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SYLLABUS

Unit I. Euclidean space R"

Euclidean space R™ : inner product <x,y > = " x;y;0f x = (x1,..,%,),y =

(V1,--,¥n) € R™and properties, norm

[|x|| = / Jo1 %7 of x = (x1,..,x,) € R™, Cauchy-Schwarz inequality,
properties of the norm function ||x|| on R™ .

(Ref. W. Rudin or M. Spivak).

Standard topology on R" : open subsets of R", closed subsets of R", interior
A° and boundary 0A of a subset A of R" .

(ref. M. Spivak)

Operator norm ||T|| of a linear transformation T: R —» R™

(IIT]] = sup{|IT(v)||:veER &||v|| < 1})and its properties such as:
For all linear maps S, T:R - R™and R : R™ — R*

LS + T < [ISI + T,

2. [|[RoS]| = [IR]]lIS]],and

3. [[eT]| = Ic[lIT]I(c € R).

(Ref. C. C. Pugh or A. Browder)



Compactness: Open cover of a subset of R"™, Compact subsets of R" (A subset K
of R™is compact if every open cover of K contains a finite subover), Heine-Borel
theorem (statement only), the Cartesian product of two compact subsets of R™
compact (statement only), every closed and bounded subset of R" is compact.

Bolzano-Weierstrass theorem: Any bounded sequence in R™ has a converging
subsequence.

Brief review of following three topics:

1. Functions and Continuity Notation: A c R™ arbitary non-empty set. A
function f : A > R™ and its component functions, continuity of a function(€, 6
definition). A function f : A - R™ is continuous if and only if for every open
subset V. R™ there is an open subset U of R" suchthat f~1 (V) = A n U.

2. Continuity and compactness: Let K € R™ be a compact subset and f: K > R™
be any continuous function. Then f is uniformly continuous, and f(K) is a compact
subset of R™,

3. Continuity and connectedness: Connected subsets of R are intervals. If
f + E = Ris continuous where E ¢ R™ and E is connected, then f(E) CR is
connected.

Unit Il. Differentiable functions

Differentiable functions on R™, the total derivative (Df),, of a differentiable
function f: U - R™atp € U where U isopenin R", uniqueness of total
derivative, differentiability implies continuity.

(ref:[1] C.C.Pugh or[2] A.Browder)



Chain rule. Applications of chain rule such as:

1. Let y be a differentiable curve in an open subset U of R".Letf: U —» R be
a differentiable function and let g(t) = f(y(t)). Then

9'®) =< H(r®),y'®) >.

2. Computation of total derivatives of real valued functions such as

(a) the determinant function det(X),X € M,(R),

(b) the Euclidean inner product function < x,y >,(x,y) € R"x R".
(ref. M. Spivak, W. Rudin)

Results on total derivative:

1. If f:R™ - R™ is a constant function,then (Df), = 0Vp €R".

2.1f f:R™ - R™ is a linear map, then (Df),, = f Vp €R".

3. Afunction = (f}, f2,.. fm) : R® > R™ is differentiable at p € R" if and only if
each f; is differentiableat p € R™, and (Df)p = ((Dfy)p, (Df2) v,.., (Dfm)D).

(ref. M. Spivak).

Partial derivatives, directional derivative (D, f)(p) of a function f at p in the
direction of the unit vector, Jacobian matrix, Jacobian determinant. Results such
as:

1. If the total derivativeofamap f = (f1,..,fm) : U = R™(U open subset of
ofi

R™ ) exists at p € U, then all the partial derivatives Py exists at p.
]
2. If all the partial derivatives%ofa mapf = (fi,--,fm) : U = R™(U open
]

subset of R™ ) exist and are continuous on U, then f is differentiable.
(ref. W. Rudin)

Derivatives of higher order, C*-functions, C®-functions.(ref. T. Apostol)



Unit lll. Inverse function theorem and Implicit function theorem

Theorem (Mean Value Inequality): Suppose f : U — R™ is differentiable on an
open subset U of R™ and there is a real number such that |[|(Df),|| < MVx €
U. If the segment [p, q] is contained in U, then ||f(q) — f(P)|| < M]||q — pl|.

(ref. C. C. Pugh or A. Browder).

Mean Value Theorem: Let f : U — R™is a differentiable on an open subset U of
R™ . Letp,q € U such that the segment [p, q] is contained in U. Then for every
vector v € R" thereisapointx € [p,q]suchthat<v,f(q) — f(p) >=<

v,(Df),(q — p)>. (ref:T. Apostol)

If f: U — R™is differentiable on a connected open subset U of R™ and
(Df), = 0Vx € U, thenfisa constant map.

Taylor expansion for a real valued C™-function defined on an open subset of R",
stationary points(critical points), maxima, minima, saddle points, second
derivative test for extrema at a stationary point of a real valued C? -function
defined on an open subset of R". Lagrange's method of undetermined multipliers.
(ref. T. Apostol)

Contraction mapping theorem. Inverse function theorem, Implicit function
theorem.(ref. A. Browder)

Unit IV. Riemann Integration(15 Lectures)

Riemann Integration over a rectangle in R™, Riemann Integrable functions,
Continuous functions are Riemann integrable, Measure zero sets, Lebesgues
Theorem(statement only), Fubini’s Theorem and applications.

(Reference for Unit IV: M. Spivak, Calculus on Manifolds)



DIFFERENTIATION OF FUNCTIONS OF SEVERAL
VARIABLES

Unit Structure

5.0 Objectives
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5.2 Total Derivative

5.3 Partial Derivatives

5.4 Directional Derivatives

5.5 Summary

5.0 OBJECTIVES

After reading this unit you should be able to

o define a differentiable function of several variables

e define and calculate the partial and directional derivatives (if they exist) of a function
of several variables

e establish the connection between the total, partial and directional derivatives of a
differentiable function at a point

5.1 INTRODUCTION

You have seen how to extend the concepts of limit and continuity to functions between
metric spaces. Another important concept is differentiation. If we try to apply this to
functions between metric spaces, we encounter a problem. We realise that apart from the
distance notion, the domain and codomain also need to have an algebraic structure. So, let us
consider Euclidean spaces like R", which have which have both metric and algebraic
structures. Functions between two Euclidean spaces are what we call functions of several
variables.

In this chapter we shall introduce the concept of differentiability of a function of several
variables. The extension of this concept from one to several variables was not easy. Many
different approaches were tried before this final one was accepted. The definition may seem a
little difficult in the beginning, but as you will see, it allows us to extend all our knowledge of
derivatives of functions one variable to the several variables case. You may have studied
these concepts in T. Y. So, here we shall try to go a little deeper into these concepts, and deal
with vector functions of several variables.

5.2 TOTAL DERIVATIVE




To arrive at a suitable definition of differentiability of functions of several variables,
mathematicians had to closely examine the concept of derivative of a function of a single
variable. To decide on the approach to extension of the concept, it was important to know
what was the essence and role of a derivative. So, let us recall the definition of the derivative
of a functionf: R - R.

exists.

We say that f is differentiable at a € R, if the limit, lim fa+ hr: — (@)

In that case, we say that the derivative of f at a, f'(a) = Ling fa+ hr: — (@)

So, we take the limit of the ratio of the increment in f(x) to the increment in x. Now, when our
function is defined on R", the increment in the independent variable will be a vector. Since
division by a vector is not defined, we cannot write a ratio similar to the one in (5.1). But
(5.1) can be rewritten as

lim
h—0

[f(a+hr:—f(a) _f@] =0, 0r

[ fla+h)-f(a)-f'(a).h ]

lim =0,or
h—0 h
lim L:) - 0, where r(h) = f(a+h) — f(a) — f(a).h.
So, we can write f(a+th) =f(a) + f(@).h+r(h), e, (5.2)

. h
where the “remainder” r(h) is so small, that % tends to zero as h tends to zero.

For a fixed a, f(a), and f'(a) are fixed real numbers. This means, except for the remainder,
r(h), (5.2) expresses f(a + h) as a linear function of h. This also helps us in “linearizing” f. We
say that for points close to a, the graph of the function f can be approximated by a line. Thus,
f!(a) gives rise to a linear function L from R to R.

L: R» R, h - f'(a).h, which helps us in linearizing the given function f near the given
point a. (5.2) then transforms to
fa+h)y=fl@+LMh)+r(h). (5.3)

It is this idea of linearization that we are now going to extend to a function of several
variables.

Definition 5.1 Suppose E is an openset in R", f:E - R™, and a € E. We say that f is
differentiable at a, if there exists a linear transformation T : R" - R™, such that

lim If (a+h)—f(a)-T(h)I
h—0 Al

=0 (5.4)

and we write f'(a) = T.

If f is differentiable at every point in E, we say that f is differentiable in E.



Remark 5.1 i) Bold letters indicate vectors.
ii) Since E is open, 3 r > 0, such that B(a, r) < E. We choose h, such that [|h]| <, so that
a+thekE.

iii) The norm in the numerator of (5.4) is the norm in R™, whereas the one in the denominator
is the norm in R".

iv) The linear transformation T depends on the point a. So, when we have to deal with more
than one point, we use the notation, T4, Ty, and so on.

We have seen that in the one variable case, the derivative defines a linear function,

h — f'(a).h from R to R. Similarly, here the derivative is a linear transformation from R" to
R™. With every such transformation, we have an associated m x n matrix. The jth column of
this matrix is T(e;), where g; is a basis vector in the standard basis of R".

For a given point a, the linear transformation T is called the total derivative of f at a, and is
denoted by f'(a) or Df(a). We can then write

f(a + h) = f(a) + Ta(h) + r(h), where % 50,855 0. e (5.5)

We now give a few examples.

Example 5.1 : Consider f: R" - R", f(x) = a + x, where a is a fixed vector in R" . Find the
total derivative of f at a point p € R", if it exists.

Solution : Now, f(p + h) —f(p) = h. So, if we take T to be the identity transformation from
R" to R", then we get

f(p + h) —f(p) — T(h) =0, and hence

i V@R F@) Tl _

0.
h—0 IRl

Comparing this with 5.5, we conclude that the identity transformation is the total derivative
of f at the point p.

Example 5.2 : Find the total derivative, if it exists, for f : R°=» R?, f(x, y) = (x4, y?), at a point
a = (ay, az).
Solution : If f is differentiable, we expect T, to be a 2x2 matrix. Let h = (h;, hy). Now,
f(a + h) —f(a) = ((ay + hy)? (az + hy)?) — (af, a3)
= (2a,h; + h%, 2a,h, + h3)

= (2a,hy, 2a,h,) + (h, h3)



_(2a4 0 hy 2 32
_( O 2a2> (h2>+ (hl' hz)

2a;, O

We take Ta:( 0 2a
2

) ,and r(h) = (h2, h2), and write

r(h) _ (h%, h3)
Ikl V(h%+h2)

f(a+h) = f(a) + Ta(h) + r(h), where — 0,ash- 0.

Thus T, is the total derivative of f at a.

Now that we have defined the total derivative, let us see how many of the results that we
know about derivatives of functions of a single variable, hold for these total derivatives.

Theorem 5.1: If f:R" > R™ is differentiable at a € R", then its total derivative is unique.
Proof : Suppose f has two derivatives, Ty and T, ata, and let T=T; — T,. Leth € R",
h+0,andt e R, suchthatt - 0.

Thenth - 0as t— 0.

Since T is a total derivative of f at a,

Ira (ERI _ - Iflatth)—f(@-T (W)l _

t>0  thll >0 Ithll O (5.6)
Since T, is also a total derivative of f at a,
.l . lIf(a+th)-f(@)-T(th)ll
lim Ithil — t50 lithll =0 (5.7)
Thus, Il T(th) | = || (T, —T2)(th) | = Il T{(th) — Ty(th) |
=1 f(a+th) — f(a) — T,(th) — [f(a + th) — f(a) — T, (th)] I
<l fla+th) —f(a) —T,(th) | +Il f(a+th)—f(a)—T.(th) |
Therefore, IT(th)Il < Il f(a+th)—f(a)-T,(th)l N Il f(a+th)—f(a)—T,(th)l
Ithll lithll ithll

Since T is a linear transformation, T(th) = tT(h). Therefore,

LIT@I _ 1 flatth)—f(@-T;(Eh)I I fla+th)—f(@)-Ty(th)I
Itk Ithll " lchll '

So, using (5.6) and (5.7) , we get

0< lim IT(h)Il < i I fla+th)—f(a)—T,(th)ll + lim Il f(a+th)—f(a)—T1(th)I — 0
t>0 [l t0 lithll t0 ithll
h T(h
Since % is independent of t, this means % =0, which means that || T(h) Il = 0.



Now, h was any non-zero vector in R". Further, T(0) = 0. Hence we conclude that T(h) =0
forallh € R". Thus T = T, — T is the zero linear transformation. Thus, T1 = T,. That is, the
derivative is unique.

In the next example we find the derivatives of some standard functions.

Example 5.3 : i) Find the total derivative f'(a), if f : R"— R™, f(x) = ¢, where ¢ is a fixed
vectorin R™ and a € R".

i) If f:R">R" isa linear transformation, show that Df(a) = f for every a € R".

Solution : i) Since f is a constant function, we expect its derivative to be the zero
transformation.

Here f(a+h)—-f(a)=c-c=0.
If we take T to be the zero transformation,

- lr ()l — lim If (a+th)—f(a)-T(h)I _
h—0 |All h—>0 IRl

0.

Hence '(a) exists and is equal to O for every a € R".
ii) Since f is a linear transformation, f(a + h) = f(a) + f(h). If we take T =,

lr(R)I _

0.
Rl

r(h) =f(a + h) —f(a) -f(h) =0 =

We have defined the total derivative of a function as a linear transformation. Now we prove a
result about linear transformations which we may use later.

Proposition 5.1 : Every linear transformation T from R" to R™ is continuous on R".
Proof : If T is the zero linear transformation, it is clearly continuous. If T # 0, let p € R",

P = (p1, P2, ..., Pn), and & > 0. Suppose {ey, €y, ..., e} is the standard basis for R". Choose
§=¢e/M,where M= || T(e)) Il + Il T(ex) Il +..cc... + Il T(ey,) II.

If X = (X1, X2, ..., Xp) issuchthat | x — p Il <&, then|x—pi|<éfori=1,2, .., n
Also,lx — plI<s=ITX-TE)I=ITx-p)
=1 T(Cxr —p)es + (x — prles + -+ (6, — pp)ey) |l
<|Cer —pDl 1 T(er) Il +[Cez —p) 1 T(e) I + ... +Cen = Pl 1 T(en) |l
<S5 TCe) Il +11T(ex) Il +.....+l T(e,) 1)
=¢

Thus, T is continuous at p. Since p was an arbitrary point of R", we conclude that T is
continuous on R".



In fact, since § did not depend on p, we can conclude that T is uniformly continuous on R".

For functions of a single variable, we know that differentiability implies continuity. The next
theorem shows that this holds for functions of several variables too.

Theorem 5.2 : If f : R" > R™ is differentiable at p, then f is continuous at p.
Proof : Since f is differentiable at p, there exists a linear transformation T, such that

i V@R @-TI _

0.
h—0 kil

Thus, Ve > 0,3 8; > 0, such that

If (a+h)—f(a)-T,(R)Il <

lhii<d = ™

g/2

Choose 8, = min(1, ;). Then
lhii< & =1 fp+h)—fP) —T,(RA) I<(e/2)I Rl < g/2
By Proposition 5.1, Ty, is continuous at 0, and T(0) = 0. So, there exists §; > 0, such that
Ilhi< d; =I1Ty,(h)I< /2.
Now choose § = min(&,, §3). Then
lhii< s =1 f+th-f@I<I fp+h)—f(P)-T,(W) Il + Il T,(h)I
< 2 + 2 = E&.
Thus, limy,_ f(p + h) = f(p), and f is continuous at p.

With your knowledge of functions of one variable, you would expect that the converse of
Theorem 5.2 does not hold. That is, continuity does not imply differentiability. The following
example shows that it is indeed so.

Example 5.4 : Consider the function f : R = R?, f(x) = (|x|, |x|). We shall show that f is
continuous at 0, but is not differentiable there.

Given € > 0, choose § = £/+/2. Then

M <& =1 fO) =1 (xLIx) I1<V6Z+ 62 = V2 6=«

Hence, f is continuous at x = 0.

Now suppose f is differentiable at x = 0. Then there exists a linear transformation

T:R - R? such that



im fOF@-T®) _ L (RLIAD=T() _

h—0 h h—0

0

= limyo(5 (1,1) = T(1)) = 0
Now, (1, 1) and ( —1, —1) are two distinct points in R? and B((1, 1), 1) n B((-1, -1), 1) = @.

Fore=1,3 6 >0, such that

lhll< 6 =1 B@D-TA)I<e. (5.8)
Putting h=6/2 in (5.8), we get || '—:' (1,1) = T()) Il= |I(1,1) = T(DIl < 1. This means

T(1) € B((1, 1), 1).

Similarly, taking h= —§/2, we get that T(1) € B((—1, —1), 1). But this contradicts the fact
that B((1, 1), 1) and B(( -1, — 1), 1) are disjoint.

Thus, f is not differentiable at x = 0.

If f:R">R™,then, as you know, we can write f = (f,f, ...,f), where each f; : R"> R,
i=1,2, .., m These fis are called coordinate functions of f. Similarly, a linear transformation

T : R"> R™ can be written as T = (T1,T>, ..., Tm), Where each T is a linear transformation
fromR"to R.

Theorem 5.3 : Let f=(f,f2, ...,fn) : R"> R™, and p € R". f is differentiable at p, if and only
if each f; 1< i < m is differentiable at p.

Proof : f is differentiable at p if and if there exists a linear transformation T, : R" —» R™, such

lim If(p+h)—f@)-TMWI

that
h—0 (IRl

=0, thatis, if only if

lim 2L i +h)—fi@)-Ti(R)ledl
h->0 IRl

= 0, where {ey ey, ..., en} is the standard basis of R™,

|filp+h)—fi(p)—T;(h)|
[lhl|

if and only if, ng =0,vi, 1<i<m.

That is, if and only if each f; is differentiable and Dfi=T;, Vi, 1<i <m.

Thus, Df(p) = T, = (Df1(p), Df2(p), ....., Dfm(p)).

Theorem 5.4 : Letf:R"—> R™and g : R"—> R™ be two functions differentiable at p € R". If
k € R, thenf + g and kf are also differentiable at p. Moreover,

D(f + g)(p) = Df(p) + Dg(p), and D(kf)(p) = kDf(p).



Proof : Let Df(p) = Ty, and Dg(p) = T,. Then Ty + T is also a linear transformation from R"
to R™, and

0< Li"g ||(f+g)(p+h)—(f4|rlfﬁ(p)—(T1+Tz)(h)ll

I[f (p+h)—f(p)—-T1(h)]+ [g(p+h)—g(P)-T, (h)]I

= lim

h—>0 (IRl
< lim If(p+h)—f()-T1(h)I + lim lg(p+h)—g(p)-T,(h)Il - 0.
h—0 1A h—0 [lRIl

Therefore, f+ g is differentiable at p, and D(f + g)(p) = T1 + T, = Df(p) + Dg(p).

Now, lim Ikf +h)—kf @) —kT1 (I _ K| lim If (p+h)—f()-T1 (W)l

h—0 kil h—0 (1

=0.

Therefore, kf is also differentiable and D(kf)(p) = kT, = kDf(p).

5.3 PARTIAL DERIVATIVES

We know that the derivative of a function of one variable denotes the rate at which the
function value changes with change in the domain variable. In the case of functions of several
variables, change in the domain vector variable means a change in any or all of its
components. But if we consider change in only one component and study the rate at which
the function value changes, we get what is known as the partial derivative of the function.
Corresponding to each component of the variable, there will be a partial derivative. Here is
the formal definition.

Definition 5.2 Let f: E - R™, where E € R". Let X = (X1, X2, ..., Xn) be an interior point of E.
Then for every i, i=1, 2, ..., n, the limit

lim f(X1,X2,Xi+h,Xji11,Xn)— f(X1,X2,.Xn)

h—0 h

, If it exists, is called the ith partial derivative of f

with respect to x; at x. It is denoted by %, fxpp 07 Dif . We write % (x) to indicate the point
at which the partial derivative is calculated.

Remark 5.2 : i) If a function f has partial derivatives at every point of the set E, we say that f
has partial derivatives on E.

ii) It is clear from the definition that a partial derivative can be defined at an interior point of
E, and not on its boundary.

iii) If a function has a partial derivative at a point, its value depends on the values of the
function in a neighbourhood of that point. So, if the function values outside this
neighbourhood are changed, it does not affect the value of the partial derivative.

The following examples will make the concept clear.

Example 5.5 : Find the partial derivative of the function, f(x, y, z) = xyz + x%z.



Solution : This is a real-valued function. You are already familiar with the partial
differentiation of such a function.

+h)yz+(x+h)?z—xyz— x? -
Z—£ = ng (eth)yz+(x h) TR - yz + 2xz. Similarly, you can check that f, = xz, and
f,=xy + X2

Let us take a vector-valued function in the next example.

Example 5.6 : Find the partial derivatives of the function, f: R* - R?, f(x, y, z) = (xy, Z°), if
they exist.

((x+h)y.zz)—(xy,zz) — i ((x+h)y—-xy, 0)
h —am h

Solution : lim
h—0

(e XHR)y—-xy 0y _
- (L'ﬂg h , im h) = (. 0)
of _
Therefore, == = (y, 0).
Proceeding similarly, we find that % = (x,0), and 2L = (0, 22).

You must have observed that the partial derivatives of a vector function are formed by taking
the partial derivatives of its coordinate functions. In fact we have the following theorem,
which establishes the connection between differentiability of a vector-valued function and the
existence of partial derivatives of its coordinate functions

Theorem 5.5 : Let E be an open subset of R", and f : E = R™. Suppose f = (f1,f2, ...,f) is

differentiable at p € E. Then the partial derivatives % existfori=1,2, ...m, j=1,2,..,n.
]

Proof : Since f is differentiable at p, there exists a linear transformation T, such that

i If +h)—f(@)-T(W)I

h->0 Al

Then, h - 0 ifand only if t - 0. Thus,

= 0. Let h =tej, where {ey, €, ...,en} is the standard basis of R".

If (p+te;)—f()-T(te)l

f(p+te;)—f(p)
t

Itlgg m = 0. Therefore, Itlgg = T(e)).
That is,
(lim f1(p+tej)—f1(p), i fz(P+fej)—fz(p)’ o lim fm(p+te,-)—fm(p))
t—0 t t—0 t t—0
= T(e])

Hence the limits exist, and %(p) exists foralli=1, 2, ..., m.
]

Since j was arbitrary, we conclude that %(p) existsforalli=1,2,..,m,j=1,2,..,n.
]



Iff : E > R™, where E is an open subset of R", and if f is differentiable at p € E , then using
Theorem 5.5, the matrix of the linear transformation T can be written as

af1 f1 8f1
axl( p) axz( p .. - . axn( p)
afs P 0f
axl() axz() C axn()
of, 0 fm 0 fm
axl() axz() Ce axn()

This m x n matrix is called the Jacobian matrix of f at p, and is denoted by [f’(p)] or [Df(p)].

If m = n, the determinant of the Jacobian matrix is called the Jacobian of f at p, and is denoted
by a(flifZ"fm)(p)

0(xX1,X2, Xm)

Thus, if f is differentiable at p, then the total derivative of fat p, T : R"—> R™ is given by the
Jacobian matrix. For X = (X1, Xz, ..., Xn) € R",

X1
X2

T() =[P
n
When m =1, f is a real-valued function, and T(e;) = % (p). Hence, the Jacobian matrix of T
]

is the row matrix, [— (p) af (p) a;n @)1

The vector form, (aan (p)'aan ), ..., :Tf (p)) is called the gradient of f at p, and is denoted
1 2 n
by Vi(p), or gradf(p).

If h=(hy, hy ..., hy) ER",
To) = LZ®) 32@) - 5 (@]

Thus, T() = ZE@hy + ZE@hy + o + 3= (P)hy, 0F Ty(h) = Vi(p)e h
So, we can say that the total derivative T, of a real-valued function is given by
T, (h) = V(p)e h.
Example 5.7 : Find the Jacobian matrix of i) f(x,y) = (X%, ")

i) f(x,y, z) = (xsinz, -ye’) at (1, 2, -1).



Solution : i) fy(x, y) = ¥y, and f(x, y) = €. Therefore, 22 = 2xy, "’a—f; =X,

2 _ oWy 2 _ oy
o ye™, and % xe™.

Hence, [f(x, y)] = 2xy  x? ]

ye* xe*
o _ g o )= e
5, = Sinyz, and o (1,2,-1) sin2

fs _ ofs =
By (1, 2, —1) =—cos2, oy (1,2,-1)=2cos2,

9/, -0 92 _1\=_pl 9f2 1y = _ 9al
5(1,2,—1)—0, 3y 1,2,-1) €% 3, 1,2,-1) 2e”.

i —sin2 —2cos2 2 cos2
Thus, [f(1,2,- 1] = (75" 7204 2 00%)

In the next section we shall consider yet another type of derivative.

5.4 DIRECTIONAL DERIVATIVES

Partial derivatives measure the rate of change of a function in the directions of the standard

basis vectors. Directional derivatives measure the rate of change in any given direction.

Definition 5.3 : Let f : E - R, where E is an open subset of R". Let u be a unit vector in R",

andp eE. If Itmg w

the direction u. It is denoted by Z—z (p) or fu(p).

Example 5.8 : Find the directional derivatives of the following functions:

) f(x, y) = 2xy + 3y*at p = (1, 1), in the direction of v = (1, 1).
i) f(x, y) = x% atp = (3, 4), in the direction of v = (1, 1).
Solution : i) The unit vector u in the given direction is (%,%). Hence the required

s eg)-ran
t .

directional derivative is lim
t—0

f((1+72, 1+%))— f(1,1)

= lim
t—0 t
2(1+75)2+3(1+7)% =5 5VZE+5t% )2
= lim = lim ————— =5v2.
t—0 t t—0

i) We have the same unit vector u here. Therefore,

exists, then it is called the directional derivative of f at p in



oy D)l ro0 | (gforn s
= lim = -
t t—0 t 2

Duf(p) = lim
Example 5.9 : Find the directional derivatives, if they exist, in the following cases:

. _x+y,ifxy=0} _ _
)ty ={ T2 =0 at0,0) u= @ w) ful=1

i) fxy)= {x +y4'lf (x,y) # (0,0)

} at (0,0), u=(1N2, 1V2).
0, if (xy)=(00)

0 , 0 - f(0,0 . - .
Solution: i) ifuy# 0, u#0, lim f{ortu, th)) 100 _ lim =, which

does not exist. If either u; or u; is zero, we get the standard basis vectors, (1, 0) and (0, 1).

ifu=(1,0, fim 2O D=FOO) _ im0y
t—0 t t
similarly, if u= (0, 1), lim 1@ 0+0)- 700 _,

t

Thus, the directional derivatives in these two directions exist, and are equal to one. In any
other direction, the derivative does not exist. Note that the directional derivative in the
direction (1, 0) is fy, and that in the direction (0, 1) is f,. Thus, this function has both the
partial derivatives at (0, 0).

t3/2v/2

-0
o o) roo __ p
- == lim,, = limy,g—— ) = 1W2.

i) lim,_,
Thus, D.f(0,0)= 1/2.
In fact, if we take u = (cosé, sin@), then we can show that f has directional derivative at (0, 0)
in the direction of u, whatever be 6. That is, the directional derivatives of f at (0, 0) exist in
all directions. But you can easily show that this function is not continuous at (0, 0) by using
the two-path test. Recall, that you need to show that the limits of f, at (0, 0) along two
different paths are different. Then by Theorem 5.2 we can conclude that f is not
differentiable at (0, 0).
This example shows that the existence of all directional derivatives at a point does not
guarantee differentiability there. But we have the following theorem:

Theorem 5.7: Let f : E > R, where E is an open subset of R". If f is differentiable at p € R",
then the directional derivatives of f at p exist in all directions.
Proof : Since f is differentiable at p, there exists a linear transformation, T: R" - R, such that
If p+h)-f(@)-TW)| _ 0
h>0 IRl o

Let u be any unit vector in R", and take h = tu. Then h - 0, as t - 0. Therefore,
lim If (p+tw)—f(p)-T (tw)|

t—0 [t]

= (0. This means,



f(p+tw)—f(p)—tT(u)

lim | | = 0. Thatis,
t—0 |t|
im Z2XT®D _ 10 or D) =T, e (5.5)

t—0 t

Since u was an arbitrary unit vector, we conclude that the directional derivatives of f at p
exist in all directions.

Now, if u = (ug, Uy, ..., Up), T(u) = T( uze; + uzez + ... + unen), where {e, €z, ..., en} is the
standard basis of R". Therefore, by (5.5),

T(u)=u;T(e1) +uxT(e) +... + uT(en)

= U1 D, f(p) +uz2 D, f(p) + ... + Un D, f(p)

= 0P P s TP
= Vf(p)e u
Thus, Df(P)=VE(P)e u e, (5.6)

(5.6 ) gives an easy way to find a directional derivative of a differentiable function, if its
partial derivatives are known. For example, if f(x, y) = x* + y?, then f, and fyat (1, 2) are 2
and 4, respectivelly. So, the directional derivative of f at (1, 2) in the direction 2i — 3j is given
by @i+ 4j)e () = =

) T

This concept of directional derivatives can be extended to vector-valued functions. The
directional derivative of a vector-valued function is a vector formed by the directional
derivatives of its coordinate functions. Thus, to find the directional derivative of

f(x, y) = (x +y, x%), at (1, 2) in the direction of (3, 4) , we first find the directional derivatives
of f1(x, y) = x +y, and fo(x, y) = x* . You can check that these are 7/5 and 6/5, respectively.
Therefore, the required directional derivative of f is (7/5, 6/5).

We have seen in Theorems 5.6 and 5.7, that differentiability of f at a point guarantees the
existence of partial and directional derivatives there. We have also noted that the converse
statements are not true. Our next theorem gives us a sufficient condition which guarantees the
differentiability of a function at a point.

Theorem 5.8 : Let E be an open subset of R", and f : E - R™, f = (f,f2, ...,fn). If all the
partial derivatives, Djfi(x) of all the coordinate functions of f exist in an open set containing
a, and if each function Djf; is continuous at a, then f is differentiable at a.

Proof : In the light of Theorem 5.3, it is enough to prove this theorem for the case m = 1. So,
we consider a scalar function f from R" to R, all whose partial derivatives D;f are continuous
at a. Since E is open, for a given € > 0, we can find r > 0, such that the open ball,

B(a,r)cE,and || x—a|| <r=|Djf(x) -Djf(a) | <e/n,forj=1,2,...,n.  .rennn. (5.7)
Now, suppose h = (hy, hy, ..., hy), ||h||<r. Letvo=0,vi=hies, vo = vy + hyey, ...,

Vo =Vn_1+hpen Then fla+h)—f(a) =X7[f(a+v;) — fl@a+vj_)]. o (5.8)



Since |vj|]| <, vj € B(a, ), and since B(a, r) is convex, the line segment joining the points,

a+vj_panda+ vJ liesinit, forall j=1, 2, ..., n. Therefore, we can apply the Mean Value
Theorem to the j* term in the sum (5.8), and get

fa+vj) —f(a + vj-1) = hiDjf(a + vj_1 + 6;hey) , for some 6; € (0, 1). Then, using (5.7), we
can write

[f(a + h) —f(a) _Z?=1 h; (D]f)(a)l = |Z?=1 hi(D;f) (@ + vj-1 + 6;he; )- Z;}zl h;(D;)(@)]
S % 71 |hjle < [[hl|e, for all h, such that [|h|| <.
This means that
If (a+h)—f(@)—f' (W)l

h—0 Akl
[f'(a)] consists of the row, (Dsf(a), D.f(a), ...., Dif(a)).

= 0, where f' is the linear transformation, whose matrix

Thus, fis differentiable at a.

Definition 5.4 : A function f : E - R™, f = (f,f,, ...,fm), where E is an open subset of R",
is said to be continuously differentiable, or, a C' function, if Djf; is continuous on E for
allj,j=1,2,..,nandforalli,i=1,2,..,m

The continuity of partial derivatives assumed in Theorem 5.8, is only a sufficient
condition, and not a necessary one. That is, there may be functions which are
differentiable at a point, but do not have continuous partial derivatives there. We now
give you an example, and ask you to work out the details (See Exercise 3.)

Example 5.10 : Consider the function f : R>— R given by

2

xsin= +y sm—, if xy #0

y2sin>, if x=0,y #0

‘<

(
{ x sin%, ifx #0,y=0
lk

0, ifx=0=y

.1 1,
2xsm;—cos;, ifx+0

This function is differentiable at (0, 0), but neither f, = {
0, ifx=0

ZySln; — cos—, ify+#
0, lfy =0

Here are some exercises that you should try.

is continuous at (0, 0).

nor f, = {

Exercises:
1) Show that the following function is differentiable at all x in R".

f:R"> R, f(xX) =x - T(x), where T : R" > R" is a linear transformation.



2) Letf(x,y) = (X +x x*—y% 2x+ 3y®), p=(2, 1), v = (4, 5). Compute the partial
derivatives of f, and the directional derivative of f in the direction v, at p.
3) Prove the assertions in Example 5.10. (Hint : To show that f is differentiable, check

that f(h, k) - f(0, 0) — h(hsin%) + k(ksin-) = 0, and so, Df = (hsin%, ksin-) ).

5.5 SUMMARY

In this unit we have extended the concept of differentiation from functions of one variable
to functions of several variables. Apart from the total derivatives, we have also defined
partial derivatives, and directional derivatives. We have proved that differentiability
implies the existence of all partial and directional derivatives at a point, but the converse
is not true. As in the case of functions of one variable, we prove that differentiable
functions are continuous, but not vice versa. We have also derived a sufficient condition

for differentiability in terms of the partial derivatives.
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6.0 OBJECTIVES

After reading this chapter, you should be able to

e differentiate a composite of two vector-valued functions

e define and calculate derivatives of higher order

e derive the conditions for the equality of mixed partial derivatives
e state and prove the Mean Value Theorem

6.1 INTRODUCTION

In the last chapter you have seen how functions of several variables are differentiated. Now
we shall start by discussing how a composite function of two differentiable functions can be
differentiated. The Jacobian matrix introduced in the last chapter proves useful in this.

One of the important applications of derivatives is the location of extreme points of a
function. In the next chapter we are going to see how this concept can be extended to scalar
functions of several variables. But we shall do the necessary spade-work in this chapter. So,
we shall introduce higher order derivatives. We shall also study the conditions under which
mixed partial derivatives are equal. You may recall that the Mean Value Theorem was one of
the most important theorems that you studied in Calculus in F. Y. B. Sc. We shall see
whether this theorem can be applied to functions of several variables.

6.2 JACOBIAN MATRIX AND CHAIN RULE




We have seen in Theorem 5.5, that if f: R" — R™, is differentiable at p, then all partial
derivatives of all coordinate functions of f exist at p. That is, if f = (fy, f2, ..., fm), then Djfi(p)
existsforalli=1,2,..,mandallj=1, 2, ..., n. We have also seen that if {es, e, ..., en} is the
standard basis for R", then

' (P)(&) = (Bjf1(p), Dif2(p), ..., Difm(p))-
If h=37_, a;e; isavectorin R", then

f'(P)(h) =27, a;f'(p)(e;). f'(p), which is a linear transformation from R" to R™, thus has
the matrix,

D:fi(lp) D.fi(@) - . . Dufi(p)
D.f,(p) Dof2(p) - . . Dufa(p)

./
'\

I
I
lem(p) szm (p) ' ' ' anm(p)/

As we have already mentioned in Chapter 5, this m x n matrix, called the Jacobian matrix, is
denoted by [Df(p)]. The k™ row of this matrix is the gradient vector, Vf(p), and the j"
column is the image of e; under the linear transformation Djf(p).

Thus, the Jacobian matrix of f is formed by all first order partial derivatives of f. This means,
we can write the Jacobian matrix of any function, all of whose partial derivatives exist. As we
have noted earlier, the existence of partial derivatives does not guarantee differentiability. So,
even when a function is not differentiable we would be able to write its Jacobian matrix,
provided all its partial derivatives exist.

If f : R" = R, then its Jacobian matrix, if it exists, will be a 1 x n matrix, or a matrix vector.
If f:R"> R™ isdifferentiable at p € R", and if h is any vector in R", then

f'(p)(h) = [Df(p)]h is obtained by multiplying the m x n matrix [Df(p)] with the n x 1
column matrix h. Thus,

IF M =11 27V @ e e; |l < XL, [I(Vfi(p) e h) e; || = 272, (Vi (p) » W),

since
lell=1, 1<j<n.

Cauchy-Schwartz inequality for inner products says that |u e v | < || u || || v||. Using this we

get [IF'()MII < XL IVA@IIIRI = [Ih I X7 V@I -

If we take M = Y71, ||VEj(p)]| , then

IFF@MOI< MIfhg (6.1)



We have seen in Theorem 5.4 how to get the derivative of the sum of two differentiable
functions, and also that of a scalar multiple of a differentiable function. The next theorem,
which is known as the chain rule, tells us how to get the total derivative of a composite of two
functions.

Theorem 6.1 (Chain Rule) : Let f and g be two differentiable functions, such that the
composite function f e g is defined in a neighbourhood of a point a € R". Suppose g is
differentiable at a, g(a) = p, and f is differentiable at p. Then f e g is differentiable at a, and

(f - g)'@=f'(p)°g'(a) = [Df(p)] [Dg(a)]

Proof : If h is such that || h || is small, then a + h will belong to the above neighbourhood of
a, inwhich f e g is defined. Now, since g is differentiable at a,

k=gl@a+h -g@=g@Mm)+[h||Ebh), (6.2)

where Ea(h) - 0,ash - 0.

f is differentiable at p = g(a), and therefore,

f(g(a + h)) —f(g(a)) = f(p + K) - f(p) = F/(P)(K) + [ k [ Ep(k), where Ey(k) —0,ask -0,
=f'@@)[g@~+h)—g@]I + Il k|l Ex(k)
=f'e@)[g'@(M) + [ h [l Ea(h)] + [l k|| Ep(K), using (6.2).
=f9@) g'@(h) + f(9@) [l h [l Ea(m] + [[ k]| Ep(K), since

f'(g(a)) is a linear transformation. Thus, we can write
f(g(a+ h)) -1(g(@) = f'(9(a)) g'@)(h) + [ h |I[ f'(9(a)) Ea(h) + % Ex(K)], ifh #0...(6.3)

To complete the proof we need to show that the vector in the square brackets in (6.3) tends to
zero, as h tends to zero.

We know that E;(h) - 0,ash—->0. ... *)
Ikll=1lg@+h)-g@) [l <1l g'@C) Il + Il Eah) ||, using (6.2).
IfM =27, [[Vg;(a)ll, then using (6.1), we can write || g'(a)(h) | < M || h ||. Thus,

Ikl[< MIhq[+ [T h[{[Ea(h) | =1Ih ]l (M + || Ea(h) []). Therefore,

k ] k|| .
H < M + || E4(h) ||. This means thatH is bounded. Thus,
k
:Ilh:: Ep(k) -0, as >0, sinceh>0=k—>0= Ey(k)>0. .(*

Using (*) and (**), we can say that the term in the square brackets in (6.3) tends to zero as



h — 0. Therefore,

f(gla+n)-f(g@)-f'(g(a) g'(a)(h)
||Rl|

— 0ash—-0.

This shows that f e g is differentiable at a, and (f » g )'(a) = f'(g(a)) - g'(a).
The Chain Rule can be written in terms of Jacobian matrices as follows:
D(f « 9) (a) = [D(f(g(@))] [D(g(@))]-

Here the product on the right hand side is matrix multiplication. If y = g(x), and z = f(y),
comparing the entries in the matrices in (6.3), we get

6zl- n aZi ay] aZl' aZi ay]
— = )i, where — = Dy(f i, — =D;(f)i, and — = Dy(q); .
oxp, J—layj 0xp 0xp (T o Q) 0y J( )i Oxy k(g)J

Example 6.1 : Write the matrices for f', g’ and (fe g)' for the following functions, and
evaluate them at the point (2, 5). f(x, y) = (X + y, X* + y?, 2x + 3y), g(u, v) = (X, y) = (u? V).

Solution : Here fy(x, y) = x +y, f2(x, y) = X2 + y?, fa(X, y) = 2x + 3y,

1 1
g1(u, v) = u? and go(u, v) = V*. This means, D(f) = <2x 2y>, and D(g) = (ZSL 3?72).
2 3
(feg) (uv) = (U? +V*, u* + Vv 2u® + 3v°). Hence,
2u  3v?
D(feg)=|4u® 6v° |
4u  9v?
At (u,v) =(2,5), (x,¥) = (4, 125). Therefore,
1 1 4 0 4 75
,D(N(4 125)=(8 250) D)2 5=(; ..)and D(feg)(25 =32 18750
2 3 0 75 8 225

You can now easily verify that D(f e g) (2, 5) = [D(f(4, 125)] [D(g(2, 5))].

6.3 HIGHER ORDER PARTIAL DERIVATIVES

You are familiar with the concept of partial derivatives. In the last chapter we have calculated
the partial derivatives of some functions of n variables. If you take a look at those examples,
you will realise that the partial derivatives are themselves functions of n variables. So, we can
talk about their partial derivatives. These, if they exist, will be the second order partial
derivatives of the original function. If we differentiate these again, we will get the third order
partial derivatives of the original function, and so on. We take a simple example to illustrate.

Example 6.2 : Find partial derivatives of all possible orders for the function,



f(x, y, 2) = 0Y7, 3xy’z, x2%).

Solution : Since f is a polynomial function, we do not have to worry about the existence of
partial derivatives. We get
= (202 3y°z, %), £, = (2x%, 9xy’z, 0), f,= (0, 3xy®, 3x2).

of

Then, fu=57%=(2/%,0,0), fy=7-(3) =

aya —(4xy, 9%z, 0), f. = (0, 3y°, 37%).

Differentiating f,, we get f,, = (4xy, 9y, 0), f,, = (2x°, 18xyz, 0), and f,, = (0, 9xy?, 0).
Then differentiating f, we get f, = (0, 3y?, 37%), fy = (0, 9xy?, 0), and f, = (0, 0, 6x2).
These are all possible second order derivatives of f. Proceeding in this way, we can also get

fyyz = (0, 92, 0), fye = (0,0, 0), iz = (0,0, 6x), and so on. There will be 27 third order
partial derivatives of f. See if you can get the remaining.

You know that f,, and fy, differ in the order in which f is differentiated with respect to the
variables x and y. These two derivatives have come out to be equal in Example 6.2. But you
may have seen examples of scalar functions of several variables, for which the two may not
be the same. Here is an example, to jog your memory.

. . . 2 xy(x*-y?)
Example 6.3 : Consider this function f from R“to R, f(x,y) = Txtiy? for (x, y) # (0, 0),
and f(0, 0) = 0. You can easily check that
£,(0,0) = 0,£,0, 0) = 0,£,(0, K) = lim w _—
f,(h, 0) = lim LERTRO —
k—0 k
Then, £,/(0, 0) = lim M lim —— = — 1, and similarly, f,,(0, 0) = 1.

Thus, the mixed partial derivatives of this function both exist, but are not equal.

Remark 6.1 : If f is a function from R" to R, the partial derivative of f with respect to the ith
variable, x;, is denoted by D;if, and the partial derivative of Dif with respect to x; , that is,
Dj(Dif) is denoted by Djf.

The following theorem gives a sufficient condition for the two mixed partial derivatives of a
function to be equal. Since the behaviour of a vector-valued function is decided by the
behaviour of its coordinate functions, it is enough to derive this sufficient condition for a
scalar function. Without loss of generality, we state the theorem for a function of two
variables.



Theorem 6.2 : Let f : R* > R, such that the partial derivatives, D:f, Dof, D1of and Dasf exist
onan openset S in R% If (a, b)e S, and D.f and Dysf are both continuous at (a, b), then
Dlzf(av b) = DZlf(av b)

Proof : We choose positive real numbers, h and k, which are small enough so that the
rectangle with vertices (a, b), (a + h, b), (a, b + k), (a + h, b + k) lies within S.

Now we consider a function
A(h, K) = [f(a + h, b + k) —f(a + h, b)] - [f(a, b + k) —f(a, b)].
We also define a function G on [a, a + h], G(x) =f(x, b + k) —f(x, b).

Now we can write A(h, k) = G(a + h) — G(a). Since G is defined in terms of f, and since f has
all the necessary properties, G is continuous on [a, a + h], and is differentiable in (a, a + h).
So, we apply the Mean Value Theorem for functions of a single variable to G, and get

G(a + h) — G(a) = hG’(c), for some ¢ € (a, a + h). Now G'(x) = Dsf(x, b + k) — D1f(x, b). So,
we write  A(h, k) = G(a + h) — G(a) = h[Daf(c, b + k) — Dsf(c, b)].

Now Dsf (c, y) is a differentiable function of one variable with derivative equal to D, f. So
applying MVT to Dsf(c, y) on the interval [b, b + k], we get

A(h, k) = h[Daf(c, b + k) — Dif(c, b)] = hkD2if(c, d), e (6.4)
for some d € (b, b + k).
We now write A(h, k) = [f(a + h, b + k) —f(a, b + k)] — [f(a + h, b) —f(a, b)], and define

H(y) =f(a+ h,y) —f(a, y), sothat A(h, k) =H(b + k) — H(b). Using the same arguments
that we used for G, we apply MVT to H, and then to Df(x, p), we get

A(h, K) = K[DJf(a + h, p) — Df(a, p)] = khD12f(Q, p), e (6.5)
forsomep € (b,b +k),and g € (a, a + h).

From (6.4) and (6.5) we get D2if(c, d) = D12f(q, p). Since D1,f and D,;f are continuous, taking
the limit as (h, k) — (0,0), we get D1,f(a, b) = Dxf(a, b).

As we have mentioned earlier, the conditions of this theorem are sufficient, and not
necessary. In fact, the continuity of just one of the mixed partial derivatives is also sufficient
to guarantee equality. Functions whose partial derivatives are continuous play an important
role in Calculus. We classify these functions as follows:

Definition 6.1 : A function f from R" to R™ is said to be continuously differentiable, or
belong to class C*, if all its partial derivatives D;f are continuous. It is said to belong to class
C, ifall its second order partial derivatives are continuous, and so on. If all its partial
derivatives of all orders are continuous, then it is said to belong to class C*.



We have proved that a function in class C* is differentiable in Theorem 5.8. In Theorem 6.2
we have seen that the mixed partial derivatives of a function belonging to class C are equal.

In the next chapter we shall see that a C* function, that is a function, all whose partial
derivatives of order up to k are continuous, can be approximated by means of a polynomial of
order k. We shall also discuss the technique to find the maximum and minimum values of a
function belonging to class C .

6.4 MEAN VALUE THEOREM

The Mean Value Theorem (MVT) is an important theorem in Calculus. It is used as a tool to
derive many other results. In the last section we have used it in the proof of Theorem 6.2. In
this section we shall see if it also holds good for functions of several variables. But first, let
us recall the one-variable case.

MVT (single variable): If f : [a, b] = R is continuous on [a, b], and differentiable on (a, b),
then there exists ¢ € (a, b), such that

f(b) —f(a) = (b-a) f'(c).

If we write b = a + h, then there exists 8, 0 < 6 < 1, such that

fa+h)—f(@ =hf'(a+ 6h).

Unfortunately, it is not possible to extend this theorem to a function f : R" - R™, when

m > 1. This will be quite clear from the following example.

Example 6.4 : Consider f : [0, 2] = R?, f(t) = (cost, sint). This function is continuous on
[0, 21r] and differentiable on (0, 2m). Now, f(2rr) — f(0) = (1, 0) — (1, 0) = (0, 0).

f'(t) = (- sint, cost). For the extension of MVT to hold, we must have

f(2m) —f(0) = 2rf'(c) for some c in (0, 2m). So, we should have (0, 0) = 2rr( — sinc, cosc).
But this is impossible, since sinc and cosc both cannot be zero.

So, the extension of MVT in its stated form does not hold. But there is a way around this
difficulty. A slightly modified version of MVT does hold true for all functions of several
variables. We now state and prove this modified theorem for functions from R" to R™. As a
special case of this theorem you will realize that MVT holds for real-valued functions of
several variables.

Theorem 6.3 : (Mean Value Theorem) Let f: S— R™, where S is an open subset of R".
Suppose f is differentiable on S. Let x and y be two points in S, such that the line segment
joining x and 'y, L(x,y) = {tx + (1 —t)y |0 < t < 1}, also lies in S. Then for every a € R",
there is a point z € S, such that



ae{fy)—fOO}= ae{f'@QW =X} —— (6.6)

Before we start the proof, let us understand the geometry involved. Let u =y — x. Then x + tu
gives us a point on the line segment L(x, y), if 0 <t < 1. Since S is open, we can find a

& >0, such that B(x,8) < S, and B(y,8) < S. See Fig. 6.1, in which we show the situation

when n = 2. The point p is on the extension of L(x, y) and is equal to x + (1 + S)u. Similarly
the point g is also on the extension of L(x, y), and is equal to x — Su for some g > 0.

Figure 6.1

Thus we get a § >0, such that x + tu € S for everyt € (—f,1 + ). Now we start the formal
proof.

Proof : Let a € R". We define a function F: (—8,1+ B) —» R, F(t) =a e f(x + tu). This F is
a differentiable function on (—f,1 + ), and

F'(t) =a e {f'(x + tu)(u)}, using chain rule.

(Recall, that f'(x + tu) is a linear transformation.)
Thus, we can apply MVT for functions of a single variable, and get
F(1)-F@Q)=F'(f),forsome 8,0 <8 <1. e (6.7)
Now, F(1) =a ef(x + u) =a e f(y), F(0) =a e f(x), and

F'(@)=ae{f'(x +Ou)(w)} =a e{f'(z)(y —x)}, Wherez =x + 0u € L(X, y).
Therefore, from (6.7) we get a o {f(y) —f(X)} =a ¢ {f'(2)(y — x)} forsome z € S.

Remark 6.2 : i) (6.6) is true for all x, y in S, such that the line segment joining x and y is also
in S. This means, if S is a convex open set in R", then (6.6) will be true for all x, y in S.

i) If fis a real-valued function, then m =1, and a € R. Then for a = 1 we have

1.{y)-f)}=1.{f'"(@)(y —x)} =Vf(z) e (y-X), forsomez € S.



So, the MVT for functions of a single variable extends directly to real-valued functions of
several variables. We can also directly prove MVT for scalar functions. The proof runs
exactly similar to that of Theorem 6.3, if we put a = 1.

The MVT has a well-known consequence, which we now state:

Theorem 6.4 : Letf:S— R™, where S is an open connected subset of R". Suppose f is
differentiable on S, and f'(p) =0 for every p € S. Then f is a constant function on S.

Proof : The set S is polygonally connected, since it is open and connected. Let x and y be
two points in S. Then x and y are joined by line segments L, Ly, Ls, ..., Ly, lying entirely in
S. Suppose L; is a line segment joining pi and pi+1, 1 < i <r, p1 =X, and prs1 =Y.

Let a € R™. Then using Theorem 6.3, we have

a e {f(pi1) —f(Pi)} = @ o {f'(z)) (Pir1 — P} Z €L
=0, since f'(z;) = 0.
This means,

a e {f(y) — f)}=a o {f(Prer) — F(PL} = 27y @ @ {F(Pisr) — FP)} = 0. oo (6.8)

(6.8) is true for every a in R™. So, in particular, it is true for f(y) — f(x). Thus,

{f(y) — 0} » {f(y) — ()} = |If(y) - F9II” = 0.
So, f(y) —f(x) =0, or f(y) = f(x).

Since x and y were any arbitrary points in S, we have thus proved that f is a constant function
onS.

Try a few exercises now.
Exercises :

1) Find the partial derivatives, D1f, D.f, D1of and Daif at (0, 0) , if they exist, for the
following function f from R? to R.

f(x y) = Y5225, if (x,y) # (0, 0), and £(0, 0) =0.
2) Ifu(x, y) = x +y2 x(t) = 3t + 4, and y(t) = sin2t, find ' (t) and u" (t).
3) If ux,y)=x—2y+3 x=r+s+t y=rs+t’ findu, usand uat (1, 2, 4).
4) Let f:R?-> R% and g: R®— R? be two vector functions, defined as:
f(x, y) = (sin(2x +y), cos(x + 2y)),
g(r, s, t) = (2r —s — 3t, r* — 3st).
) Write the Jacobian matrices for f and g. If h is the composite function, fe g,
compute the Jacobian matrix of h at the point (1, O, - 2).
5) Iff isa function from R® to R, and D1f = 0 at all points, show that f is independent of
the first variable. If D1f = D,f = 0 at all points, show that f is a constant function.




6.5 SUMMARY

In this chapter we have derived the chain rule for differentiation of composite of two
functions. We have also seen that the Jacobian matrix for the composite function is the
product of the Jacobian matrices of the two given functions. We have defined higher order
partial derivatives of functions of several variables. We have seen functions, whose second
order mixed partial derivatives depend on the order of the variables with respect to which the
function is differentiated. On the other hand, we have derived sufficient conditions for such
mixed partial derivatives to be equal. Finally, through an example we have seen that the
Mean Value Theorem cannot be extended to all vector functions. We have proved a restricted
form of the MVT for vector functions. Of course, MVT does extend to scalar-valued
functions of several variables. As a result of MVVT we have proved that a function defined on
an open connected set is constant, if its derivative is uniformly zero over its domain.
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7.0 OBJECTIVES

After reading this chapter, you should be able to

e state Taylor’s theorem for real-valued functions of several variables

e Obtain Taylor’s expansions for some simple functions

e define, locate and classify extreme points of a function of several variables

e obtain the extreme values of a function of n variables, subject to some constraints

7.1 INTRODUCTION

In the two previous chapters we have discussed differentiation of scalar and vector functions
of several variables. Now we shall tell you about some applications of derivatives. In your
study of functions of one variable you have seen that a major application of the concept of
derivatives is the location of maxima and minima of a function. This knowledge is very
crucial for curve tracing. Here we shall see how the derivatives help us in locating the
extreme values of a real-valued function of several variables. But before we do that, we are
going to discuss Taylor’s theorem and Taylor’s expansions, which help us approximate a
function with the help of polynomials. This knowledge will help us derive some tests for
locating and classifying the extreme points of a function.

7.2 TAYLOR’S THEOREM

It will be useful to recall Taylor’s theorem for functions of one variable, which you have
studied in F. Y. B. Sc. Here we shall also give you the proof of this theorem. Our method of
proof involves the use of Rolle’s theorem. You have studied this theorem too in F. Y. We
now state Rolle’s theorem, and then move on to Taylor’s theorem.

Theorem 7.1 (Rolle’s Theorem): If f: [a, b] = R is continuous on [a, b], differentiable on



(a, b), and f(a) = f(b), then there exists ¢ € (a, b), such that f'(c) = 0.

Theorem 7.2 (Taylor’s theorem for real functions of one variable): Let f be a real-valued
function defined on the open interval (p, q). Suppose f has derivatives of all orders up to and
including n +1 in (p, q). Let a be any point in (p, g). Then for any x € (p, q),

(x- )

(X a) n+1

(n+1)!

L (x= a)

) = () + 72 /(@) + o (@) + e @)+ fH () (7.0)

where ¢ € (a, b).

Proof: We now define a new function g on [a, x], or [x, @], according as a < x, or X < a, by

YD ey + ”f%w+ + O o) + -y, .12

g(y) =f(y) +
where A is a constant, chosen so as to satisfy g(x) = g(a). We can easily write the expression
for A by using this condition. We leave this to you as an exercise. See Exercise 1).

Using the properties of f, we can see that g satisfies all the conditions of Rolle’s theorem on
its domain. Thus, we can conclude that there exists a point ¢ € (a, x), (or (x, a)) such that
g'(c) = 0. Now, differentiating (7.2), we see that

[ .Y I " " (X - y)2 " (X - y)(ﬂ—l)
gWM=f - O+x=-yf'y-x=-yr'y-+ Tf ) — T oD
Feo) o S pon) o+ e - y7A

(n+1)
= G-~ @l
Hence, g'(c) = (x — o)™[ f (Mnl: © _ (n+1A]=0.
This means that A = %
Substituting this value of A in (7.2), we get
f(x) = g(x) =
0@ = @)+ 52 7/ + O @ . BB oy + BB

thus proving the theorem.



Remark 7.1 : If the function in Theorem 7.2 has derivatives of all orders in (p, q), then we
can write a Taylor expansion as in (7.1) for any n € N. Further, if all the derivatives of all

< M for all n, and at all points in

orders are bounded by a positive number M, that is, if |Z—z£

(x_a)n+1

(n+1)!

(x-a)™*!
(n+1)! f(”+1)(c)|

(p, 9), then — 0asn— oo forevery x in some interval

{x: [x—a| < R}. Therefore, in this case we can write

(x- a)

(X _ a)n+l
(n+1)!

fx) =f(a) + = > f'(a) + fM(a) + £ (e),...(7.3)

fll(a) + (X_a)n
n!

The infinite series in (7.3) is convergent under the given conditions, and is called the Taylor
series of f about a.

Now, (7.1) can be written as f(x) = Pn(X) + Rn(X), where

PA(x) = fa) +X=2 f()+(X )" gy .. (’“n—f‘)nf@(a) is called the n'" Taylor

(X a) n+1

(n+1)!

We now state Taylor’s theorem for functions of two variables, and then find Taylor
expansions of some functions.

polynomial of f about a, and Rn(X) = F™+(c), is called the remainder.

Theorem 7.3 (Taylor’s theorem for f: R - R): Let f be a real-valued C™* function on an
open convex set E € R?. Let (a, b) € E. Then for any (x, y) € E,

f(x,y) =f(a,b) + (02 + kD)fGa b) + 2 (A2 + k:2) fa, ) + .+ 2 (2 + k2 f(a, b)
(n;)l (h_ tk )nﬂf(c’ d, (7.4)

where h =x—a, k=y—b, and (c, d) is some point on the line segment joining (a, b)
and (X, y).
We are not going to prove this theorem. But, note the following points:

1. Recall that f is C™™ means f has continuous partial derivatives of all orders < n + 1.
This ensures that all the relevant mixed partial derivatives are equal.

2. E is convex. This guarantees that the line segment joining any two points of E, lies in
E, the domain of f.

2
Po(x, y) = f(a, b)+ (= + k ;—y)f(a, o)+~ (h =+ k%) f(a,b) + ... + = (h;’—x +k ;—y)nf(a, b)

where h = x - a, and k =y — b, is called the "™ Taylor polynomial, and

n+1
—+k ) f(c, d) is called the remainder of order n.

Ralx, y) = (n+1)' (



Let us use this theorem to get the expansions of some functions.

Example 7.1: Find the Taylor expansions of the following functions about the given points
up to the third order.

i) f(x, y) =x° + 2xy* - 3xy + 4x + 5, (a, b) = (1, 2)
i)  f(x,y)=sin@x+3y) (a b)=(0,0).

Solution: i) Since f(x,y) = x> + 2xy? — 3xy + 4x + 5 is a polynomial, it has partial derivatives
of all orders. Further, its partial derivatives of order > 3 are all zero. In fact,

fu = 3x* + 2y° — 3y + 4, f, = 4xy — 3%, fuix = 6%, fxy =4y -3, f,y =4X, fux =6, fuxy =0,

fwy = 4, fyy = 0, and all higher partial derivatives are zero. Calculating all these partial
derivatives at (1, 2), we write

f(1+h, 2 +K) = 12 + 9h + 5k + —(6h” + 10hk + 4k%) + —(6h° + 12hk%) + Rs.
Now, Rz involves all fourth order derivatives, and therefore is zero. Hence,
f(1+h, 2 +K) =12 + 9h + 5k + —(6h” + 10hk + 4k%) + —(6h° + 12hk’) .

i) f(x, y) = sin(2x + 3y) also has derivatives of all orders.
fx = 2cos(2x + 3y) = 2 at (0, 0), f,= 3cos(2x + 3y) = 3 at (0, 0),
fix = —4sin(2x + 3y), fyy = —6sin(2x + 3y), fyy = —9sin(2x + 3y). These second
order derivatives are all zero at (0, 0).

fuox = —8C0S(2X + 3y), fxxy = —12c0s(2x + 3y), fyyy = —18cos(2x + 3y),

fyyy = —27c0s(2x + 3y).

These are, respectively, — 8, — 12, — 18, and — 27 at (0, 0). Thus,

f(h, k) = 0 + (2h + 3k) + Zio + %(_ 8h* — 3.12h%k — 3.18hk? — 27h%) + R3, where

Rs = %(haa—x + kaa—y)4sin(2c + 3d), where (c, d) is some point on the line segment joining (0, 0)
and (h, k).

We are now going to state Taylor’s theorem for real-valued functions of n variables. For this,
let us first take a close look at the Taylor expansion of a function of two variables.

If we write (x, y) as (a + h, b + k), we get

2
fa+hb+K = f(a b)+ (h—-+ kaiy)f(a, b) +~ (h=+ kj—y) f(a, b) + ... + %(hi+

ox
9 9 n+1
(ha + ka) f(c, d),

1
(n+1)!

9 n
ka) f(a, b) +

If we take the variables to xi, X, instead of x and y, take (a, b) to be (a1, a2), and (h, k) to be



flaa +, 8+ o) = f(as, ) + (a5 + ho 5@, @) + 5 (hy 52+ ho 5 ) f(ay, az) + ...

1 ] a\" 1 2
t(hgm+hoge) fan ) + —(nﬂ)!(hlax +hys) (e, )

k
= Xk-= ok,( 15, + h, Py ) f(a1, a2) + Rn(c, d),

= Zk =0 k'z Dlllz lkf(al’ az)h’llh’lz ik + Rn(Cl d))

ak
iz i = 0xi, 0xi,..0X,

ordered k-tuples (i, i,, ..., iy). For example,

where D; , and iy, i, ..., i =1or 2, and the sum is taken over all

> Dilizf(al, az)hilhiz = Dllf(al, az)hlz + Dlzf(al, az)hlhz + Dzlf(al, az)hzhl + Dzzf(al,
az)hy”

= (i 2+2h1hza ot Yi(as, @) .

Similarly,

Y. Dy,i,i,f(ar, az)hy by hy, = Duif(ay, a2)hi® + Dusaf(as, a2)hi® hy + Daas f(ay, a2)hs hp hy +
Da11 f(as, as)hz hy? + D1 f(a1, a2)hahy? + Dassf(as, az)hz hy hy + Dosf(ay, ag)hy’hy

+ Doxf(ay, a)hy®
= (hl a 3 + 3h1h2 a + 3h1h2 a a Z 2 Ax 3 )f(a]_, a.2)

You must have noticed that we have added the mixed partial derivative terms, for example,
D1of and Daif, or Diiof , Digaf, and D2iaf. We could do this, since f € C* ensures that that
these partial derivatives are equal. Now we state Taylor’s theorem for real-valued functions
of several variables.

Theorem 7.4 : Letf: E —» R, where E is a convex open subset of R". Further, let
a=(ay, a, ..., an) EE,h=(hy, hy, ..., hy) €ER", such that a+ h € D. If fe C", then

f@+h) =3P =% Dy, i f@h iy g, + Rua©), (7.5)

where iy, 1, ..., i, take values from the set {1, 2, ..., n}, and the inner summation in (7.5) is
taken over all possible such k-tuples.

Further, the remainder Ry.1(C) = %Z Dy i,..i, f(C)hi, hi, ... h; . This sum is taken over all

possible m-tuples (iy, iy, ..., im), Where iy, iy, ..., in take values from {1, 2, ..., n},and c is some
point on the line segment joining a and a + h.



This theorem is used to approximate a given function by a polynomial. In the next section we
shall use it to derive conditions for locating and classifying extreme points of a function.

Exercises: 1) Write the expression for A appearing in Theorem 7.2.

7.3 MAXIMA AND MINIMA

One of the most interesting and well-known applications of Calculus is the location and
classification of extreme points of a function. You have solved many such problems
involving functions of one or two variables. We shall now extend the definitions of maxima
and minima to functions of n variables, and derive suitable tests for their location.

Definition 7.1 : Let f: R" -» R. A point a € R" is said to be a local maximum (or relative
maximum) if there exists a neighbourhood N of a, such that f(x) < f(a) for every x € N.

f(a) is then called the local or relative maximum value.
A local minimum (or relative minimum) is defined in a similar manner. You will agree that

the function f : R> > R, f(Xq, X2, X3, X4, Xs) = X1 + Xo° + Xa° + X4° + xs2, clearly has a local
minimum at (0, 0, 0, 0, 0). Can you find an example of a function with a local maximum?
Definition 7.2 : A point a € R" is called a saddle point of a function f : R" - R, if every ball
B(a, r), r > 0, contains points X, such that f(x) > f(a), and also other points y, such that f(y) <

f(a).

In general, it is not easy to spot the local maximum or local minimum merely by observation.
For differentiable functions we can derive tests to locate these values. You know that in the
case of a differentiable function of a single variable, the derivative vanishes at an extreme
point. We have a very similar test for the location of extreme points of a function of n
variables, as you can see in the next theorem.

Theorem 7.5 : If f: R" > R hasa local maximumat a€R", then Vi=1,2,..,n,
%(a), if it exists, is equal to zero.

Proof : Since f has a local maximum at a, 3 r >0, such that x € B(a, r) = f(x) < f(a).
For i=1,2,..,n, considerafunction g;: (ai—r,ai+r) - R, such that

gi(x) = f(as, az, ..., &1, X, @1, ..., &n). Since f(a) is the local maximum value of f, gi(a;) is the
maximum value of g;. If %(a) exists, then g;(a;) also exists, and the two are equal. By

applying the first derivative test for functions of one variable to g;, we get

(@)= gila) =0.



An exactly similar proof will help us conclude that %(a), If it exists, is equal to zero, even

when a is a local minimum of f.
Thus, if f has a local extremum at a, and all the partial derivatives exist at a, then Vf(a) = 0.

As in the case of functions of one variable, the condition in theorem 7.5 is a necessary one,
and is not sufficient. That is, if all the partial derivatives of a function at a point a are zero,
we cannot say that a is a local maximum or local minimum point. It may be neither.

An example is the function f : R> - R, f(x,y) = 1—x* +y>. Heref,=-2x,and f, = 2y. So,
f«(0, 0) = 0 and fy(0, 0) = 0. But you can see clearly, that f has a maximum in the direction of
the x-axis, and a minimum in the direction of the y-axis at (0, 0). This means, f has neither a
minimum, nor a maximum at (0, 0). In fact (0, 0) is a saddle point for this function.

Definition 7.3 : Let f : R" -» R be differentiable, and a € R". If %(a) is equal to zero

fori=1,2, .., n,thenais called a critical point, or a stationary point of f.

Theorem 7.5, tells us to look for extreme points among the critical points of a function. We
shall now see how to classify these points as local maxima, local minima, or saddle points.
This involves second order partial derivatives. This is to be expected, since in one variable
functions too, we have a second derivative test to classify stationary points. The proof of the
test for several variables involves quadratic forms. You have studied them in T. Y. B. A. /B.
Sc. We start with a definition and recall the relevant results.

Definition 7.4 : If A = (aj) is a real symmetric n x n matrix, and X = (X1, X2, ..., Xn) € R",
then Q(x) = XiL, X1 a;;x;x; is called a quadratic form associated with A.

We can write Q(x) = xAX'. If A is a diagonal matrix, then Q(x) = ¥*, a;x? is called a
diagonal form. Since A is real symmetric, its eigen values are all real. If all the eigen values
of A are positive, then Q(x) = 0 for every x, and Q(x) = 0 = x = 0. Such a quadratic form is
said to be positive definite. If all the eigen values of A are negative, then Q(x) < 0 for every
X, and Q(x) = 0 = x = 0. Such a quadratic form is called negative definite.

It may not be very easy to get the eigen values. But we have an easier way to decide.

A principal minor of a square matrix, A, is the determinant of the matrix obtained by taking
the first k rows, and the first k columns of A, 1 < k < n.

If all the principal minors are positive, then the associated quadratic form is positive definite.

If the principal minors are alternately positive and negative, starting with a negative minor for
k =1, then the associated quadratic form is negative definite.

If a principal minor of order k is negative, when k is an even number, then Q(x) takes both
positive and negative values.



We now use these facts about quadratic forms to derive the second derivative test. A
definition first.

Definition 7.5 : If f is a C? function from R" to R, then the symmetric matrix

_ _(*r®) . : .
A=H(X) = (—) is called the Hessian matrix of f at x. Thus,

axian
(k- 2
0x2 9x10x, 0x10xn
A=Hx) = | : 2o
d%f d%f %f
\6x16xn 0x,0xn ox2

If a € R", the first order Taylor formula for f about a gives us the value of f(a + h) for small
values of ||h|| as

fa+ h) =f(@) + Vf(a) e h + Ry(c).
If a is a critical point, then Vf(a) = 0, and therefore we get
fa+ h) — f(@) =Ru(c).
Now, Ri(c) = %Z 2 D;jf(a+ 6h) h;h; ,where 0 <6 <1.
=—hH(@@a+6h)h'.  We write,
% hH(a+6h)h' — % hH(@)h' = % h[H(a+6h) — H(a)]h' = [|h||’E(a, 8) . Thus,
NI 1B, )] = 5| ZX{Dy;f (@ + 6h) — Dyjf (@}hiby |
< 522 IDyf (@+ 6h) — Dyf (@) ||kl

Therefore, |E(a, 8)| < %ZZ |Dijf(a+ 6h) — Dijf(@)], whenh #0. .................. (7.6)

Each term in the finite sum on the right hand side tends to zero as h — 0, since f € C?, and
hence the second order derivatives are continuous. Therefore, E(a, 8) — 0, as h—0. We write

~hH(a+gh)h' = ~ hH@h' + ||h|*E(a, 6), where E(a, 8) - 0, as h-0.
Hence, f(a + h) —f(a) = % hH@h' + [|h|[PE(@, 8). e (7.7)

Theorem 7.6 : If f is a function from R" to R, and has continuous second order partial
derivatives in a ball B(a; r) around a stationary point a of f, then

)] f has a relative minimum at a, if H(a) is positive definite
i) f has a relative maximum at a, if h(a) is negative definite
iii) f has a saddle point at a, if H(a) has both positive and negative eigen values.



Proof : Using the notations that we have used in the discussion just before this theorem, we
can write f(a + h) —f(a) = % hH(@)h' + ||h||°E(a, 8). Since E(a, 8) — 0, as h—0, we can

conclude that the sign of f(a + h) —f(a) will depend on that of% hH(a)h'.
) This value will be positive for all h, if H(a) is positive definite. Hence,

f(a + h) —f(a) > 0 for all h, such that 0 < ||h|| <r. This tells us that f(a + h) > f(a) for
every h € B(a; r), that is, a is a relative minimum point of f.

The argument for proving ii) and iii) are exactly similar, and we are sure you can write those.

.Remark 7.2 : i) If an even principal minor, that is a principal minor of even order is
negative, then the point is a saddle point.

i) If detH(a) = O, the test is inconclusive, and a is called a degenerate stationary
point of f.

Go through the following examples carefully, they illustrate our discussion here.
Example 7.2: Locate and classify the stationary points of the functions given by
i) X2 xy+2x+2y+ 1, i) +y = 3xy, i) (x — 1)eY.
Solution : i) Let f(x,y) = x*+xy +2x+ 2y + 1. Thenfy=2x+y + 2, fy=x+2.

fk=f,=0 =>x+2=0,and2x+y+2=0=x =—2and y = 2. Therefore, f has only one
stationary point, ( — 2, 2). Now, fy = 2, fyy = 1, and f,y = 0.

Thus, H(( -2, 2)) = (i (1)) and det (H(( -2, 2))) = —1.

Therefore, f has a saddle point at ( — 2, 2).
ii) Let f(x, y) = x> + y® — 3xy. Then, f, = 3x* — 3y, f, = 3y* — 3x.

fik=f,=0 =>y= x%,and x = y* = x=y=0, or x =y = 1. Therefore, the stationary points
are (0, 0) and (1, 1). Now, fx = 6x, fyy = 6y, and f,, = - 3. Hence,

H((0, 0)) = (_03 ‘03) . det(H(0, 0)) =- 9 < 0, and (0, 0) is a saddle point.

H((1, 1) = (_63 _63) . The principal minors are 6, and 27. Both are positive, and hence f
has a local minimum at (1, 1).
iii) Let f(x, y) = (x - 1)e¥. Thenfy=eY(xy -y + 1), fy =x(x - 1)e¥
fk=0=xy-y+1=0,andfy,=0=x(x-1)=0=x=0,0orx=1.

x=0=y =1, and x = 1 contradicts f, = 0. So, (0, 1) is the only stationary point.



fo = (Y + Xy’ —y* +Y), Ty =eY(x—1 + Xy —xy +x), fy =x*(x - 1)e”.

1 -1

Therefore, H((0, 1)) = (_1 0

) . det(H(0, 1)) =- 1 <0. Hence, (0, 1) is a saddle point.

Example 7.3 : Locate and classify the stationary points of f(x,y, z) = i) xyze ™ ~v*~2",
ii) Xy +y°z + 7% - 8V2x, iii) X* —xy +yz’ —6z.
Solution : i) f, = yze X" ~¥*~2" = 2xPyze~x*y*-2® = e=x*-¥*=z%yy(1 _ Ox?)

f,=e " =2"xz(1 - 2y%) , f,= e~*"¥*~Zxy(1 - 27%). Equating to zero these partial
derivatives, and solving the resultant equations, we get (a, 0, 0), (0, b, 0), (0, 0, ¢),

(+ % , % , % ), where a, b, ¢ are real numbers, as the stationary points.

fo = — dxyze @ =Y 2" — 2xyz(1 — 2x%) e =¥ ¥*-2°

foy = 2(1 — 2%) e %" =¥* 7" — 2y27(1 — 2x) e X" V"7,

fro= eV - x(1 - 2y?) — 2xzPe X" V7R (1 - 2y,

We have indicated the procedure. We are sure now you will be able to get fy,, fyy, and f.
Evaluating these second order partial derivatives at the stationary points, we find,

0 0 0
H((a, 0, 0)) = (0 0 ae‘az) detH((a, 0, 0)) = 0. Therefore, (a, 0, 0) is a degenerate
0 ge 0

point of f. Similarly, (0, b, 0) and ( 0, O, c) are also degenerate points.

1 1 1 _\/78_3/2 0 0
H((ﬁ'ﬁ'ﬁ)) = 0 —\/2e73/2 \/_0 . . The minors of this matrix are
0 0 —V2e~

- -3/2 9473 _ -3/2 101 1y ;
V2e73/2 273 —2+/2e73/2, Therefore, (57575 s alocal maximum. Check the
.. . - 1 -1 -1 -1 1 -1 -1 -1 1
remaining 7 points. You should get local maxima at (ﬁ,ﬁ,ﬁ), (ﬁ’ﬁ’ﬁ)’ (ﬁ,ﬁ,ﬁ),
.. 1 -1 1 1 1 -1 -1 1 1 -1 -1 -1
i) fy = 2xy - 8v2 , f, = X% + 2yz, f, = y* + 2z. Equating these to zero, we get xy = 4v/2,

x> =—2yz,y? = — 2z If x, y, and z are non-zero, we get x = 2v/2, y = 2, and z = — 2. So, the
stationary points are (0, 0, 0) and (2v/2, 2, — 2).

You will find that (0, 0, 0) is a degenerate stationary point, and (22, 2, — 2) is a saddle point.



iii) f, = 2x—y, f, = - x + 2, f,=3yz* — 6. Equating these to zero, we get (1, 2, 1) as the

2 -1 0
stationary point. Check that H((1, 2, 1)) = <—1 0 3 ) and the principal minors are 2, -
0 3 12
1, - 6. Hence, (1, 2, 1) is a saddle point.
See if you can solve these exercises now.
Exercises:
1) Find the stationary points of f(x, y) = i) ————— i) (x +y)e?. ————
X“+y° -4 X +y -4

2) Find the extreme values of f(x, y) = x* +y® + 3xy” — 2x.

3) Is (0, 0) an extreme point of 2cos(x + y) + e*?

4) Locate and classify the stationary points of

) fX, ¥) = (2 -X)(4-y)(x +y-3), ii) f(x,y, 2) = dxyz — x* —y* - 2%,

iii) f(X, y, z) = 64x%y? — 22 + 16x + 32y + z, iv) f(x, Y, 2) = xyz(x + y+ z — 1).

7.4 LAGRANGE’S MULTIPLIERS

Look at these situations: i) A rectangular cardboard sheet is given. We have to make a closed
box out of it. What is the maximum volume that is possible?

i) Temperature varies on a metal surface according to some formula. Where do the
maximum and minimum temperature occur on the surface?

In both these problems we have to maximize or minimize a certain function: volume in the
first case, and temperature in the second. So these are max-min. Problems. But there is a
difference between these and the problems considered in the last section. Here, an additional
constraint or condition is imposed. The given cardboard sheet has a fixed area. The
maximum/minimum temperature points are to be on the given surface.

In this section we shall see how such problems are solved. A very useful method was
developed by Joseph Louis Lagrange. This method gives a necessary condition for the
extreme points of a function. We now state the theorem and then illustrate its use through
some examples.

Theorem 7.7 : Letf : R" = R, and f € C*. Suppose g1, g, . . ., gm (M < n) are functions
belonging to C*, which vanish on an open set E in R". If a € E is an extreme point of f, and if
Vg.@), Vg,(@), ..., Vgn(a) are independent vectors in R", then there exist real numbers, A,,
Aoy ..., Ay, SUCh that



Dif(a) + 1,;Dig1(a) + 1,Dig2(a) + ... + 4,,Dign(@) =0, 1=1,2,...,n.
We can also write the vector equation Vf(a) + >.1 A;V g;(a) = 0.

When we want to find the extreme values of a function f: R" - R, f € C', subject to some
constraints, gi(X1, X2, . . . %) =0, 92(X1, X2, . . . Xn) =0, ..., Om(X1, X2, . . . ,Xn) = 0, where
m < n, we set up the n equations

Dif(a) + 1;Dig1(a) + 1,Dig2(a) + ... + 4,,Dign(@) =0, i=1,2,...,n.

These n equations, along with the m equations, gi(X1, X2, . . . ,Xn) =0, g2(X1, X2, . . . ,Xn) =0, .
., Om(X1, X2, . . . ,Xn) = 0, are then solved to get the values of the n + m unknowns, X1, X, . . .
Xn A1, A2, ..., Ay The solutions x = (xy, X2, . . . ,Xq) are the stationary points, and contain the

extreme points of f .

A1y Ay, .., Ay, are called Lagrange’s Multipliers. We use one multiplier for each
constraint.

To analytically classify these stationary points into local maximum, minimum, or saddle, is a
very complicated process. It is usually easier to look at the physical or geometrical aspect of
the problem to arrive at any conclusion. We now solve a few problems, so that the entire
process is clear to you.

Example 7.4 : Find the dimensions of the box with maximum volume that can be made with
a cardboard sheet of size 12 cm?.

Solution : If the dimensions of the box are X, y, z cms, then its volume V = xyz c. cms. And
surface area is 2(xy + yz + xz) sg. cms. Here we have to maximize V, subject to a constraint
2(xy +yz +xz) =12, or (xy + yz + xz) = 6. So, f(X, y, z) = xyz, and

g(x, Y, 2) = xy + yz + xz — 6. Hence,
Vi(x,y, 2) + AVg(x,y,2) = 0=

fx+A0x=0 =>yz+A(y+2) =0, f,+Agy=0 = xz+ A(x+2)=0, f,+19,=0 = xy +
Ax+y)=0.

Xyz = —A(Xy + xz) = —A(Xy +yz) = —A(xz + yz). If A =0, thenV =0, which is the minimum
volume. If A # 0, then xy + xz =Xy + yz = xz + yz. That is, x =y = z (unless, of course, x =
y=z=0).

Therefore, xy +yz + x2 = 6 = 3x* = 6 = x = /2 cms. Thus, V = 2v/2 c. cms. is the
maximum volume.

Example 7.5 : Find the extreme values of the function given by f(x, y, z) = 2x + y + 3z,
subject to x* + y* = 2, x +z = 5.



Solution : Let gi(X, y, z) = x* +y*—2=0, and ga(x, y, ) = x+ z—5=0. Then
Vf+,Vg, +,Vg, = 0=

f+ Ay0n+ Ay0p =0 = 2+ 20, X+ A, = 0

fy+ 101y +1,0y=0 = 1+ 24,y =0

f,+ 2,01, + 4,02, =0 = 3+ A, =0. Therefore, A, =—3,24;x=1,and 24,y =—1.

-1

A, =0= 1, = —2. But A, = —3. Therefore A, cannot be zero. Hence, x = % y=-
1 1

Substituting these values in x> + y* = 2, we get A, = i%. This gives, x = +1, y = +1. Hence,
the stationary points are (1, - 1, 4) and ( - 1, 1, 6), and the extreme values are 13 and 17.

Example 7.6 : Find the minimum distance of a point on the intersection of the planes,

X+y—-z=0,and x + 3y + z = 2 from the origin.

Solution : The distance of P(x, y, z) from the origin is \/x2 + y2+2z2 . So, we need to
minimize f(x,y, z) = x? + y2+z2, subject to gi(X,y,z)= x+y-z=0, and

92X, y,2)=x+3y+z-2=0.
Vf+1Vg, +4,Vg,=0=
fx+2‘1glx+z‘2g2)(=0 $2X+/11+/12:0

fy+2‘1g1y+2‘2g2y:0 :2y+/11+3/12:0

f,+ 1,01, + 1,02, =0 = 2x - 1; + A, = 0. Therefore, x = _(’112”2) Yy = _('11;3'12)

z= @ . Putting these values inx +y—z=0, wegetA; +A, =0. Therefore, x =0 and

y=1z. Using thisinx + 3y +z—-2=0, we gety =z = %. Thus, the stationary point is

(0, 1/2, 1/2). The distance of this point from the origin is \/ii :
Geometrically, the constraints are equations of two planes. There is no maximum to the
distance of a point on their line of intersection from the origin. So, the stationary point is a
minimum point.

Here are some problems you can try.

2 2

1) Find the extreme values of the function f(X, y) = xy on the surface % + DANS 1.

2



2) Find the extreme values of z = §+% on the unit circle in the xy-plane.

3) Find the distance of the point (10, 1, — 6) from the intersection of the planes,

X+y+2z=5and 2x — 3y +z =12,

7.5 SUMMARY

In this chapter we have introduced Taylor’s theorem for functions of several variables. We
have also seen how to get Taylor polynomials of a given order for a given function. Of
course, to be able to do this, the function must have continuous partial derivatives of higher
orders.

We have then discussed the location of maxima and minima of a real-valued function of
several variables. This has tremendous applications in diverse fields of study. In particular,
we have proved that the extreme points of a function are located among the points at which
the gradient vector of the function is zero. That is, the points at which all the first order partial
derivatives are zero. The classification of these points into maxima, minima, or saddle points
depends on the signs of the principal minors of the Hessian matrix.

We pointed out that there are some situations, where we need to find the extreme values
subject to certain constraints. Such problems, and the method of tackling them is also
discussed, and illustrated through some examples.



INVERSE AND IMPLICIT FUNCTION THEOREMS
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8.3 Implicit Function Theorem

8.4 Summary

8.0 OBJECTIVES

After reading this chapter, you should be able to

e state and prove Inverse Function Theorem for functions of several variables
e check if some simple functions are locally invertible
e state and prove Implicit Function Theorem for functions of several variables

8.1 INTRODUCTION

In this chapter we introduce two very important theorems. You have not come across these
theorems even for functions of a single variable. In each case, we shall first discuss the single
variable case, and then extend the concept to functions of several variables. A word of
caution : these theorems are not easy. To help you understand them better, we are going to
prove some smaller results, and then use them in the proof of the theorems. Do study this
chapter carefully and we are sure you would have no difficulty in digesting the concepts.

8.2 INVERSE FUNCTION THEOREM

The inverse function theorem is a very important theorem in Calculus. You may be familiar
with its one dimensional version. Before we introduce the theorem for functions from R" to
R". we shall recall some results about functions of one variable:

1) If f: [a, b] = R is continuous, and f(c) > 0 for some ¢ € (a, b), then 3 £ > 0, such that

(c—¢, c+e)c(a,b),andf(x) >0 V x € (c—¢, ¢ + ¢€). In other words, we can always find a
neighbourhood of the point ¢, in which f(x) has the same sign as f(c).

2) Iff: [a, b] = R is a continuously differentiable function, and f'(c) # 0 for some

c € (a, b), then using 1) we can prove that 3 € > 0, such that f is an injective function on



(c—¢, c+¢€) S (a, b). Further, f: f(c—e, ¢ +¢) = (c—¢, ¢ + ¢€) is differentiable at f(c) ,

The statement in 2) is the inverse function theorem. Note that we do not know whether the
inverse of f exists on [a, b]. But what this theorem tells us, is that if f'(c) # 0, then f is
“locally invertible” at ¢. For example, we know that the function f : [0, 2] = R, f(x) = sinx

does not have an inverse. But f'(x) = cosx is a continuous function, and f’ (g) = % # 0.

So, the theorem says that f is locally invertible at r/3. That is, we can find a neighbourhood
N of /3, such that f restricted to N has an inverse. Check that f is injective when restricted

T 51

toN = (Z'E)’ and hence has an inverse on N.

We shall now see if this theorem extends to functions of several variables. Let us start with a
definition.

Definition 8.1 : Let f: E - R", where E € R". If f € C', f is said to be locally invertible at
a € E, if there exists a neighbourhood N; of a, N; € E, and a neighbourhood N, of f(a), such
that f(N1) = Ny, fis injective on Ny, and f* : N, = N; is a C* function.

We shall soon state and prove the inverse function theorem. In the proof, we are going to use
some minor results. You have already studied some in the earlier chapters of this course.
Next we state and prove one other result, which will be useful to us.

Theorem 8.1 : Letf=(fy 5, ..., ) : E > R", where E is an open set in R". Suppose f € C.
If the Jacobian of f, J(a) # O for some a € E, then f is injective on a neighbourhood of a in E.

Proof : If Xy, Xy, ..., X, € E, we consider a point X = (Xy, Xz, ..., Xp) € R™, whose first
n coordinates are the coordinates of X, the next n are the coordinates of X, and so on. We
define a function, j, such that

D.fi(Xy) Dfi(Xy) .. . . Dpfi(X)
I/lez(Xz) Dfe(X2) - . anz(Xz)I

00 = detDf(K)] = det | - !

\len'(xn) Dufu) - . an,{(Xn)/

Now, the function j, being an nxn determinant, is a polynomial of its n’ entries, and each
entry, D;f;(X;) is a continuous function, since f € C'. Thus, j is a continuous function on its
domain. We write A= (a, a, . . ., a). Then j(A) = det[Djfi(a)] = J(a) # 0. Now, since f € cl,
all the entries of j(A) are continuous, and hence, j(A) is also continuous. The continuity of
J(A) ensures that there exists a neighbourhood N of A, such that j(X) # 0, if X € N.

In other words, there exists a convex neighbourhood N, of a, such that j(X) # 0, if

X = (X, Xz, ..., Xp) isapoint, for which X; € N, foreveryi=1,2,...,n. ... (8.1)



This Ny is the required neighbourhood. We have to show that f is injective on N,. For this,
suppose X, Y € Ng, such that f(x) = f(y). Then fi(x) =fi(y) foreveryi=1,2,...,n.

Then, using the Mean Value Theorem for scalar fields (See Remark 6.2 ii).), we get

fi(x) — fiy) = Vfi(ci) o (x — y) = Vfi(Ci) o (x — y) = 0 for some c; on the line segment joining
xandy. So, if x —y # 0, then Vfi(ci) = 0 for some c; on the line segment joining x and y, that
is, in the neighbourhood N, since N, is convex. This means, Djfi(ci;) = 0 for every j, 1<j <
n, 1 <i <n.Thus, ifC=(cy,Cy, ..., Cn), then J(C) = det[Djfi(ci)] = 0. But this contradicts
(8.1). So, we conclude that x —y = 0, which proves that f is injective on Na.

Remark 8.1 : i) A function may not be injective on its entire domain. But if its Jacobian is
non-zero at a point, then it is injective on a neighbourhood of that point. In other words, it is
locally injective.

ii) If the Jacobian is non-zero, then the linear transformation Df, which represents the
derivative of f, is non-singular, and hence, is a linear isomorphism.

Example 8.1 : a) Consider the function f(x, y) = (e*cosy, €*siny). This function is not
injective, since f(x, 0) = f(x, 2m). But,

e*cosy —e*siny

e*siny e cosy |- e # 0. Thus, f is locally injective at each point in R?.

Jix, y) =

Here we have a function, which is locally injective at every point of its domain, but is not
injective on the domain.

b) Consider the function f(x, y) = (%, y°), defined on R?. The Jacobian of this function is
zero at (0, 0). But the function is locally invertible at (0, 0). In fact, it is an invertible
function.

Theorem 8.2 (The Inverse Function Theorem): Let f = (fy, fo, ..., f,) € C!, f: E - R", where
E is an open set in R". Let T = f(E). Suppose J(a) # 0 for some a € E. Then there exists a
unique function f* from Y to X, where X is open in E, Y is open in T, such that

i)ae X, fa) ey, ii) Y =f(X), iii) fis injective on X, iv) 1 Y= X, f}(Y) =X, v) fteC!
onYy.

Proof : Using Theorem 8.1, we can conclude that f is injective on a neighbourhood N of a in
E. So, f : N— f(N) is bijective, and hence has an inverse, f* : f(N) = N. Let r > 0 be such that
B(a,r) < N. Since B(a,r) is compact in R", we use Theorem 3.4.1 to conclude that

f(B(a, 1)) is also compact in R". Now f is continuous and injective on the compact set
B(a, 1) . Hence, using Theorem 3.4.2, we can say that fis continuous on f(B(a, ) ).

Now, B(a, r) is an open set in B(a,r) , and therefore,



(F~H~1(B(a, r)) is open in f(B(a,r)). That is, f(B(a, r)) is open in f(B(a, r)).
Also, f(a) € f(B(a, r)). Therefore, there exists a § > 0, such that B(f(a), §) < f(B(a, 1)).

Take X = f1(B(f(a), 6)), and Y = B(f(a), §). Then X and Y satisfy i), ii), iii) and iv) in the
statement of the theorem.

To prove the last assertion v) in the statement, we have to show that all the partial derivatives
of all the component functions of f* are continuous on Y. For this we first define the function
J(X) = det[Djfi(xi)] , as in Theorem 8.1. Here X = (X1, Xy, . . ., Xn). Then, as before, there is a
neighbourhood N, of a, such that j(X) # 0, whenever each X; € N,. We can assume that the
neighbourhood N € N,. This ensures that j(X) # 0, whenever each X; € B(a,r) .

f(y+te) - f7(y)

Now we first prove that D;f* exists on Y. Let y € Y, and consider t

where e; is the i coordinate vector, and t is a scalar. Let x = f*(y), and x'= f*(y + te;). Then
f(x") — f(x) = tej. Thus, fi(x") —fi(x) =t, and fj(x") —fj(x) = 0, when i # j.

By applying Mean Value Theorem (Remark 6.2 ii)), we can write

f (x)-f - : : .
’“(X)t m(X):me(xm)o Xt X, m=1,2,...,n. Here Xy is a point on the line

segment joining x and x'.

So, we get a system of n equations (for the n values of m). The left hand side of an equation
in this system is 1, if m = i, otherwise it is 0. The right hand side is of the form

Xy X, — X,

X2 7%2 4+ D) t , m=12...,n

- X
~ + Dafon(Xm)

lem(Xm) t

The determinant of this system of linear equations is j(X), which we know is non-zero. Hence

i

we can solve it by Cramer’s rule and get the variables as the quotient of two

determinants. Then, as t tends to zero, x" approaches X, and hence, each X, also approaches X.
The determinant in the denominator, j(X) = det[Djfi(x;)] then approaches J(x), the Jacobian

X; = X; ]
exists. That

of f at x, which is again non-zero. Thus, as t tends to zero, the limit of

s, lim f(y+te)—f(y)

t—0 t

exists. Thus, Dif (y) exists for all i, and for all y in Y.

We have obtained the partial derivatives of the components of f* as quotients of two
determinants. The entries in these determinants are partial derivatives of the components of f,



which are all continuous. Since a determinant is a polynomial of its entries, we conclude that
the partial derivatives of f* are continuous on Y.

Example 8.2 : Show that the function f: R? = R?, f(x, y) = (2xy, x> — y?) is not invertible on
R?, but is locally invertible at every point of E = {(x, y) | x > 0}. Also find the inverse
function at one such point.

Solution : Here f(1, 1) =f(— 1, — 1) = (2, 0). Therefore f is not injective, and hence is not
invertible on R2. On the other hand, if (x, y) € E, then

2x

—2y| = — 4(x* + y?) # 0. Hence by the inverse function theorem, f is locally

2
%) =5
invertible.

2
Therefore,

Suppose f(x,y) = (u, v). If (x,y) €EE, theny :21, andv=x2 — -
X

x?

v+ +u? v+ +u? 2

4X4-4X2V7u2=0.ThUS,X2=f yand x=( >

y = u(2v + 2Vv2 + u2)

8.3 IMPLICIT FUNCTION THEOREM

If x*+y®=0, find % . You must have done exercises like this in your under-graduate

classes. Here, we take f(x, y) = x* + y?, and find f, = 2x, and f, = 2y. Then % = 2xI2y = xly.
X

Of course, y cannot be zero.

While doing this exercise, actually we have used a theorem, the implicit function theorem. To
recall, in this setting, a function which can be written as y = g(x), is called an explicit
function, and one which can be expressed only as f(x, y) = 0, is called an implicit function.
The implicit function tells us that under certain conditions, we can express an implicit

function as an explicit one, and then we can use this expression to find % :

X

In this section we are going to discuss this implicit function theorem for functions of several
variables. Before we state and prove the general case, we first prove the case for functions
involving only two variables, x and y.

Theorem 8.3 : Let f be a real-valued C* function, defined on the product I; x I,, where I, and
I, are two intervals in R. Let (a, b) € I; x I,, and f(a, b) = 0, but f,(a, b) # 0. Then there
exists an interval | in R, containing a, and a C* function g : | = R, such that g(a) = b, and

f(x,g(x)) =0 forall x € I.



Proof : We consider a function, h: I; x I, = R?, given by h(x, y) = (x, f(x, y)). If we write
h = (h,, h,), the Jacobian matrix of h is

ahy ony

1 0
In(x, y) = aa; 662’ = (ar af ). The determinant of this matrix, 2 is not zero at (a, b).
Ohy  Oftz ox oy ox
ax dy

Thus, h is a C function, with a non-zero Jacobian at (a, b). Therefore, by the inverse function
theorem, Theorem 8.2 , we can conclude that h is locally invertible at (a, b). Let u = (uy, u,)
be the local inverse of h. You will agree that u,(x, y) =x for all xand y in R. That is,

u(x, y) = (x, up(x, y)) for all x and y in R. We now define g as, g(x) = u,(x, 0), and show that
it has all the required properties.

Now, since h(a, b) = (a, 0), u(a, 0) = (a, b). This means, u,(a, 0) = b. Thus, g(a) =b.
Also, (x, 0) = h(u(x, 0)) = h(x, u,(x, 0)) = h(x, g(x)) = (x, f(x, g(x))). This implies that
f(x, g(x)) = 0.

Since u is a C* function, g is also C. Differentiating f(x, g(x)) = 0 with respect to x using
chain rule, we get Dif(x, g(x)) + Daf(x, g(x))g’(x) = 0, and thus,

- D, (f(x9(x))
D, f(x,9(x))

g'(x) = , since Dof(x, g(x)) # 0.

Basically, this theorem tells us that under certain conditions, the relation f(x, y) = 0, between
x and y can be explicitly written as y = g(x).

Remark 8.2 : If instead of fy(a, b) # 0, we take the condition f,(a, b) # 0, then we can
express x as an explicit function of y.

Example 8.3 : Can f(x, y) = x* + y°> — 2xy be expressed by an explicit function y = g(x) in a
neighbourhood of the point (1, 1)?

Solution : Note that f(1,1) = 0, and f, = 3y* — 2x = 1 at (1, 1). Further, f is a C* function on R,
Therefore, we can apply Theorem 8.3, and conclude that there exists a unique function g,
3x* -2y

3y?-2x

in this

defined on a neighbourhood of 1, such that g(1) = 1. Also, g'(x) =
neighbourhood.
Example 8.4 : Check whether Theorem 8.3 can be applied at all points, where

f(x, y) =x* —y* = 0.



Solution : x* —y? = 0 is true at points (0, 0), (1, 1),(1, —1), (-1, 1), and ( -1, —1). f, = -2y,
and fy = 2x. At the point (0, 0), f, and f, are both zero, and hence we cannot apply the
theorem. At all the remaining points, the function satisfies all the conditions of Theorem 8.3,
and hence it can be applied. You will agree that at each of these points, we will get either

g(x) = x, 0r g(x) = — X.
We now go a step further, and consider a real-valued function of several variables.
Theorem 8.4 : Let f be a real-valued C' function, defined on an open set, U, in R". Let

a=(ay ay ..., a1) € R™, such that (a, b) € U, f(a, b) = 0, and Df(a, b) # 0. Then there
exists a unique C'function g, defined on a neighbourhood N of a, such that g(a) = b, and

f(x, g(x)) = 0 for all x € N.

Proof : We consider a function h : U - R"*x R, defined by h(x, y) = (x, f(x, y)). If we write
h = (hy, hy, ..., hy), then hi(x, y) = x;, for 1 <i < n-1, and hy(X, y) =f(x, y). Therefore, the
Jacobian matrix of h is given by

1 0 .. . .0
/01 . . .0\
. |

o )

The determinant of this matrix is D,f, which is non-zero. Therefore, we can apply the inverse
function theorem (Theorem 8.2), and conclude that h is locally invertible at (a, b). If u is the
local inverse of h, and we write u = (uy, Uy), then you will see that ui(X, y) = x for all (X, y).
Thus, u(x, y) = (x, uz(x, y)) for all (x, y). We now define g(x) = uz(x, 0), and show that this
has the required properties.

Now, u(a, 0) = (a, b). This gives g(a) = uz(a, 0) = b.
Also, (x, 0) = h(u(x, 0)) = h(x, u,(x, 0)) = h(x, g(x)) = (X, f(x, g(x))). This implies that
f(x, 9(x)) = 0.

Example 8.5 : Examine whether the function f(x, y, z) = x* + y?*— 4 can be expressed as a
function y = g(x, z) in a neighbourhood of the point (0, -2, 0).

Solution : We note that f(0, =2, 0) = 0, and D,f =2y =—4 at (0, —2, 0). So, applying the
implicit function theorem, there exists the required neighbourhood of (0, —2, 0). In fact, you
can check that in the neighbourhood, N = B((0, — 2, 0), 1), we can express the function as

y=- (4_X2)1/2 )



Here are some exercises that you should try :

1) Determine whether the following functions are locally invertible at the given points :
)i y) = 0Py +3,y)  at(l,3)

i) f(x, y, 2) = (e"cosy, €’sinz, z) at (1,1, 1).

2) For each of the following functions, show that the equation f(x, y, z) = 0 defines a
continuously differentiable function z = g(x, y), in a neighbourhood of the given point:

)f(x,y, 2) =X +y3+ P —xyz—2 | 1,1,1)
i) f(x, y, z) = x* + y* — xysinz, (1,-1,0).

That brings us to the end of this chapter. We hope you have studied the concepts carefully,
and have understood them.

8.4 LET US SUM UP

In this chapter we have discussed two very important theorems: the inverse function theorem,
and the implicit function theorem. The proofs of these theorems are a little complicated. So
we have tried to go step by step from functions of one variable to functions of many
variables.

The Inverse Function Theorem: gives the conditions under which a function, even though not
invertible on its domain, is seen to be locally invertible. The Jacobian of the function being
non-zero at a point ensures the local invertibility of the function in a neighbourhood of that
point.

The Implicit Function Theorem: gives the conditions, under which an implicit relationship
between variables can be expressed in an explicit manner. Here, again, the Jacobian plays an
important role.
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1.1INTRODUCTION

The Riemann integral dealt with in calculus courses, is well
suited for computations but less suited for dealing with limit
processes.

Bernhard Riemann in 1868 introduced Riemann integral. He
need to prove some new result about Fourier and trigonometric
series. Riemann integral is based on idea of dividing. The domain of
function into small units over each such unit or sub-interval we erect
an approximation rectangle. The sum of the area of these rectangles
approximates the area under the curve.

As the partition of the interval becomes thinner, the number
of sub-interval becomes greater. The approximating rectangles
become narrower and more precise. Hence area under the curve is
more accurate. As limits of sub-interval tends to zero, the values of
the sum of the areas of the rectangles tends to the value of an
integral. Hence the area under curve to be equal to the value of the
integral.

Before going for exact definition of Riemann explained the
following definitions.

1.2 PARTITION

A closed rectanglein R" isasubset A of R" of the forms.

A=[a,b]x[a, b]x...x[a,b,] where a <heR. Note that
(X %,y X, ) € Aiff @ <x <BVi.
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The points x;, x,,....,x, are called the partition points.

The closed interval 1, =%, %], 1, =[X, %] I, =[%1: %, ] are
called the component internal of [a,b].

Norm : The norm of a portion P is the length of the largest sub-
internal of P and is denoted by |P|.

For example : Suppose that B =t,,t,,...t,is apartition of [a,b ] and
P,=S,...S isapartition of [a,,b,]. Then the partition P=(R.R,) of
[a.b]x[a,,b,] divides the closed rectangle [a,,b ]x[a,,b,]into Kr-
gub rectangles.

In general if P divides [a,h] into k sub-interval then

P=(R,...R)[a.b]x...x[a,b] into K=kk,..k, sub-rectangle.
These sub-rectangles are called sub-rectangles of the partition p.

Refinement :
Definition : Let A be arectanglein R" and f: A— R be a bounded
function and P be partition of A for each sub-rectangles of the

partition.
ms( f)=inf {f(x):xeS}
=glb.of f On[xs—l’XS]
Ms( f)=sup{f(x):xeS|

=lub.of fon[x ,,x]
where S=1,2,....,n

The lower and upper sums of f for ‘p’ are defined by
L(f.p)=22m(f)v(s) and U(f,p)=> M(f)v(s)
Since m <M, wehave L(f,p)<U(f,p)

Refinement of a partition : Let P=(PR,P,,..,R)and P =(F’,..,P,)

be partition of a rectangle A in R". We say that a partition P isa
refinement of P if Pc P
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If p and P, are two partition of A then P=RUP, isdso a
partition of A is called the common refinement of B and B,.

A function f:A— R is caled integrable on the rectangle A

in R" if ' f'isbounded .. glb of the set of al upper sumof 'f' and
l.ub of the set of all lower sumof ' f ' exist.

Let U(f)=inf{U(f,p)}
L(f)=sup{L(f,p)}

IfU(f)=L(f )iscalled'f' isRintegrabIeoverA.
.if can bewritten as U ( If

Theorem :

Let Pand P’ be partitions of a rectangle A in R". If P’
refines P then show that L(f,p)<L(f,P)and U(f,P")<U(f,p).

Proof :

Let a function f:A> R isboundedon A P & P are two
partition of A and P’ isretinement to P.

Any subrectangle S of P’ is union of some subrectangles
S,S,.§ Of PPand V(S)=V(s)+V(s,)+...+V(s).

Now m(f)=inf{f(x);xes}<inf{f(x);xes}

m(f)<m (f) Vi=1...,k
=st(f)V(S)

~my(f) () ( )+ .tV ()

The sum of LHS for al subrectangle s of P’ will get

L(f,P).



U(tm=2;mﬁﬁ4$
Now, Ms (f)V(S)=Ms(f)(V(S)+V(S,)+..+V(S))
<MS(FIV(8)+ et M (FIV(8)) 4ot M (FIV(s,)

Taking the of L.H.S. for all subrectangle S of P will get
U(f,P).U(f,P)2U(f,P).

Theorem :
Let p & P, be partitions of rectangle A & f:A—>R be

bounded  function. Show that L(f,R)<U(f,R) &
L(f,R)<U(f.R).

Proof :
Let a function f: A— Rbe abounded find p & P, are any

two partition of A.

Let P=RUP,

.. P isarefinement of both p & P,
U(f,P)<U(f,R).ccreenen. ()
U(f,P)<SU(F,B).rennn. (1
L(f,P)>L(f,R).ereenn. (1
L(f,P)>L(f,R) e %

Similarly, U (f,,R,)>U(f,P)>L(f,P)>L(f,R).
Hence, U(f,R)>L(f,R)

Theorem :
Let a function f:A—R be bounded on A then for any

e>0,3a partition P on A such that U(f,P)<U(f)+e and
L(f,P)>L(f)-€



Proof :

Let a function f:A—>R be bounded on A
U(f)=inf{U(f,P)} and L(f)=sup{L(f,P)} for any e>0,3
partitions p, & P, of A such that U(f,R)<U(f)+e &
L(f,R)>L(f)-e.

1.3 RIEMANN CRITERION

Let A be arectanglein R" A bounded function f:A—R is

integrable iff for every >0, there is a partition P of A such that
U(f,P)-L(f,P)<e.

Proof :
Let afunction f: A— R isbounded.
U(f)=inf{U(f,P)}
L(f)=sup{L(f.P)}
Letf beintegrable of A
~U(f)=L(f)

for any >0, 3 a partition P on A such that U (f,p)<U(f)+e/2
and L(f,p)>L(f)-e/2.

c

(f.p)=U(f)+e/2 & —L(f,p)<-L(f)+e/2.
SU(F,p)-L(f,P)<U(f)+e/2-L(f)+ef2.

SU(f,p)-L(f)<e

Conversdly,

Let for any e>0,3 a partition P on A such that
U(f,p)-L(f,P)<e.

[U(P.f)-U(F)]+[U(f)-L(F)]+[L(f)-L(f,P)]<e



Since U(f,P)-U(f)>o,

U(f)-L(f)>
and L(f)-L(f,P)>
~.wehave, o<U (f)-L(f)<e

Since e isarbitrary, U (f)=L(f)
~.fisintegrable over A.

Example 1
Let A be a rectangle in R" and f:A—R be a constant

function. Show that f is integrable and j f =CV(A) forsome CeR.
A

Solution :
f(x)=C vxeA
-. f isbounded on A

Let P be apartition of A
m(f)=inf{f(x);xes}=C
M, (f)=sup{f(x);xes}=C

L(f,P)=Zslms(f)V(S)=CZS:V(S)=CV(A)
U(f,P)=DM(f)V(S)=CD> V(S)=CV(A)
~U(f)=L(f)=CV(A)
. f isintegrable over A.

.. by Reimann criterion, e<0 sit.
[f=CV(A) forsome CeR.
A

Example 2:
Let F :[0,1]X[0,1]—>]R
o if xisrational
fFxy)=y. .. . .
1 if xisirrational

Show that ‘f' is not integrable.

Solution :
Let P be apartition of [0,1]x[0,1] into S subport of P.
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Take any point 3(x,,y;)e S such that x isrational.

x,y)=o and 3(x,y,)eS such that x, is irrational

U (f)=L(f)
- f isnot integrable [0,1]x[0,1]

1.4 PROPERTIES OF RIEMANN INTEGRAL

1) Let f:A—>Rbe integrable and g=f except at finitely many
points show that g isintegrableand [ f =[g.
A A

Proof :

Sincef isintegrable over A.
.. by Riemann Criterion, 3 apartition P of A.
Suchthat U(f,P)-L(f,P)<e ......... ()

Let P' be arefinement of P, such that
1) vxe A with f(x)= g(x),itbelongsto 2" subrectangles of P’

(S

2) V(S)<m

Where d = numbers of pointsin A at which f =g
u=sup{g(x)}=inf { f (x)}

¢=inf {g(x)}-sup{ f (x)}
. P" isrefines P, we have
L(f,P)<L(f,P)<U(f,P)<U(f,P)
~U(F,P)-L(f,P)<U(f,P)-L(f,P)<e



Now
U(g,P)-U(f,P)

i(Z(MsJ )-Ms; (F))V(s))

i=1

- On other rectangle, f =gandso Ms;(g)=Ms;(f).
+ Ms; (g) <sup{g(x)} & Ms, ()=inf {f (x)j-Ms;(f)<inf {f (x)}
Ms; (g)-Ms; (f)<u
a1 (S
Let stup{V(S,j)}SU(g,Pl) u(f, Pl)giliuv<d2“uv .......
)]
Now similarly weget L(g,P')-L(f,P")>d2"Vv .........(lll)

by (I1) & (111) we get.
U(g,P')-L(g,P")<U(f,P")+d2"ug-L(f,P)-d2"9
s§+d2”(u—£)v

<€ d2”e(u—£)E+E:e

S—4+———~
2 d2™(u-¢)2 2
~U(g,P)-L(g,P")<e

By Reimann Criterion G isintegrable by equation (1)
U(g.P")-U(f,P")<d2'uv

~U(g,PY)<U(f,P')+d2"ud
Notethat [g<U(g,P*)<U(f,P')+d2'us
A
<L(f,P)+S+d2"ug
2

d2"ue
1
fP /2 d2n+1 u+/)
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<L(f,Pl)+€/2+€2
<L(f,P1)+e

<£f+e

Thisistruefor any >0

Jos[f o (V)
Now [g>L(g,P")=L(f,P)+5,
' >U (f,P)
>[f>[f-5,

[ f=inf{u(f,P))

A

.'.Ig>jf—€/2

A A

~. Thisistruefor any e>0

I N P (V)

A A

~.from (1V) & (V) we get

o

2) Let f:A—R be integrable, for any partition P of A and sub-
rectangle S, show that

i) m(f)+m(g)<m(f+g)and
i) M,(f)+M,(g)=M,(f+g)

Deduce that
L(f,P)+L(g,P)<L(f+g,P) and

U(f+g,P)<U(f,P)+U(g,P)

Solution :
Let P be apartition of A and S be a Subrectangle

~m(f)=inf{f(x);xeS}
=m(f)<f(x)vxeS
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Similarly m (g)<g(x)vxeS
~m(f)+m(g)< f(x)+g(x)vxeS
= m,(f)+m(g) islower bound of
{f(x)+9(x);xeS}={(f+g)(x);xeS}
= m,(f)+m(g) islower bound of
{f(x)+9(x);xeS}={(f+g)(x);xeS}
=m/(f)+m(g)<inf{(f+g)(x);xeS]
=m(f+g)
~m(f)+m(g)<m(f+9)

i) Ms(f)=sub{f(x);xes|
= Ms(f)>f(x) Vxes

Similarly Ms(g)>g(x)vxe S

S Ms(f)+Ms(g)>f(x)+g(x)VxeS
= Ms( f)+Ms(g) isupper bound of
{f(x)+9(x);xeS}={(f+g)(x);xeS}

= Ms( f)+Ms(g)>sup {(f +g)(x);xe S} =Ms(f +g)

- Ms(f)+Ms(g)>Ms(f+g)

Hence,

L(f,P)+L(g,P)=> (Ms(f)+Ms(g))V(S)

Sé(Ms(f +9))V(S)

<L(f+g,P)

2§(Ms(f +9))V(S)
>U(f+g,P)
U(f,P)+U(g,P)>U(f+g,P) Proved.
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3) Let f:A—Rbe integrable, & g:A— R integrable than show
that f +g isintegrableand [(f+g)=[f+[g.
A A A

Proof :
Let P be any partition of A then

U(f+g,P)-L(f+g,P)<U(f,P)+U(g,P)-[L(f,P)+L(g,P)]

<U(f,P)+U(g,P)=L(f,P)=L(Q,P).eereriiriiiirirarannnn, ()
- f isintegrable.

By Rieman interion for given > 0,3 apartition P, of A such

that U ( f, (f.R) /2 ........................................ ()

Similarly ~gis integrablefor e>0,3 a partition P, of A such that

U(g.R) /2 ............................................. (1)

Then P" =R UP, isarefinement of both B & P,.

( Pl)sL(fP) U(f, )>U(fP) & L(g.R)<L(f.P);
(9.R)=U (g ) T (A |

r.e/2>U(f,R)-L(f,R)=U(f,P)-L(f,P")

e/2>U(g.R)- L(gP U(9.P)=L(QP) e, (V)

The equation | istrue for any partition P of A.

In general, it istrue for partition P of A
~U(f+9,P)-L(f+0,P)
<U(f,P")-L(f,P")+U(g,P")-L(g.P)
<e/2+e/2=€
U(f+0,P")-L(f+g,P)<e
By Riemann Criterian f +g isintegrable.

Let /0 since [f=sup{f,P} so 3a partition P such that
A

./[f <(f,F})+%.
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Similarly 3a partition B,,R,...R, of A S
_[g<L(g,l32)+€/2
A

U(f,R)<[f+5
A

U(g,Fg)<Ig+€2
A

Let P=RURURUP,.
Then If <(f,F})+€/2£ L(f,P)+‘72
A

Similarly jg< L(9.P)+%,
A

U(1,P)<[f+55 andU(g,P)<[g+%)

[f+[g-e<L(f,P)+L(g,P)<L(f+g,P)<[f+g

Thisistruefor any >0
.-.jf+jgsjf+gsjf+jg:>jf+g:jf+Ig
A A A A A A A A

4) Let f:A—>Rbe integrable for any constant C, show that

f(cry=c|t.

A

Proof :
Let CeR
Casel
Let >0 and suppose C > 0.
Let P be apartition of A and S be a subrectangle of P.
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M, (Cf ) =sup{(Cf )(x);xe S}
= sup{Cf (x);xe S}
=Csup{f(x);xeS|
=CMs( f)
Similarly,
ms(Cf )=Cm,( f)
~U(Cf,P)=> Ms(Cf )v(S)=C> Ms(f)v(S)
=C U(f,P)
Similarly L(Cf,P)=CL(f,P)
- f is integrable for above €<0,3 a partition P of A such that
U(f,P)-L(f,P)<e/C
~U(Cf,P)-L(Cf,P)=CU(f,P)-CL(f,P)
=C[U(f,P)-L(f,P)]

:Cx%:C

By Riemann Criteria.
(Cf )isintegrable
for e>0,3a partition P of A such that

ij—e:C[If—%J<CL(f,P):L(Cf,P)

SJ;Cf <U(Cf,P)
<CU(f,P)<C(£f+%J
.-.[{f-%}{q <C(£f+%J:C£f+e

Thisistruefor any e<0
c[f<[(cf)<cC[f
A A A
~fcf=cff
A A
Casell
Now suppose C <0

Let P be apartition of A and S be any subrectanglein P.
~.Ms(Cf )=C Ms( f)and
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m,(Cf )=C Ms( f
~.L(Cf,P)=CU(f,P)and
U(Cf,P)=CL(f,P)

. f isintegrable for above > 0,3apartition P of A such that
u(f,P)—L(f,P)<%_C)
U (Cf,P)-L(Cf,P)=CL(f,P)-CU(f,P)
=—C[U(f,P)-L(f,P)]

<€ ¢

<e
By Riemann Criteria (Cf )isintegrable.

for e>0,3 apartition P of A such that Cj f—e<ICf <Cj f+e

Thisistruefor every e>0

cjf <jc:fs—cjf
A A A
.-.ij=cjf
A A

Example 3:
Let f,g:A— R be integrable & suppose f <g show that

Ifgig.

A

Solution :
By definition [ f =inf {U(f,P)} and [g=inf{U(g,P)}.
A A
Let P be any partition of A & Sbe any subrectanglein P
as f<g
m(f)<m(g)
U(f, P)gU( ,P)
P)j<int {U (g,P)]

Thisistrue for any partition

.'..[fs.[g

mf{
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Example 4:

If f:A—R is integrable show that if is integrable and
[f
A

§£|f|.

Solution :
= Suppose f isintegrable first we have to show that | f| isintegrable.

Let P be apartition of A & S be subrectangle of P then
Ms(|f|)=sup{‘f )|;xe s}

=su {|f XeS}
=‘ {f XES‘
=[Ms( 1)

Similarly
Ms(|f ) =[Ms( 1)

(111 P)=Zm.( )V (S)-X
L ].P)= Xm0V (S)
B MmOV ()= X(m,

<U(f,P)-L(f.P)

M, (f)IV(S)

(F)|=m())V(S)

- f is integrable, for e>0,3 a partition P such that
U(f,P)-L(f,P)<e.

U([f].P)-L(|f[.P)<U(f,P)-L(f,P)<e
.. By Riemann criteria
|f| isintegrable over R.

IF

Now

oo
= mfZM ‘

= inf ZMS(f)V(S)‘

=|inf ;Ms|f|V(S)|
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sinf;MS|f|v(s)
=inf {U (|f],P)}
=[I1]

A

£ f

Example 5:
Let f:A—>R and P be a partition of A show that f is

integrable iff for each sub-rectangle S the function %Whi ch consist
of f restricted to Sisintegrable and that in this case I f= Zj % :
A S s

= Suppose f: A— R isintegrable.
Let P be apartition of A & S be asub-rectanglein P.

Now to show that %;S—HR isintegrable.
Let e>0,3 apartition P’ of A such that U (f,P)-L(f,P)<e (.. f

isintegrable)
Let P=PUP’ then B isrefinement of bothP & P'.

~U(f,P)>U(f,R) & L(f,P)<L(f,R)
~U(F,B)-L(f,R)<U(f,P)-L(f,P)<e.ciiiciiinncnn (1)
- B isrefinement of P
-+ S isunion of some subrectangle of B say 5=!1Si-
~e>U(f,R)-L(f,R)=> (M(f)-m(f))V(S) foral rectangle.
SeR.
k
22 (Ms (F)-m, (1))v(8)
f f
o(e7)-Hs7)
. By Riemann Criterion
% isintegrable.

Conversely, Suppose %isintegrablefor each SeP.

To show that f isintegrable.
Let e>0,3 partition P, of Ssuch that



f/s isintegrable for each Se P where K is number of rectanglein
P.

Let P' be the partition of A obtained by taking all the
subrectangle defined in the partition ;.

There is a refinement P of P, containing subrectangles in

P.
SU(F/sP)=L(f/s,Pl)<e/k i (1)
.'.U(f,Pl)—L(f,Pl):S;l(MSl(f)—msl(f))V(Sl)
5[ B s0-m()v(s)
=§P(U(f/s,P§)—L(f/s,Psl))
<;e/k
<k,e/k<e

.. By Riemann Criterian f isintegrable.

Let e>0
;(j f/S—e/kJ<§PL(f/S,PS)
<3| s

Let P' be a partition of A, obtained by taking allthe subrectangle
defined in P;.
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(jf/s e/k]<2( (F))v(s')

SeP SePt

<L(f,PY <jf<u(f,P1)
A

:SélMé(f)V(Sl)

=§(Z Msl(f)V(Sl)}

P\ steP*

2 (U(T/S.R)) sep(If/S+%J

SeP

SRS ecjf<zjf/5+e

SeP SeP

Thisistruefor al >0

Ay ftrs<[ <> [t/

SeP SeP g

_[f_ [f/s

SeP s

Example 6:
Let f:A—> R be a continues function show that f is

integrableon A.
Solution :
Let f:A—> R be a continuous function to show that f is

integrable.

Let >0, since A is closed rectangle it is closed and bounded
in R".

. A iscompact.

- f is continuous function on compact set = fis uniformly

continuously on R .
~for the above e>0,36>0 such that VvxgeA

[x=vl<s=[f ()= f(y)<e/V(A).

Let P be a partition of A such that side length of each
subrectangle islessthan 5/+/n.

If x,ye Sfor some subrectangles S then

%= Y[ = (%= ) ot (%, Y, )
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(%) =2
[F()=T () <eV(A)

.+ S is compact
- f iscontinuous
- f attainsitsboundin S.

Let S,S,.....S. be the subrectangle in A. Then for
1<i<k,3x,y €S suchthat Ms(f)="f(x)m(f)="f(y).

SU(F.P)-L(F,P)= (M (f)-m (f))V(S)

k
i=1

Y (F(x)-F(%)V(S)

i=1

.. By Riemann Criterion f is integrable.

1.5REVIEW

After reading this chapter you would be knowing.
Defining R-integral over arectanglein R"
Properties of R-integrals
R-integrabal functions
Continuity of functionsusing R -intervals.

o
X3
o
o

1.6 UNIT END EXERCISE

1) Let f;[0,1]x[0,1] > R bedefined by
f(x y)=0if 0< yﬁ%

=3if Y<y<1
show that f isintegrable.

) Let Q be rectangle in R"& f;Q—>R be any bounded
function.



1)

V)

V)

Vi)

i)

i)

1X)

X)
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a) Show that for any partition Pof Q L(f,P)<U(f,P)
b) Show that upper integral of function f exit.

Let f be a continuous non-negative function on [0,1] and
suppose there exist x,e[a,b]such that f(x,)>0 show that
jf(x) dx>a.

0

Let f Dbe integrable on [ab] and F:[ab]>R and
F*(x) = f (x) then provethat [ f(x)dx=F (b)-F(a)

Which of the following functions are Riemann integrable
over [0,1]. Justify your answer.

a) The characteristic function of the set of rational number in
[0,1].

b) f(x)=xsiny, for 0<x<1
f(0)=3

Prove that if fis R -integrable then |f| is also R-integrable is
the converse true? Justify your answer.

Show that a monotone function defined on an interval [a,b] is
R-inegrable.

A function f;[0,1] > Risdefined as f(x):3n11v3—1n<x33nll
where neN
f(0)=0

1
show that f is R-integrable on [0,1] & calculate —[  (x) dx.
0

f(x)=x| x| vxe[L3]where | x| denotes the greatest integer
not greater than x show that f is R-integrable on [1,3].

A function f;[a,b] >R is continuous on [a,b] f(x)>0

b
vxe[a,b] and If(x)dx=0 show that f(x)=0 vxe[a,b].
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MEASURE ZERO SET

Unit Structure:

2.1 Introduction

2.2  Measure zero set

2.3  Déefinition

2.4  Lebesgue Theorem (only statement)
2.5 Characteristic function

2.6 FUBIN’s Theorem

2.7 Reviews

2.8  Unit End Exercises

2.1INTRODUCTION

As we have seen, we cannot tell if a function is Riemann
integrable or not merely by counting its discontinuities one possible
alternative is to look at how much space the discontinuities take up.
Our guestion then becomes: (i) How can one tell rigorously, how
much space a set takes up. Is there a useful definition that will
concide with our intuitive understanding of volume or area?

At the same time we will develop a general measure theory
which serves as the basis of contemporary analysis.

In this introductory chapter we set for the some basic
concepts of measure theory.

2.2MEASURE ZERO SET

Definition :
A subset ‘A’ of R" said to have measure ‘O’ if for every
e>0 thereisacover {U,U,...} of A by closed rectangles such that

the total volume iv(Ui) <e.

i=1

Theorem :
A function ‘f’ is Riemann integrable iff ‘f’ is discontinuous
on a set of Measure zero.
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A function is said to have a property of Continuous almost
everywhere if the set on which the property does not hold has
measure zero. Thus, the statement of the theorem is that ‘f’ is
Riemann integrable if and only if it is continuous atmost
everywhere.

Recall positive measure : A measure function u:M —[0,«] such

thatV(Oui]:gV(u)

i=1

Example 1:
1) “Counting Measure” : Let X be any set and M = P(X)the set of

al subsets : If Ec X is finite, then u(E)=n(E) if Ec X is
infinite, then u(E)=c
2) “Unit massto x, - Dirac delta function” : Let X be any set and
M =P(X) choose x, € X set.
u(E)=1if x,€E
=0if x,¢E

Example 2:
Show that A has measure zero if and only if there is countable
collection of open rectangle V,,V,,... such that AcUV, and

ZV(V)<E

Solution :
Suppose A has measure zero.
For e>0,3 countable collection of closed rectangle V,,V,,....

E

such that Ac UV and ZV

i=1

For each i, choose a rectangle usuch that u ov. and
V()< (v).

Then

<23 v(u

i=1

velu  and  SV(u)<SV(u)<S v (y)

i=1 i=1 i=1 i=1

N ECS

Notethat : u areopenrectanglesin [ " conversely,
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Suppose for e>0,3 countable collection of open rectangles

U, U,,.... suchthat Ac Cjui and iv(ui)<e.
i=1 i=1

For each i, consider V, =u, then V, is a closed rectangle and
V(v)=V(u).

Then AQOUi gOVi and iv(vi)=ZV(ui)<e.

i=1 i=1 i=1 i=1
A has measure zero.

Note : Therefore we can replace closed rectangle with open
rectangles in definition of measure zero sets.
Example 3:

Show that a set with finitely many points has measure zero.

Solution :
Let A={a,...,a,} befinite subset of R".

Let e>0,a =(a,,a,,......a,) and

. 1( € % 1( € %
Vllall—E(FJ ,ail+§(2i+lj ]X
" _Eiij% +£( 3 )%
" ain 2 2i+1 ’am 2 2i+l

1
) (e \n €
Then V(VI) = I I £2i+lj = 2i+l

i=1

Clearly a eVi for 1<i<m

- Ac LmJVi and iV (Vi)= i il <e-i% <E-1 <e
i-1 i-1 2 = 2 2

i=1

. By definition of measure of zero
.. A has measure of zero.

Example 4:
If A=AUAUAU... and each Ai has measure zero, then

show that A has measure zero.

Solution :
Let e>0and A= AUA U.... witheach Ai has measure zero.
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Each A has measure zero for i=12,.... 3 a cover

By closed rectangle such that iv(uii ) <§,i =12,...

i=1 I
Then the collection of U, iscover A

.'.Z::V(Vi)<i§<e

i=1
Thus A= AUA,UA,.... has measure zero.

Example 5:
Let AcR" be a Rectangle show that A does not have
measure zero. But 6A has measure zero.

Proof :
Suppose A has measure zero.
-~ Alisarectanglein R"
~V(A)>0
Choose >0 suchthat e<V(A) ......ccoooeeiniiiiinnnn ()

-+ A has measure zero

3 countable collection of open rectangle {u} such that Ac|Ju
i=1

and >V (u)<e.

-+ A iscompact

This open cover has a finite subcover after renaming. We may
assumethat {u,,u,,...u,} issubcover of the cover {u}.

S AcC Oui .
i=1

Let P be partition of A that contains all the verticesall u's i=1 to
k.Let §,S,,...., S, denote the subrectangle of partitions.
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which isacontradiction to (1)
. A does not have measure zero.

Note that O0A is a finite union of set of the form
B=[a.b]x[a,b]x....x[a,,b,], V. B can be covered by are closed

Then V(B;) dependon § and V(B;) —»0as 6 »0.
- B; has measure zero
~.Boundary of A (6A) isfinite union of measure zero.
.. 0A has measurSe zero.

Example 6:
Let AcR" with A°= @ . Show that A does not measure zero.

Solution :
Let AcR", with A°= &
Let xe A°
-3 r>0,suchthat B(x,r)<A But

B(xr)={ye Aly-x<r]

={ye A;Z|yi—>g|<r}
i=1

If fA has measure zero
then B(x,r) has measure zero )
which is not possible as

B(x,r)is Rectangle

. A does not have measure zero.

Example 7:
Show that the closed interval [a,b] does not have measure

ZEro.

Solution :
Suppose {u;}_, beacover of [a,b] by openintervals.

- [a,b] is compact this open cover has afinite subcover.

After renaming, we may assume {u,,u,,....,u, } is the subcover of {u}
of [ab].
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We may assume each u intersect [a,b] (otherwise replace u with
u N[a,b])

Let u=Ju

i=1
If u is not connected then [a,b] is contained in one of connected
component of u.

=[a,b]cu for some i
~[ab]Nu, =@ for i |
Which is not possible

~.u isconnected
= u isanopeninterval say u=(c,d) Thenas [a,b)cu=(c,d)

=>V(y)=d-c>b-a

In particular we cannot find an open cover of [a,b]with total length

of the cover < b;za )

~.[a,b] does not have measure zero.

Example 8:
If Ac[0,1] isthe union of al open intervals (g, ) such that

each rational number in (0,1) is contained in some (a,bh). If
T =i(bi —ai)<1 then show that the boundary of A does not have
i=1

measure Zero.

Solution :
Wefirst show that 0A=[0,1]\ A

Note that A= A\ A°

-~ Alsopen = A°= A
Also Qﬂ[O,l]gA
.'.Qﬂ@g A
~[01<c A

But Ac[0,1]= Ac[0,]]
- A=[0/1]

- 0A=[01]\ A
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Let e=1-T>0

If 0A has measure zero then since e>0,3 a cover of A with open

intervals such that sum of length of intervals <1-T
- 0A s closed and bounded
= 0A is compact

= 3 finite subcover {u}’' for oA

s 0(u)<1-T

Note that {ui;lgi < n;(q,q);’;} cover [0,1] and sum of lengths
of these open intervals is less than 1-T +T =1 which is not possible
as[01]c U{ui; 1<i<nm; (a,.,q)iil} .. A does not have measure zero.

2.3 DEFINITION

A subset ‘A’ of R" has content ‘O’ if for every e> 0, thereis
a finite cover {u,u,,....,u,} of A by closed rectangles such that

2v(ui)<e

Remark :

1) If A has content O, then A clearly has measure O.

2) Open rectangles can be used instead of closed rectangles in the
definition.

Example 9:
If A is compact and has measure zero then show that A has
content zero.

Solution :
Let A beacompact setin R"
Suppose that A has measure zero

gV(ui)<2V(ui)<e

. A has content zero.
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Example 10 :
Give one example that a set A has measure zero but A does
not have content zero.

Solution :
Let A=[0,1]NQ

Then A is countable
= A has measure zero
Now to show that A does not have content zero.

Let {[a.h);1<i<n}| becover of A
~Acla,h]U...U[a,b,]

~Acla,b]U...U[a,b,]
But A=[0,1]

.-.gz([a,q))n

In particular, we cannot find a finite cover for A such that

> (ab)<¥

. A does not have content zero.

Example 11:
Show that an unbounded set cannot have content zero.

Solution :
Let Ac R" be an unbounded set.
To show that A does not have content zero
Suppose A has content zero for e>0,3 finite cover of closed

k Kk
rectangles {u}" of A suchthat Ac| Ju and D'V (u)<e.
i=1 i=1

Let u =[a,,b,]x...x[a,.b,]
Let 3 =min{a,,a,,....a, |

then Uu c[a,.b]x...x[a,,b,]

- Ac|a,b]x..x[a,b,]

. A is bounded

Which is contradiction

.. A does not have content zero.
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Example 12:
f :A—0 is non-negative and jf =0 where A is rectangle,

A
then show that {xe A; f (x)= 0} has measure zero.

Solution :

For nell, A Z{XEA; f (x)<%}
Notethat {xe A, f (x)=0}={xe AF(x)>0}
{~~ f isnon-negative}

o0

U{XEA,f %} UA1

n=1

éhave to show that A1 has measure zero
2+ f=0and jf =inf {U(f,P)} =0for e>0,3 apartition P such that
A

U(f,P)<e/n

Let S be asubrectanglein P
if SNA =@=M, ()<l
clearly {Se P;SNA, ¢®} covers A, and

Z )< M (f ( Ms(f)>%]

sep N Sep

<U(f,P)<e/n

SV (S)<e
SNA =
sep

By definition A has content zero
= A, has measure zero
~.{xe A f(x)=0}iscountable union of measure zero set.

~.{xe A f(x)=0} hasmeasure zero.

* Ogcillation o( f,a) of ‘f’ at a

o for 5>0,Let M(a,f,8)=sup{f(x);xe A&|x—a/ <5}

m(a, f,5)=inf{f(x);xe A& |x—a| <5}

The oxillation o(f,a) of f a a defined by
o(f,a)=lim(M(a f,5)-m(a, f,5))

50
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This limit always exist since M (a, f,5)-m(a, f,5) decreases as §
decreases.

Theorem :
Let A be aclosed rectangle and let f: A— 0 be a bounded

function such that O( f,x)<e for al xe A show that there is a
partition Pof A with U (f,P)-L(f,P)<eV(A).

Proof :
Let xe A= U (f,x)<e=> LIJ)TC\)(I\/I (x, f,8)-m(x, f,5))<e
-.3 a closed rectangle u, containing x in its interior such that
My, —My, <e by definition of oscillation.
~{u,;xe A} isacover of A
. A iscompact
= This cover has afinite subcover say {u,,u,,,...., Uy}

k
~Ac| Ju, .
giL:Jlxl

Let P be a partition for A such that there each subrectangle ‘S of P

is contained in some u. then M,(f)-m/(f)<e for each

subrectangle‘S inf

U (F,P)-L(f,P)=> (M (f)-m(f))V(S)

SeP

<e ZV(S)

SeP

<e-V(A)

2.4 LEBESGUE THEOREM (ONLY STATEMENT)

Let A be a closed rectangle and f:A— R is bounded
function. Let B={x; f is not continuous at x}. Then f is integrable
iff B isaset of measure zero

2.5 CHARACTERISTIC FUNCTION

Let CcR". The characteristics function y of C is defined by
2. (x)=1 if xeC
=0 if xgC
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If Cc Awhere A is a closed rectangle and f:A— R is bounded
then jf is defined as J'fxc provided jf-;(cisintegrable [i.e if f
C C

and y, areintegrable]

Theorem :
Let A be a closed rectangle and Cc A. Show that the
function y.: A—0 isintegrableif and only if 6C has measure zero.

Proof :
To show that y.:A—R is integrable iff 6C has measure

ZEro.

By Lebesgue theorem, it is enough to show that oC={xe A: y is
discontinuous}

Let ae C°= 3 an open rectangle ‘U’ containing asuch that ucC
S 2.(n)=1vneU
= y. Iscontinuous at a.

Let ae Ext(c)= Exterior of C

[By definition union of al open sets digointsfrom C]

Ext (C) isan open set

3 an open rectangle u containing such that U < Ext(c)

S 2:(n)=0Vneu

= . Iscontinuous at a

If agoc then y, iscontinousata...........c.ccvvennnee. ()

Let acdoc= for any open rectangle U with aiin its interior contains
apoint yeC° & apoint zeR"|c

.‘.;(C(y)zl& )(C(Z)zo

.. . 1snot continuous at a

~.oc={xe A: y, isdiscontinuous at x}

.. By Lebesgue Theorem.
x. Isinterrableif and only if oc has measure zero.

Theorem :
Let A beaclosed rectangleand Cc A
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If C is bounded set of measure zero and j 2. exist then show that
A

j%czo'
A

Proof :
C < Abe abounded set with measure zero.

Suppose | , exist = y, isintegral
A

To show that [z, =0
A

Let P be apartition of A and S be a subrectanglein P.

~» Sdoes not have measure zero
= SZC

= 3JxeShut xgC

S 2:(x)=0

=>m(x.)=0

Thisistrue for any subrectangle Sin P

L()(C,P):zms(;(C)V(C)zo

Thisistrue for any partition P

jxc =sup{L (%, P);P ispartition of}
A

Jﬂcc=0

A

2.6 FUBINI’'STHEOREM

Fubini’s Theorem reduces the computation of integrals over
closed rectangles in R",n>1to the computation of integrals over

closed intervalsin R . Fubini’s Theorem is critically important as it
gives us a method to evaluate double integrals over rectangles
without having to use the definition of adouble integral directly.

If f:A— R isabounded function on a closed rectangle then

the least upper bound of all lower sum and the greatest lower bound
of all upper sums exist. They are called the lower integral and upper

integral of f and is denoted by Lj F and Uj F respectively.
A A
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Fubini’s Theorem

Statement : Let AcR" and B R" be closed rectangles and let
f:AxB— R be integrable for xe A, Let g, :B— R be defined by
0,(y)=F(xy) and let

((x) = LJ'gX = LI f(xy)dy

u(x):UJ'gx:U_[f(x,y)dy

Then ¢ and 4 areintegableon Aand | f=[L=]
A

AxB A

| f=ju(x)dx=£[u£f(x,y)ddex

AxB A

Proof :
Let P, be a partition of A and P, be a partition of B. Then

P=(P,,R,)isapartition of AxB

Let S, beasubrectanglein P, and S, be a subrectanglein P,
Then by definition,

S=S5,xS; isasubrectanglein P

L(fP)=2 m(f)V(S)

SeP

- Z mSAXSB(f)V(SAXSB)

Ssehs

-y ( 5 mSAXSB(f)V(SB)]V(SA)......................(I)

SpePa \ Sehs

For xes,,m . (f)cM, (g,)
~.For xe S,

LY MV (S)V(S)<Xm (9)V(Ss)

Ssehs
=L(g.R)<Lfg,=L(x)
B

Thisistruefor any xe A

LL(EP) =Y ( > rrgAst(f)V(SB)JV(SA)

SpePp \ SzePs

< 2 m (LOYV(S,)

SpePa

=L(£(X),Py) oo (1)
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S From (1) & (1)
L(f,P)<(L(X),Pa) covvveeeemriie oo, (1)

:u<gx’PB)Zufgx :,UJ(X)

Thisistruefor any xe A.
| X Mas (V(S)V(S)
> Mg (U(X)V(S,)

<:,I (X),Pa) covere e, (V)

v

from (1V) & (V)

U(f,P)>U (U(X),Py) cvereeeiiieiiiiie e, )
- By (1) & (VI)
L(f.P)<L(¢(x),P) <u(L(x),R.)

<U(L(X),P) SU(f,P) coviiiiiiiii i, (vir)
Also
L(f,P)<L(£(x),P) < L(1(X),Py) SU(L(X),Py) eeeennnine, (VIII)

. f isintegrable

sgp{L(f,P)}:ir;f{U(f,P)}:ff

#s;ip{L(ﬁ(x),PA)}:igf {u(ﬁ(x),PA)}:ff
~.£(x) isintegrable
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[f :fg(x):f[LjB‘ux,y)]dx ............................ (IX)

AxB A A

Also by (VI11) & (IX)

sgp{L(L(x),PA)}:igf{U (u(x),P)}= [ f

AxB

~.u(x) isintegrable.

:ff:fu(x)dx:f

Hence Proved

uff(x,y)]dx

B

Remark :

The Fubini’ s theorem is a result which gives conditions under
which it is possible to compute a double integral using interated
integrals, As a consequence if alows the under integration to be
changed in iterated integrals.

ff:f Lff(x,y)dx]dy
|

B

Uff(x,y)dx]dy

These integrals are called iterated integrals.

Example 13:
Using Fubini’ s theorem show that D,,f =D, f if D,(f) and

D,,(f) are continuous.

Solution :
= Let ACR and f : A— R continuous

T.P.T D,f =D,f
Suppose D,, f = D,, f

.3 %, Y, indomain of f such that
(D, f(a)—D,f(a))=0

without loss of generality, (D,,f (a)— D, f (a))>0 or
(Dpf—Dyuf)(a)>0 v ()
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"‘f(DIZf —DZlf)(X,g)>0

A

Let A=[a,b]x[c,d]
.. By Fubini’s Theorem

fD21f (X, y):]]D21f (%, y)dxdy

:j‘(ozf (b.y)-D,f(g.y))dy

= f (t;,d)— f(b,c)—f(ad)+ f(ac)
Similarly,
fDlzf(x,y): f (b,d)— f (b,c)— f (a,d)+ f (ac)

fDZIf X Y)= fD12f (%)
:>f o f DlZf Xy>:0

Which is contradiction to (1)

proved

Example 14:
Use Fubini’s Theorem to compute the following integrals.

]«ﬁf dy.dx
1) | = =
/ 1+X2+y2

0

Solution :

1
1 1Y
= [ dx tan™*
“Of 1+ % V14,
r 1
:fdx. .Z
0 1+x* 4
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‘fm

1
=—|log(x+4/1 xz}
4[ g( T 0

:%|Og[\/§+1}

Solution :

C={(xy);y<x<10<y<1}

By Fubini’s Theorem

X=y

11 2 YA
:ffsjn 2| dxdy
0y
1 x Xz
:ffsjn 2| dxdy
0 0
r X
= [ sin|==|[y]'d
[sm 5 [y]0 X
1 X2
:fxsin 7r—]dx
5 2
2 x|lo |1
Put X ¢
! t |O
2 iz
27X iy — it
2
xdx:E
T
7 7
fsntﬂzlfsintdtl(—cost)g/z
0 ™ ™ 0 ™

:1[—0+1]:1
s ™
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2.1 REVIEWS

After reading this chapter you would be knowing.
Definition of Measure zero set and content zero set.
Oscillation O( f,a)

Find set contain measure zero on content zero
Statement of Lebesgue Theorem

Definition of characteristic function & its properties.
Fubini’s Theorem & its examples.

2.8UNIT END EXERCISES

w N

0.

If BC A and A has measure zero then show that & has measure
zero.

Show that countable set has measure zero.

If A is non-empty open set, then show that A is not of measure
zero.

Give an example of abounded set C if measure zero but 9C does
not have measure zero.

Show by an example that a set A has measure zero but A does
not have content zero.

Provethat [a,,b|x....x[a,,b,] does not have content zero if g <h

foreachi.

If Cis aset of content zero show that the boundary of C has
content zero.

Give an example of aset A and a bounded subset C of A measure

zero such that f X, does not exist.
A

If f & g areintegrable, then show that f, isintegrable.

10.Let U =[0,1be the union of all open intervals (a,b)such that

each rational number in (0,1) is contained in some (a,h ). Show
that if f =y except on a set of measure zero, then f is not
integrable on [0,1].

11.1f  f:[ab]x[a,b] >R is continuous, then show that

12. Use Fubini’ s theorem, to compute f dy f

Lbbef f <X’ y)dXdyszbef f (X, y)dydx
T 7

sinX dx
X+y

0 0
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13.Let A=[-11]x[0,7/2] and f:A-R
f(x,y)=xsiny— ye" Computeff
A

defined

by

14.Let  f(x,y,z)=zsin(x+y) and A:[O,ﬂx[—%,%}x[o,l]

computer | f.
J



