4.Eva|uatej5 P
¢+ 5+3cos

cos30

21
5. Evaluate j—
0 5-4cos6

do
a+coso

T
6. Evaluate j a>1
0



265

Type-l|

Integral of thetype J' f (x)dx

—0o0

Improper  Integral  where f(x)=%,wherep(x),Q(x) are

polynomial in x.

Example: If |f(z)|s£K for z=Reé? where K>1 and M are
R

constants.

Then lim | f(2)dz=0 where, xz is the semi circle are of radius
R—wx
XR

R as shown in figure.

Proof: Given |f(z)|££K for z=Re"®
R

X X R
s
-R O R
Fig 13.4

M
[ t@dg < [[f@)ldd< = []|od
XR XR R XR
Put z=Re® = dz=Rie'%do

Y
[ f(20z sﬂKj R.é%l@‘:ﬂK « 7R
R R
XR 0
[ f(2dz|< “}L\"l >0 as R
K-
XR
. lim [ f(2dz=0
R—ow

R
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0

Example: Evauate J' f (x)dx , where
P(x) ) . .

f(x):@, P(x) and Q(x) are polynomials inx .

Solution:

Consider J'f(z)dz where x is a closed curve consisting of
X

large semicircle x, of radius R and the real axis from —R to R
traversed in the anticlockwise direction.

GE[O,TC} X o
-R O R
C-plane
Fig 13.5

We choose only those poles of f which lie in the upper half of the
complex plane.

. by residue theorem,
I f (Z)dz=2ni [sum of residues of f at its pole inside x]
X
R
[ f(@)dz+ [ f(x)dx=2ri [sum of residues of f at its pole inside x]
X -R
onreal axis z=x

R—w
*R
polesinside x]

R
. lim f(2)dz+ lim j f(x)dz=2nri [sum of residues of f at its
R—w
-R

O+ [ f(xdx=2ri [ sum of residues of f at its poles inside x]

........... (by previous example lim | f(2)dz

R—w X=0
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Note: If f(2)= % where, P(z) and Q(z) are polynomial in z such
that,

(i) Q(z) = 0 hasno real roots.

(if) The degree of Q(z) is greater than that of P(z) by atleast 2, then,
j f (Z)dz=2ni [Sum of residue of f at its polesinside X]

X

Example:
o 2
(1) Evaluate j X+3 4
. (x2+1)(x2+4)
A
X XR
< /\/ >\ >
R 7 O R
v
Fig 13.6

Where x is a closed curve consisting of large semicircle X of

radius R and real axis form —R to R traversed in the anticlockwise
direction.

degQ(2) >degP(2)+2
P(2) = 2+3& Q(2) :(22 +1)(22 +4)

.. thisgenera method is applicable
Consider,

J- 72 +3
(22+1)(22+4)
22+3
(22+1)(22+4)
Heref hassimple polesat z=+i and z=+2i but the poles z=i and
z=2i liesinside x.
For ssmple pole

Here, f(2)=
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Res (f;a)=lim (z—a) f(2)

Res Z—0
(F1i)= lim (2i)x 2t 3
o (22+1)(22+4)
. (z—i)(22+3) (22+3)

=lim
2> (z- |)(z+i)(22+4) z-i (z+i)(22+4)

%43 (-1)+3 3-1 2
(i +i (, +4) 2i(-1+4) 2i(4-1) 2i(3

1
Res( f; |)—g
. . . 72°+3
Res(f;2|):le_)rT;i(z—Zl)(22+l)(22+4)
i (z—2i)(22+3) i 2,3
2 (2 +1)(7 -2)(z +2) 22 (2 +1)(z+2)
(2% +3 4i%3 —4+3

) (21 +1[2i+2] (4% 1) (a) 4i(-4+1)

1
P2|

By using Residue Theorem

Res(f;2i)=

j z +3 dz=2rni [Sum of Residue of f at its pole lies inside
X(22+1)(22+4)

X]

-2 o =[5 o

ol (zz+1)(zz+4)d”I (eatfra) e

) 2% +3 x°+3 _5_
”Rl’inoo xj (z +1)(z +4)O|ZR|T>1o '[ (x +1)(x2+4)dx_6TE @

x+3 5
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. 22+3
T.PT. Flinoo XIR(22+1)(z2+4):O

2 _2i0 i0
I 243 3 ]c R<e +#‘Re de‘
Xg (22+1)(22+4) 0 ‘R2e2i9+4‘R2e2ie+4
{ put z= Reie, 0 ][0, Zn]}

—dz=iRe? do

dz

Szn (R2+3)Rde

o (R?-1)(R?-4)
‘RZeZile +|]” ) R21—1
Pl g,
Rt 4 o

[ 2)
- he)l- )

2
oo lim I 5 z +32 dz=0
R—00 XR(Z +1)(z +4)

Put this value in equation (1)

|z + 2| 2|21|—|22|:>‘R2e2i9 +# 2 ‘Rzezie‘_m .

22+3
XR(22+1)(22+4)

—->0as Ro>w

po il

< x°+3 5n
o (Eea e

2
X“+3 dx=§n

_Oo(x2+1)(x2+4) 6

(2) Use Residue theorem to evaluate

X2

> dx and then use the property
(1+ xz)

Hint: First calculate I
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00 2 00 2
I X—zdx: ZI X > dx
2 2
—oo(1+x ) 0 (1+x )
2
Solution: Consider j > dz where x is a closed curve
x(1+ 22)
consisting of large semicircle xg of Radius R and real axis from —-R
2
V4

to R traversed in the anticlockwise direction. Here f(z)=

(1e22)

Here, f haspole of order zat z=+i but, thepole z=i liesinside x.
For pole of order 2

, 1 . d 2
Res(f;i)=———Ilim—(z—i)" f
(B)=oyim g (=) 1@
2 _.2 2 2
=Iim_i(z—i)2 z 2:|im_(z#22:|im_i .
z—i dz (1+22) 25 (z—i)(z+i) z—i 0z (z+i)
o 2
X —=X+2
) | —5—dx
©) J‘x4+10x2+9

—00

Type-l1l: Integral of thetype I smmx f (x)dx or Ojocos(mx)f(x) dx

—00

m > 0 where f (x):%
N
X XR
Z N N
\ 4
Fig 13.7

Consider j s (2) dz where x is aclosed curve consisting of large
X
semicircle xg of radius R and the real axis from —R to R traversed in

the anticlockwise direction.
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.. by residue theorem
[€™f (2)dz=2ni [Sum of residue of f at its pole liesinside x]
X

R
.-.je‘mzf(z)dz+ [ €™ (x)dx=2ri [ Sum of residue of f at its pole
R -R
liesinside x]
~ lim [é™f(2)dz+ lim [ €™ (x)dx=2ri [Sum of residue of f
R—wo X R—>oo_R
atitspoleinsidex]  mmemeeee- @D

- lim [ €™f(dz=0 = - (by next example)
R— o
XR

-. from equation (1),

0+ [ (Cosmx+isinmx) f(x)dx=2xi [Sum of residue of its poles

—00

inside x|
Example: 1) Use Residue Theorem, to evaluate | Cgse’zdx
—o X+
3iz
Solution: Consider [ —— dz
x 2 t4
A
X xR
e_n/\\z 620
< > > >
-R 70 R
v
Fig 13.8

Where x is a closed curve consisting of large semicircle xg of

radius R and the real axis from —R to R traversed in the
anticlockwise direction.

e3| z

22 +4

Here fisasimple polesat z=+2i but, the pole z=z liesinside x.
For smple pole,

Put f(z)=




272

Res (fia)= lim (z-«) ()

o 3z L (z—2i)e‘°’iz
Res(f,2|)_zll_)rgi(z—2|)><22+4—Z|I_>rgim
2

e3| z e3| (2i) e6|

= lim - == —
22 z+2i (21+2) 4
6
oy €
Res(f,2|)_—4!

e by residue theorem,
. jf(z)dz:Zni [Sum of residue of f at itsall polesinside x]

3z R 3ix
lim dz+ lim

R—o 2 +4 R—® X214
XR -R

o = — 1
; ()

3iz
T.PT. Iim dz=0

R—o0 2214
XR

Put z=Reé® 0¢[0,21]

dz=i.Re” do
11
R4 RP-4

R2e210 +4{ > RR—4—

i d . e3|.ReIe ‘i Rel® de‘
7| < -
XL 2+ 4 g ‘R2e2'9+4{
R 2n 3 R T _
< I e'R(Cose+isin9)‘d9: je‘3R3”9
(R2—4) 0 (R2_4) 0
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( ‘e3iRCose‘:1)
can0222 | ocf05]

A
S y=3n0

20 . —6R0

= -9n0<—=—" = _-3RSNO <
T 7T

~6R 172

__2R |e™ | 2R om0
CE RN
T Jo
:—Tn [e_?’R—l} :%[1—&3'1 -0 asR—>0
3(R —4) 3R (1_ 4 )
( v,
3iz
~ lim >—dz=0
R—o Z“+4

XR

Put this value in equation (1)

0+ J-Cos3x+|Sin3x T
X2 +4 4

Equatl ng Real part from both sides

e—6

J- CosSxd :

Ee_e
x +4 2
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Snmx
2
(){X(X +a)dx m>0 aeR

©) .[ Cosmx
(14—x2)

(4) j —dx

x +4x+5

[ (z==i) isapole of order 2]

—00

Type-1V: Poles on the Real axis
In this case, we cannot use residue theorem because the pole z
=0lieon real axisand henceon x.

Example: Provethatjsmx I
o 2
. . %€z
Solution: Consider j 7dz
0
Y
A
X

Fig 13.10

Where xisaclosed curve consisting of
(i) areal axisfromrto R
(i) alarge semicircle xg of radius R.
(iii) area axisfrom—-R to—r
(iv) asmall semicircle x, of radiusr.
-» thepolez=_0lie outside x,
. by Cauchy- Goursat theorem,

J izz dz=0

X
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iX iz =I X iz
!%dx+XLe7dz+_jRerx+x_[e7dz:O

In 3% integral x is negative = dx will be —dx, using this negative
sign make limitsr to R.

R g iz iz iz z
ZiI%dx+ J' e—dz+ je—dz:o Sinz:e €
. X <R Z y4 2

Xy

Taking limit R—>o andr —0

RSnX dz dz
lim 2i | —=dx+ lim | =—dz+ lim J.—dz:O ............ (1)
R— o X R—wx V4 r>o® Z
r—0 XR
eiz
T.PT. lim | —dz=0 (Proof assimilar as Typelll)
R—0 z

XR

eiz
Consider I—dz

z

XR

Put z=re® =dz=ire%eo

, T
ji:dh_f%xireiede -------- [ [f= ij

|
% o re
Takinglimitasr -0

eIZ T 0
lim —dz=—iJ'e do=—in
Xx—0 Z

Xy 0

. from equation (1),

T Sinx )
2|j—dx+0—m=o
0 X

o0
o S G 0—in=0
0 X
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X 2

S =8

Snx _in T iNX
0

Meromor phic Function (M.F):
If f is defined and analytic in an open set G — C except for

poles. Then fisa Meromorphic function on G.
2

VA
z(z-5)
Theorem (1) If f has a zero of order m at z=a, then Res
'@ )
f(2) '
Proof: Given that, f hasa zero of order mat z=a
- 3 ananalytic function g: B(a; R) > C

eg. f(2=

st. f(z):(z—a)mg(z) where g(a) #0
Diff. w.r.t. z
f'(Z):m(Z—oc)m_lg(Z)+(Z—oc)mg'(Z)

f'(2) (z—oc)m_l[mg(z)+g'(z)] _ mg(z)+9'(2)
f(2) (z-a)"g(2) (z-a)9(2)

. f’
Laurent expansion for ﬂ about z=«

f(2)

,0<|z—a|<R

fz)__m  9(2
f(2) (m-a) 9(2)
. 9(2)

- 9(2)

expansion about z=a.

is analytic in B(a,R) and hence it has Taylor series

. By the definition of residue,
Res [(%}a}: m= Coefficient of (z—a) in the Laurent series
z

expansion.

Theorem (2) If f has a pole of order n at z=p then Res

(-
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Proof: Given that, f hasapoleof ordernat z=
- 3 ananalytic function g:B(B;R) »C

st. 1=(z)=LZ)n where g(B)+0
(z-B)

Diff.w.r.t. z

f,(z):(z—ﬁ)n g'(2)-g(z)n(z-p)""

is analytic in B(B;R) and hence it has Taylor series

expansion about z=
.. by definition

(1]

13.4THE ARGUMENT PRINCIPLE:

Let f be a Meromor phic function in a domain G and have only
finitely many zeros and poles. If x isa simple closed curvein G sit.
no zeroes and poles of f lie, on x, then

2|J

number of zeros and poles of f inside x, each counted according to
their order or multiplicity. (2004, 2007)

dz Zs - Where, Z;,Ps, denote respectively the

Proof: Given that, f isaMeromorphic function in domain G.

Put F(2) =2

= the singular points of F inside xare the zeros and poles of f.
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.. by Residue Theorem,
f'(z)

_)[F(z)dz:;[ f((z)

pointsinside x. e (1)

dz=2ni [Sum of residues of F at its singular

If aj isazeroof f of order m;, then Res(f (Z);

If B, isapoleof f of order n, then Res[f (z);Bsz_nk

From equation (1)

_)[%dz:Zni[Res( ff((zz)) ;ocj]+Res( ff((zz)) ;BKH

i K
1 (F(2)
— dz=2Z; - P
2ni {f(z) R
Example:

(1) Use Argument Principal to evaluate
f'(z) (z-2) . :
I—dz where f (z)=——————— and x isthecircle |7 =3.

" f(z) z(z-1)(z-4)
Solution: by Argument Principal
i_ f'(2) dz=Z¢ —P; where, Z; and Z; are the no. of zeros and
2mi f(z)
poles of f inside xeach -(1)
Given function,
(-2)

f == 7

(2) z(z-1)(z-4)

Heref hassimplezerosatz=2andz=0,Z=1and z=4 are simple

poles
N
Qi:zsi

Fig 13.11
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Given equation of circle |7=3

But, simple zero z = 2 and simple polesz = 0, 1, liesinside x.
- from equation (1)

11
2mi " f(z)

f'(z

(
t(2)

~—"

=-2mi

dz=1—2=—1:>j
X

(2) Use the argument principal to evaluate J':c((zz)) dz where
X

f(z)= ZZ(Z(_ZZ_)l()Z_B) and x isthecircle |7=n

Solution:
By argument principle
i_ f (Z) dZZZf —Pf
2mi 2 f(2)
X
(z-1)

Given function f(z)= 5
z°(z-2)(z-3)

Heref hassimple zero at z=1and z=0 isapoles of order 2 and z =
2, 3 are simple poles.
Given equation at circle, |7=mn

But simple zero z = 1 and simple poles z = 2,3 and z = O is pole of
order 2 lieinside x.

From equation (1),
jﬂ =2mi [1-4]=2ni[-3] =—6mi
f(2)
X
(3) Evaluate | cotzzby using argument principle
|Z=n

Solution: | cotzz= | %dz=l | Z.C08nZy,
2= ‘Z‘:ﬂSinnZ 7| = Snrz

. by argument principal
| cotzdz:izni[zp—Pf]zzi[zf P (1)

4 "
Here f(z) = Sinr z has simple zeros at

TZ=Nn neZ
S.Z=n nNeZ
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5.2=0,£1,+,2,43,..... are simple zeros of f and f has no poles but
zeros z=0,1,+2,+3 liesinside x i.e. |7=n
| cot(nz)=2i[7-0] =14

[Z=n

(4) Evaluate [tannzdz where x isthecircle 4=
X

Take as an Exercise.

13.5 ROUCHE’'S THEOREM :

Suppose f and g are Meromorphic functions in a nbd. of
B(a; R) With no zeros and poles on the circle x={z|z—a|=R}. If

z¢,2q Py, Py) are the no. of zeros (poles) of f and g counted

according to their order and if |f(z)-g(z)<|g(z)|v2ex then,
Zi-Pt =2y - (2005, 2008,2009)

Proof: Given that, f and g are Meromorphic functions in a nbd. of

B(a;R)

PUL F(2)= ;8

= Fis a Meromorphic function in a neighbourhood of B(q; R)
Let Z=x(t) beany point on thecircle x.

Then, z= X(t)=0c+Re't te[0,2n]
F '¢"“ o=FoXx ~\\‘
X "'O \“‘
o (1)
R : :
a i , H
N “fA 72
z—plane S <> B(i;1)
o— plane
Fig 13.12

-+ x iIsasimple closed curve in Z-plane and F is analytic.
-.o=F.x isasoaclosed curve in w-plane
- for any te[0,2n]



_ _|F(x®)
B T B e @
Given that
‘f(z)—g(z)‘<‘g(z)‘ VZe X
f(2)

ﬁ_j‘ <1
Put z=x(t)
() |
g(x(1)) “ !
Put the above value in equation (1), we get
‘G(t)—l‘ <1
{o} < B((1,0);1)
. 0 belongs to the unbounded component of w\{c}
.. by definition of winding no;
n(c;0)=0 (- Oliesoutside the curve )
1 do
— [—==0
2mi 60)—0
Put (ozc(t) :>d(o=0’(t)dt te[O,Zn]
2t
= [ ZT(:))dtzo ------------------- 2
Now, G(t)z ;g:g;;
)~ SO ) = () (x(0) ¥ 1)
[a(x(v)]
fr




1 ¢ f'(z
= .
2mi f(z) 2mi 9(2)

.. by the argument principle
Zi-Pr=Z4-Py

Example:
(1) Use Rouche' s theorem to prove that al zeros of the polynomial

2’ -52%+12=0 lie between thecircles |7 =1 and |7=2 .
Solution:
Consider thecircle x 1|7 =1
Let f(z)=z7—523+12 and g(z)=12
= g hasno zerosinside x
For any point ze x,

|f(z)—g(z)|:‘z7—523+12—12‘:‘27—523‘s|z|7+5|z|3
=17+5(1)° =1+5=6<12 =9(2)

1T (2)-9(2)|<|9(2)|¥ze{x)}

c = Fox

.'.|f(z)—g(z)|<|g(z)| Vzex

.. by Rouche' s theorem,

Z¢ =2 (Here, there are no poles)

g

= f hasno zerosinside x

Consider the Circle x,:|7=2

Let f(z):z7—523+12 and g(z):z7

— g has 7 zeros, counting order, inside x,
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For any point ze x,
‘f(z)—g(z):‘z7—523+12—z7H :‘—523+12‘
5|2 +12 =5(2)° +12=5x8+12=40+12
=52< 27:|g(z)|
.'.|f(z)—g(z)|<|g(z)| Vze X
Hence all zeros of the polynomial z’-5z3+12=0 lie between the

circles|zZ=1and |7=2

(2) Use Rouche’s theorem, to prove that e” =az" (a>e) hasn zeros
(roots) inside thecircle |7 =1
Solution: Consider the circle x:|z=1

Let f(z)=az"-¢? /\V\Xl
and g(z) = az" \\/

Fig 13.13

= g has n zeros, counting order, inside x.
For any point ze x,

|f(z)—g(z)|:‘azn—ez—azn‘
:‘ez‘:éz‘ :el<a:|g(z)|

.'.|f(z)—g(z)|<|g(z)| Vze X
.. by Rouche' stheorem Z; =Z

g
= f hasn-zerosinside thecircle |7 =1

(3) Use Rouche's theorem to prove that every polynomial of degree
n has n zeros.

13.6. SUMMARY::

1) Residues:
Let f has an isolated singularity at z=o and
Let f(2)= >, an(z—oc)n be its Laurent expansion about z=o Res

N=—o0

(f;0)= Coefficient of (z—a) ™ in Laurent series= a ;.
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2) Calculation of Residues:
1) If f hasapole of order mat z=a then,
m-1

N d m _

2) If f hasasimple poleat z=a, then,
Res (f;a)=lim [(z-a)f(2)]

Z—>o

Let f be anaytic in a domain G except for the isolated
singular points z,z,....... Z,:1f x is a smple closed curve which
does not pass through an of the points z, than.

3) Cauchy — Residue Theorem:

m
[ f(z)d z=2ni Y. Res(f;z)
X k=1
= 2mi [sum of residue of f atitspoleinside x ]
Where, x istraversed in anticlockwise direction

4) Meromor phic Function (M .F):
If fis defined and analytic inanopen set GC C except
for poles. Thenf is a Meromorphic function on G.

5) The Argument Principle:

Let f be a Meromorphic function in a domain G and have
only finitely many zeros and poles.

If x isasimple closed curvein G s.t. no zeroes and poles of f

lie, on x, then 2nij];((z) dz=Z; —-P; | where, Z¢,Ps, denote
X

2)
respectively the number of zeros and poles of f inside x, each
counted according to their order or multiplicity.

6) Rouche’s Theorem:
Suppose f and g are Meromorphic functions in a nbd. of

B(o; R) with no zeros and poles on the circle X:{Z;|Z—oc|: R}. If
z¢,2q Py, Py) are the no. of zeros (poles) of f and g counted
according to their order and if |f(z)-g(z)<|g(z)v2ex then,
Zt —Py =Z4 P,
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7) Schwarz'sLemma
Let D={zeC:|4<1} be the unit disk and suppose f is
analytic in D with, (i) f (0) = 0 and (ii) | (2)| <1 for ze D
Then, |f(z)<|4 vzeD and |f'(0)<1

8) A function f:D — D is said to be an Analytic automorphism or
Automorphism of the Unit disc D, if f is bijective and if both

f,f L areanayticinD.

13.7. UNIT END EXCERCISES:

1) Show that the Polynomia P(z)=27z"+4z?+1 has exactly
two zeroes in|z<1.

Solution: Let f(z) =472 g(2)=27°+1

. |f(2)|>]9(2)| for every number onthe Unit circle.

By Rouche's theorem, the number of zeroes of (f+g)
inside the curve (|z|=1)= the number of zeroes of f inside the
curve (|Z|=1).

. 272°+42° +1 has exactly two zeroes in the curve |7 <1.
(Here the number of zeroes of finside the curve (|z|=1).
I I

2) Suppose that f is entire and f(z) is rea if and only if zis

real .Use the Argument Principle to show that f can have atmost
one zero.
( Hint: Consider the image of the circle |zZ=R. Heref maps the

entire upper semicircle |7=R,y>0 into either the upper half

plane or the lower half plane.
Similarly, f maps the entire lower semicircle |7=R,y>0 into

either the upper or lower half plane, because AArg(w) is atmost
n in any upper/ lower haf plane .. AAgf(z) <2z asztraverses
through the circle |7 =R.

-. The Number of zeroesof f(z) in|Z<R

1 1
=—AArgf (2) < —27 =1.
27rA gt (2) 2 d
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3) Find the number of zeroes of f(z)=%ez—z in|zZ<1. (Hint:

Let f(z)=z,g(z)=%ez -~ t@]>]e@)| vz |7<1)

4) Find the number of zeroes of f(z)=2°-5z*+3z°-1 in |7<1(
Hint: Take f(2)=5z* g(2)=2°+32°-1
.. on |z|:L|f(z)|:|524|:52|z6+322—1‘
Also |f(z)|=|g(z)| only at Fi.
There are 4 zeroes of fin |7<1.

5) Show that for each R>0 if n is large enough then
2 n

Pn(z):1+z+%+...+z—I has no zeroes in |z<R.
: n:

(Hint: P(2) >e*asn—o.)

6) If f is Meromorphic onG and f:G — C_, is defined by
f(z) =0 if z ispoleof f
= f(z) otherwise. Show that f is continuous on G.

. dx
7) Find [® .
) Fe x*+1

in .
L o 3r
Solution: Here z =e4 and zz=eT

Represent the poles of in the upper half plane. Since

241

each of these is a simple pole
. The residues are given by the values of f ’(z):4—13 a these
z

poles. |
Res£241+1;etlr}:%(f2+i«/§)and
Res £Z41+1;e3|“j[J ——(V2-i2)

in
s fx =27i| Res 41 e4 +Res( 41 ;e3i”j :ﬂﬁ
X" +1 zZ"+1 z"+1 2
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8) Evaluate jfooosm—)gx)dx.
iX

Solution: We know that the function £ has pole at x=0.
X

. We modify the integral as follows:

* sin(x) x_1

—00

dx=Im[” dx.

owme-1 . 1-e? e
A < dx_lesz—m—le .

(V4 iX
limy Ly &z =0= 7, € 1

dx = ri

—00

iX ;
Imjfoooe 1dx=7r.:>j°O mdx=7r.
X X

—00

dx
1+x

9) Evaluate |7 ——

in
Solution:  Let f(z):llg.Thenfhas poles a z=e3 and
+2Z

3z
z,=€"=-1z,=¢€3

.. Res

_E(L@J

L
|

-.Res

10) Evaluate jﬁﬁ.

Xa—l

p(x)

(Hint: Theintegral has the form [ dx with 0< a:%<1

a-1 a-1
0 X

Use the formula |(1-e2@D)*X _gx—y Res| Z—:z ||the
{( Ji P TR P

sumon R.H.S. is takenover the zeroes of the function p(z2).
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11) Evaluate 7~ 90
2+ o0s(0)
Solution: Consider jg’fd—ez__zf ZL
2+cos(0) il2-172+4z+1
2 - ;\/:_)’—Zj:%ﬂ\/é

=4r Res(
z°+4z+1

0 2
12) Evaluate theintegral [ X .

2
o (X2+1)
13) Use Cauchy-Residue theorem to evaluate
sinz
/>
4Z°+1

dz where ~ isthecircle | z—i |=r.

14) Use Cauchy-Residue theorem to evaluate | 02352 dx.
0 X"+
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MOBIUS TRANSFORMATION

Unit structure:

7.0 Objective

7.1 Introduction

7.2 Conforma Mapping

7.3 Some standard transformation

7.4 Mobius Transformation Or Bilinear Transformation Or
Linear Fractional Transformation

7.5 Summary
7.6 Unit End Exercise

7.0. OBJECTIVE

After going through this unit you shall come to know about

e Special type of functions called transformation from C — C
e The combination of special function to give rise to a
transformation called Mobius Transformation

e Special properties of Mobius Transformation like fixed point
and cross ratio.

e Method to find the bilinear transformation using various
method.

7.1. INTRODUCTION

There are certain transformation that can be readily described
in terms of geometry. In this chapter, we are mainly concerned with
certain geometric interpretations of functions and finding the image
of agiven figure under agiven bilinear function .

7.2. CONFORMAL MAPPING

A differentiable map f :Q — R? issaid to be conformal map if
det(Df,)#0vVze Q& £(Df,(a),Df,(B))=«£(a,B)Va,p e C—{0}

Thus, conformal map is preserves the angle between two intersecting
curvesin C
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Proposition: Let Q be a domain in C and f:Q—C be a map.
Then f is any analytic function with f'(z)=0V zeQ if and only if f
is conformal map with det(Df,) > 0 V ze Q

Proof: Let f beanalytic, Df (a)= f'(z)a VaeC.Then

Z ) Re(aﬁ)

£(f'(2)a, f'(2)B)= ( /3| P

£(a,p)Va,peCl{0

Thusf is conformal map.
Let f(2=u(2)+iv(2,ze. By Cauchy Riemann equation, the

: . Ju, u u, -v
Jacobian of f =( u(x,y),v(x,y)) is {v Vy} = LX J X} :

x vy x Uy
Hence det(Df)=u+ u,°>0. Now f'(z)=u, +iv, & f'(z)=0.
Hence det(Df,)=u’+ u, = |t ’(z)|2 >0.

Conversely, Fix zeQ. Since f is conforma map,
£(Df,(1,0),Df,(0,1)) = £(Li)=

So, Df,(L0)LDf,(01). Let Df,(L0)=(ab)eR?>. Then
Df,(10)=(%b,a).

Since  det(Df,)>0,Df,(01)=(-ba).Let  a=a+ib.  Then
Df,(B)=ap (Verify) and fis complex differentiable.

7.3. SOME STANDARD TRANSFORMATION

(i)  Trandation: where c is a complex constant.

The transformation w= z+cissimply atrangdation of the axes
and as such as preserves the shape if the region in z-plane.

Note: in particular translation maps circle in z-plane onto circles in
the w-plane.

(i) Rotation and Reflection: where ¢ is a complex
constant.

Let w=Re?,z=re’,c= pe“
Now, Re’ =re?. pe* =rpe @

" R=rp&¢=a+0

. Thus the transformation maps a point P(r,0) in the z-plane
onto apoint P'(rp,a +0) inthew-plane.
i.e. the image is magnified (or diminished) by rp and rotated
by a+6.
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Note: in particular w=cz maps circle in z-plane onto circles in the
w-plane.

(iii) Inversion: (w=

N |~

Let w=Re?,z=re"’
. Re’ =%
re

.'.Rz%&qﬁ:—@

i.e. transformatiom w=1maps P(r,0) in the z-plane onto a point
z

P'(r,—0) inthe w-plane.

Note: in particular w=1 maps circle in z-plane onto circles in the
z

w-plane.

7.4. MOBIUSTRANSFORMATION
OR BILINEAR TRANSFORMATION
OR LINEAR FRACTIONAL TRANSFORMATION

Definition: A transformations(z)=w= az+;) , where a,b,c,d are
CZ+

complex constant and ad —bc=0 is called Mobius Transformation
or Bilinear Transformation or Linear fractional transformation.

Note: If ad-bc=0 = ad=bc = R:i
a ¢

b

alz+
_az+b _ ( A‘) -2 _ constant.

©cz+d c(z+%) C

Thus, ad-bc=0 is a necessary condition for the Mobius

Transformation:  s(z)=w= az+b
cz+d
1) If Sis a Mobius transformation, then S™1 is the inverse

mapping of Si.e. (SoS‘l)(z)= z=(S‘1oS)(z).

Let S(z)= az+3 where a,b,c,d are complex constant and
CZ+

ad—-bc=0.
S_l(Z)Z dz-b

—CZ+a
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dz-b j

(So 5‘1)(2) - S(S‘l(z)) - s[ ——

SR

—CzZ+a

_ adz— a8 —bcz+ b 5 —_cz¥a _ adz-bez
—ez¥a cd7 —bc—cd? +ad  —bc+ad

(ad —bc)
(ad —-bc)
Similarly, (S_loS)(z):
(2a)z+(2b) _ Maz+b) s(2) (1%0)
(Ac)z+(Ad) A(cz+d)

= The o - €fficients a, b, ¢, d are not unique.

8 80 Cp + ayathd, + bibyciC, +1, Gt dy

8y 33 C, — 35biCd, — &yyCy0; — b, Gl dp =
343,01, —axh,C,rd; + bbyoic, — acd;

=gy0; (ayd, - b2c2) + blcl(bZCZ —ayd,)=
aldl(aZdZ _bZCZ)_blCl(aZdZ —b2c2)

= (aydy—bycy).(ayd, —byc, ) £ 0.
are not unique.

=z

Consider

i.e. the coefficients a, b, c,d

3) Let S beaMaoabiustransformationon C,, .

S(z)=

az+§ where a,b,c,d are complex constant and ad —bc=0.
CZ+

A
ford,) e,

S(oo)=i when c#0
C
= when c=0
az+b az+b

Again, S(z)= oid " c(z+%)

S[—ijzoo when c=0
C
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4 If S and T are Mobius Transformations, then (ToS ),
(composition of T and S) isalso a Mobius Transformation.

Let Q:S(z):M where a,b,c,d are complex constant and
Cz+0dh

ad)-bg#0 and  ©=T(§)= :jé:bz where ap,by,c,,d, are

complex constant and a,d, —b,c, 0.
[T-S](2)=T[S(2)]= [alz“Lbl}
Gz+d;

. _ qz+by y 1
o9 e ot | =)
G| —|+d
C]_Z-i-dl

_ @7+ +0p02+0,d ozt
gz+d] 32+ biCy +¢dyz+ dydy
_ a@pzrah +bozibydy (213 +bpe) 2+ (B +bpdh)  az+B

aCz+bicy +dyz+didy  (ayCy +¢dy) z+(bicy +didy) XZ+8
where, a=aa+be, PB=a)+byd, X=gCy +¢d,,
0= b_l.CZ + d1d2
Now, ad—PBx=(agay +bye;)(bicy +chdy ) —(aghy +bydy ) (aCp +¢1dy)

= a2y Cy + &gyt dy + bibyCiC) + by dhdy — (&gaghicy
+ ahycydy + aybyCody +byodidy )
0

Hence, compositionof S and T isalso a Mobius transformation.

Proposition : If S isa M.T. then, S isa composition of translation
rotation, inversion and Magnification.

az+b

Proof : Consider a Mobius Transformation, S(z)= q
CZ+

where,

a,b,c,d arecomplex constant and ad —bc =0

Casel : When ¢c=0
S(2)= az+b a 3

d d d
It S(2)=zand () z+%
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then, (S;08)=S[S(2)] =% | 5 2|2 242 =5(2)

d d
$=%°8

In this case, Mobius transformation is a composition of trandation,
rotation and Magnification.

Casell : When c#0

S(z):i( az+ij az+bc+ad-ad  (bc-ad) +% (cz+d)

c\ cz+d (ccz+d) B c(cz+d) (cz+d)
_ bc—ad 1 +i
? z+(y C
bc—ad a
If and S =7+ —
Si(z Z+/ S (z }/z ( 2 jz 4 (2) =2+ -

<s4ossoszosl><z>=84[83(82@(2)))}=5{53(52(”%m

_s, 33( — ﬂ - S{ (b°;2""d) e } - S“{%}

bc—ad a
—+_
c(cz+d) ¢
_ a+bc—ad =S(z)
c(cz+d)
L S=8050509
In this case, M.T. is a composition of trandation, rotation,

inversion and magnification.

Fixed Points:
Definition : Let G beasubset of C,, and f:G— C,,. Then point

7o G issaidto be afixed point of f if f(z5)=2z,.

eg.i) Let f(z )—z2 Here, f hasfixed points 0, 1 and o.
ii) Let f(z)=1. Here, f hasfixed point 1and - 1.
i) Let f( )_z+(3+|).Here, f hasfixed point «.

Example 1: What are the fixed points of Mobius transformation?
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Solution : Consider a M.T., S(z)= az+3 where, a,b,c,d are
CZ+

complex constant and ad —bc=0.
For fixed points,
Put

S(z):z = az+b

cz+d
= cz®+(d-a)z-b=0

—(d-a)+y (d-a)’-4.b.c
2c

(a+d)+ (d—a)?—be
2c

A. M.T. can have amost 2 fixed points unless
S(z2)=z =~z

iz+2
2) S(Z)= z+1

7= az+b=cZ?+dz

= Z=

f—

Z=

Solution : For fixed points

PutS(z):z = i§+12:Z:> iz+2=722+z2> 22+(1—i)z—2:0
+
. 2
—(1-i)%4 (1-i)°-8
B ) )

Definition : For any three distinct points z,, z3, z, in C,, the cross
ratio of four points z,z,z3,24 is defined to be
(z1-23)(22-2%)

(z-2)(z2-2) '

(21,20, 23,24) =

Zo — Z Zo —
Fora=z, (22,22 %3 24) = 222—23))((22—2; N
Zy— Z Zo —
For 21223’ (23,22,23,24): Ezz_zi))izi_Z; =0
—Z Z>—7Z
Fora =z (222,25, 24) = Ezzj—zj;((zi—z:; -

Definition : If zeC, then the cross ratio (z,7,2,24) is the
image of z under the unique. Mobius transformation which takes
Zy to 1, Z3 to0 and Zy to w.i.e S(Zl)=(Zl, Zy, Z3, 24) .
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Note : If M is any Mobius transformation and w,,ws,w, are
complex number st. M(w,)=1, M(w)=0 and M (wy)=o then

M (2)=(z,wp, Wg, Wy).

Proposition : If z,,z3,24 are distinct pointsin C,, and T is any
Mobius transformation then, (z, 2z, z3,24)=(T2,72,T23,Tz,) for
any fix z.

Proof : Let S(z)=(z,2,2,2)

= SisaM.T. (1)
and  S(z)=1 S(z3)=0 and S(z)=

Giventhat, T isany M.T.

Put M =sTt

U)
/—\
d
-b
N

I |

M (Tz)=(Tz, Tz, Tz3,Tz4)

S(T‘l(Tzl)) = (T, T2, Tz, Tz4) (“m=sT

S(7)=(T7,T2,,Tz3,Tz4)

(21,20, 23, 24) = (T2, T2y, T23, Tz4) (" Sis M.T.)
i.e. The crossratio isinvariant under Mobius Transition.

Proposition : If z,, z3,z, are distinct points in C,, and wsy, ws, Wy
are also distinct pointsin C_, then, thereis a unique M.T. S sit.

S(zp)=wW,, S(z3)=wg and S(z4)=wy.

S
z Wqo
s
z5 Wo
z
a . w
SisaM.T. 4
C ® (z- plane) Coo(w—plane)

Fig7.1
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Proof : Let T(z)=(z 25, 23,24) and M (2z)=(z, Wy, Wg, Wy).
= T and M are Mobius Transformations and T(z)=1,
T(z3)=0and T(zg)=o0, M(W,)=1 M(wg)=0and M (wy)=co.
Put S=M T
S(z)=M"}Tz)=M"1 (1) =w
S(z3)=M"}(Tz5)=M1(0)=wy
S(24)=M " (Tzg) =M () = w,
Let R beanother M.T. sit.

R(ZJ)ZWJ for j=2,3,4

(R*es)(2)=R(S(2))=R (W)=

(R*es)(z)=R(S(z))=R *(ws) =2

Here, (R‘los) composite map of S and R™* has 3 fixed points.

Rlos=| (Identify map)
= S=R
Hence, S isthe unique transformation.

Proposition : Let z, z,, z3, z, be distinct pointsin C,, then the cross
ratio (z,2z,2,24) is areal number < all four points lies on a
circle (or a straight line). (2009)
Proof : Let S:C,, —»C,, be defined by S(z)=(z 2,2,24) = Rea
number.

/9'\

S
. Mobius
7 transformation

S R

N

0

Fig7.2
Then, S H{R}={z:(2,2,2,2,) isred} i.e image of R, under
the Mobius Transformation is a circle.
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We will prove that the image of R, under the Mobius
transformation is a circle.

az+b
cz+d

Let S(z)=
ad—-bc=0.
If z=xeR and w=S*(x), then S(w)=xeR.

where a,b,c,d are complex constant and

S(w) is purely real number.
" S(w)= s(w)
aw+b _ aw+b
cew+d  cw+d

L (aw+ b)(Ev_v+ a) = (5v_v+ 5) (cw+d)

= aE|w|2+aaw+b5v_v+ba:50|w|2+aﬁd +bow+bd
(a(_:—éc)| u|2+(aa—50)w+(b6—5d)v_v+(ba—5d)=0 (1)
Casel : If ac isnot real, then ac—ac#0.

If ac isreal then ac=ac=ac

= ac=ac=0

From equation (1),
|w|2+ (a(jl—iac) W+ (?d_bf) wW— (tid_bc_i) =0
(ac—ac) (ac—ac) (ac—ac)
PUE x— ad —bc and 5 bd —bd
ac-ac ac-ac
|w|2+>_<w+xv_v—8:0
| w? 3w xw+| x [ =] x [*+3
w+x=R = lw—(-x)|=R which is the equation of the

circle with centre at (-x, 0) and radiusequa to R.

Where,  R=y|x[+5

J

ad —bc
a.c—ac

> bd—-bd ‘
+ — — =
ac—acC
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Casell : If ac isred then ac—ac=0
From equation (1)
(ad - be)w-+ (be—ad )w+ (bd —bt) =0
Put o=ad—bc & B=i(bd-bd)

= %w-%w-ip=o.

2
~Im(ao)—ip=0.

= Im(ao-p)=0.
[v-Pa)
Ya

Note: Consider a straight line L inthe Complex Plane C. If a
is any point inL and b is itsdirection vector then,

or Im -0 (2

P
S R EER

OR
:{z:a+bt:te]R, i.e.—oo<t<°O}

. The point w lies on a line determined by equation (2) for
fixed o and B.

Theorem : A Mobius transformation takes circles onto circles.
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Proof : Let T beany circlein C_, (z-plane). Let S be any Maobius
Transformation.  Suppose z, z3,z, are distinct points on the

circleT.
r I

Fig 7.4
Put Sz =w; for j=234.
= Wy, W3, Wy aredistinct pointsin C,, (w-plane).
These three distinct points w,, ws, w, determine a circle in w-
plane.
T.PT. S(N)=I"
Since, 2, z3, 4 aredistinct pointsin C,, and S inaM.T.
(2,22, 73, 24 ) = (2, Sz, Sz3, S24) for any point z.
=(Sz, Wo, W3, Wy ) ... (1)
If zeT thenthecrossratio (z, z, z3, z4) isarea number.
z,25,23,24 dl lieonacircle. ...
(Sz, Wy, W3, Wy ) isareal number. (by equation (1))
=  Thesefour points Sz,w,, ws, w, lieonacircle T'".

Put S=w
As z moves on the circle T', then the corresponding point w moves
onthecircle " under aM.T.‘S".

= S(r)=r'.
Hence, a M obius Transformation takes circles onto circles.

7.6. UNIT END EXERCISE

Example : Find a M.T. which maps points z=-1,0,1 onto the
points w=-1,—i,1. Also find the image of unit circle | z|=1 in the
C-plane under thisM.T.
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Solution : Given points z=z, z,=-1, z3=0, =1 and w=w,

Wo =—1 Wg=—1i, wy=1.
AY A
\
i
<« > < /\ >
y=0-1 1 X '1\/1 u
| o=t
v v
2—plane ®—plane

Fig7.5

M.T.isgivenby (z 2, 23, 24) = (W, Wy, W5, Wy
(Proposition on page no.81(2))
L (n)(z-z)  (wwe)(wp-wa)

=

(z-2)(22-23)  (W—wy)(wp—ws)
(z2-0)(-1-1) _ (w+i)(-1-9)
(z-1)(-1-0)  (w-1)(-1+i)
=  (-z+iz)(w-1)=(1-z)(w+i) =
— 2+ z+ioW— 2 =W+i— 20 — iz
S(z):W:i{ ;;: } (1)
which is arequired bilinear transformation.
From equation (1), w= { z+:}
= WZ+iw=iz+1l=>wz—iz=1-iw = z(w—i)=1-iw
= z:ﬂ

Given equation of unit circleis | z|=1.

“1 = |1-iw|=|w=i|= |1-iw[*=|w-i [’



w o -1

— == W=—

4 z

'.'leOO, E:O & ézo
Z z

w=m, -0 & Y_q
W, W,

= (1-iw) (L+iw) = (w—i)(w+i)
= L+iw—iw+| W|2 =] W|2+iW—iV_V+1

= 2w-2w=0 = w-w=0 = w=w
Put w=u+iv,

W=W = U+iv=U+iv = u+iv=u-iv = 2iv=0
= v=0

which is the equation of real axis.

1) Find a Mobius transformation , which send 1, i,—1 onto
-1,i,1 respectively.

Solution : f(1)=2—+§:_1 f(i)= a|+b:i, f(-1) = —a+b _
+

- =1..
ci+d -c+d

= a+b=-c-d,

ai+b=di-c>a=dandb=-c,

b-a=d-c=2>-c-d=d-c=>d=0=>a=0
b ¢

f(z)=—=—=—1, since c=0.
CzZ Cz z

f(z):—1 is therequired bilinear transformation.
VA

2) Find the fixed points of the mapping szil'
+

Solution: Let z, be the fixed point of the mapping

z z .
W (z) z+1320 (zo+1j320 \ Zy=Xg+iyg= % =0

~.zy=0 is the fixed point of the mapping w:fl.

3) Find the Mobius Transformation bilinear mapping sending
-i,i,2i onto oo,O,% respectively.
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Solution: Let f(z)= az+b

(ad—bc)=0 be the required bilinear

!

CZ+
mapping . We know that f maps —% onto oo:>—%=—i,
~d=ico f(z)= 5P
Cz+I1C
Now f(i)=0= f(i)=2tL_ A+ _o_p_ 4
ci+ic Z2c
T e B Cul) SVPYPINE SR P AT
cz+ic  c(z+i) 3 3 3
—a=c.
f(z)za(z__l)zz—_l,, here a=0
c(z+i) z+i

(Alternate method for problems involving infinity)

4) Find the bilinear transformation which maps the points

z=o0,i,00nto the points z=10,i,o

Solution: We have transformation W=-w)(W, —ws) _ (2-2)(2,—2)
(V\ﬁ_Wz)(Ws_W) (21_22)(23_2)

Since, z = and w, =, we define N and D of LHS and RHS by

w,and z respectively.

z=m, 2=0 & 2=0andw=w, =0 & ‘2
z 2 w, w,
(W-w)(-D) _(-1)(z,-2)
(W, —wp) (z-2)
Put Zzzi,23:0 andW1:0, W2:i
Wi -1

-1 —-Z z

=0

5) Find a Mobius transformation , which send 1, i,-1 onto
—1,i,1 respectively.

Solution : f(1):aLb:_l (i) = a_|+b:i, F(=1) = —a+h _
c+d ci+d —c+d

1.

= a+b=-c-d,

a+b=di-c=a=dandb=-c,

b-a=d-c=>-c-d=d-c=>d=0=>a=0
b ¢

.~.f(z)=—=—=—1, since c=0.
Cz cz z

f(z):—1 is therequired bilinear transformation.
VA
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6) Find the fixed points of the mapping szil'
+

Solution: Let z, be the fixed point of the mapping

z :
w= f(z):?1 :zO:[ZOZiJ: Z=0, let zg=xy+iyp= X =0

~.Zy=0 is the fixed point of the mapping w=2i1.
+

7) Find the Mobius Transformation/ bilinear mapping sending
—i,i,2i onto 00,0,% respectively.

Solution: Let f(z)= aZer(ad—bc);«rso be the required bilinear

cz+d’

mapping . We know that f maps —% onto oo:>—%:—i,

~d=ico f(z)= 25D
Cz+IC
Now f(i)=0= f(i)=2FL_A*D_o p_ 4
ci+ic 2c

(g =22 :‘z‘((::; (@) =5 = f(2)=2 -2
f(z)= 25;::; =?, here a=0

8) Let z,7,,25,2, be four distinct points in C,. Then show
that (z,2,,23,2,)is a real number iff al four points lie
on a circle.

(Hint:  Define s:C, >C, by s(z)=(z2,2,2,) Show that
s(R,) is a circle. Here s'(R)=the set of al z such that
(2.25,23,24) is redl.

z+1

z+4
Find its radius and centre (2009)

9) Provethat al the points z e C satisfying =2 lieinacircle.
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10) Find the image of the circle X*+ y*+2x=0 in the complex plane
under the transformation vv:1 (2008)
Z

11) Find the Mobius transform which maps the points z=1, | ,-1
onto the points Mobius transformation (2008)

12) Let H={zeC/Im(z)>0}and let D={zeC/|z|<1}. Find the
Mobius transformation g s.t .g(H)=D and g(i)=0. Justify your claims
(2007)

13) Show that Mobius transformation has O and «as its only fixed
pointsif and only if it is dilation (magnification) (2007)

14) Show that Mobius transformation has « as its only fixed points
if and only if itisatrandation (2007)

15) Find the Mobius transform which maps the real axis R[ ]« onto
thecircle |7=1 (2006)

az+b a

16) Fix a,b,c,de Cwith c= 0.show that -S> —asz—> o
cz+d cC
17) Verify that the Mobius transformation w= 11' z maps the
1+ Z

exterior of the circle | z| =1 in the z-plane into the upper half plane
Im(w)> 0 inthe w-plane.

18) Find the image of the circle |z-3i|=3 in the complex plane

under the transformationw= 1 . llustrate the results graphically.
VA

19) Find the image of an infinite strip %g ys% in the complex plane

under the transformationw= =



