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DIFFERENTIATION OF FUNCTIONS OF SEVERAL 

VARIABLES 
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5.0 Objectives 
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5.2 Total Derivative 

5.3 Partial Derivatives 

5.4 Directional Derivatives 

5.5 Summary 

5.0 OBJECTIVES 

After reading this unit you should be able to  

 define a differentiable function of several variables 

 define and calculate the partial and directional derivatives (if they exist) of a function 

of several variables 

 establish the connection between the total, partial and directional derivatives of a 

differentiable function at a point 

5.1 INTRODUCTION 

 You have seen how to extend the concepts of limit and continuity to functions between 

metric spaces. Another important concept is differentiation. If we try to apply this to 

functions between metric spaces, we encounter a problem. We realise that apart from the 

distance notion, the domain and codomain also need to have an algebraic structure. So, let us 

consider Euclidean spaces like R
n
, which have which have both metric and algebraic 

structures. Functions between two Euclidean spaces are what we call functions of several 

variables.  

In this chapter we shall introduce the concept of differentiability of a function of several 

variables. The extension of this concept from one to several variables was not easy. Many 

different approaches were tried before this final one was accepted. The definition may seem a 

little difficult in the beginning, but as you will see, it allows us to extend all our knowledge of 

derivatives of functions one variable to the several variables case. You may have studied 

these concepts in T. Y.  So, here we shall try to go a little deeper into these concepts, and deal 

with vector functions of several variables. 

5.2 TOTAL DERIVATIVE 



To arrive at a suitable definition of differentiability of functions of several variables, 

mathematicians had to closely examine the concept of derivative of a function of a single 

variable. To decide on the approach to extension of the concept, it was important to know 

what was the essence and role of a derivative. So, let us recall the definition of the derivative 

of a function f: R   R. 

We say that f is differentiable at a   R, if the limit,  
0

lim
h h

afhaf )()( 
 exists. 

 In that case, we say that the derivative of f at a, f
1
(a) =  

0
lim
h h

afhaf )()( 
 .......(5.1) 

So, we take the limit of the ratio of the increment in f(x) to the increment in x. Now, when our 

function is defined on R
n
, the increment in the independent variable will be a vector. Since 

division by a vector is not defined, we cannot write a ratio similar to the one in (5.1). But 

(5.1) can be rewritten as  

   
0

lim
h

[
h

afhaf )()( 
  − f

1
(a) ]  = 0, or   

0
lim
h

[ 
                   

 
 ] = 0, or 

0
lim
h

    

 
 = 0, where r(h) = f(a+h) – f(a) – f

1
(a).h.  

So, we can write f(a+h) = f(a) + f
1
(a).h + r(h),                                         .........................(5.2) 

where the “remainder” r(h) is so small, that 
    

 
  tends to zero as h tends to zero. 

For a fixed a, f(a), and f
1
(a) are fixed real numbers. This means, except for the remainder, 

r(h), (5.2) expresses f(a + h) as a linear function of h. This also helps us in “linearizing” f. We 

say that for points close to a, the graph of the function f can be approximated by a line. Thus, 

f
1
(a) gives rise to a linear function L from R to R. 

L: R  R,   h   f1
(a).h, which helps us in linearizing the given function f near the given  

point a. (5.2) then transforms to  

f(a + h) = f(a) + L(h) + r(h) .                                                                     ...........................(5.3) 

It is this idea of linearization that we are now going to extend to a function of several 

variables. 

Definition  5.1 Suppose E is an open set in R
n
,  f : E   Rm

, and a   E. We say that f is 

differentiable at a, if there exists a linear transformation T : R
n
   R

m
,   such that 

0
lim
h

                  

   
  = 0                                                        .........................(5.4) 

and  we write f
1
(a) = T. 

If f is differentiable at every point in E, we say that f is differentiable in E. 



Remark 5.1 i) Bold letters indicate vectors. 

ii) Since E is open,      , such that B(a, r)   E. We choose h, such that  h  < r, so that 

 a + h   E. 

iii) The norm in the numerator of (5.4) is the norm in R
m

, whereas the one in the denominator 

is the norm in R
n
. 

iv)  The linear transformation T depends on the point a. So, when we have to deal with more 

than one point, we use the notation, Ta, Tb, and so on. 

  We have seen that in the one variable case, the derivative defines a linear function,  

h   f
1
(a).h from R to R. Similarly, here the derivative is a linear transformation from R

n
 to 

R
m

.  With every such transformation, we have an associated m  n  matrix. The jth column of 

this matrix is T(ej), where ej is a basis vector in the standard basis of R
n
. 

For a given point a, the linear transformation Ta is called the total derivative of f at a, and is 

denoted by f
1
(a) or Df(a). We can then write 

f(a + h) = f(a) + Ta(h) + r(h), where 
    

    
   , as h   .                    .............................(5.5) 

 

We now give a few examples.  

Example 5.1 : Consider f: R
n
   R

n
,  f(x) = a + x, where a is a fixed vector in R

n
 . Find the 

total derivative of f at a point p   R
n
,  if it exists. 

Solution : Now, f(p + h) – f(p) = h.   So, if we take T to be the identity transformation from 

R
n
 to R

n
, then we get                  

      f(p + h) – f(p) – T(h) = 0,  and hence 

0
lim
h

                  

   
  0.                                                

Comparing this with 5.5, we conclude that the identity transformation is the total derivative 

of f at the point p. 

Example 5.2 : Find the total derivative, if it exists, for f : R
2  

R
2
,  f(x, y) = (x

2
, y

2
), at a point  

a = (a1, a2). 

Solution : If f is differentiable, we expect Ta to be a 22 matrix.  Let h = (h1, h2). Now, 

f(a + h) – f(a) = (       
         

      
    

   

                        = (        
          

 ) 

                        = (2          ) + (  
    

 ) 



                       = 
    
    

  
  
  

 + (  
    

 ) 

We take Ta =  
    
    

  , and r(h) = (  
    

 ), and write  

f(a+h) = f(a) + Ta(h) + r(h), where 
    

    
   

   
       

  

    
    

  
  0, as h  . 

Thus Ta is the total derivative of f at a.  

Now that we have defined the total derivative, let us see how many of the results that we 

know about derivatives of functions of a single variable, hold for these total derivatives. 

Theorem 5.1: If  f : R
n
   R

m
 is differentiable at a   R

n
, then its total derivative is unique. 

Proof :  Suppose f has two derivatives, T1 and T2 at a, and let T = T1 – T2. Let h   R
n
,  

h   0, and t   R, such that t   0. 

Then th   0 as  t   0. 

Since T1 is a total derivative of f at a,  

0
lim
t

        

    
    

0
lim
t

                     

    
   0               ......................(5.6)  

Since T2 is also a total derivative of f at a,  

0
lim
t

        

    
    

0
lim
t

                     

    
   0               ......................(5.7) 

Thus,                                             

                           =                                             

                                                                          

Therefore, 
       

    
   

                      

    
   +  

                      

    
 

Since T is a linear transformation, T(th) = tT(h). Therefore,  

 
         

      
   

                      

    
   +  

                      

    
. 

So, using (5.6) and (5.7) , we get 

0  
0

lim
t

  
      

   
   

0
lim
t

                      

    
     

0
lim
t

                      

    
   0 

Since  
      

   
  is independent of t, this means  

      

   
 = 0, which means that        = 0. 



Now, h was any non-zero vector in R
n
. Further, T(0) = 0. Hence we conclude that T(h) = 0 

for all h   R
n
. Thus T = T1 – T2 is the zero linear transformation. Thus, T1 = T2. That is, the 

derivative is unique. 

In the next example we find the derivatives of some standard functions. 

Example 5.3 : i) Find the total derivative f
1
(a), if f : R

n   Rm 
, f(x) = c, where c is a fixed 

vector in R
m

 and  a   Rn
. 

ii) If   f : R
n   Rm

  is a linear transformation, show that Df(a) = f for every a   Rn 
. 

Solution : i) Since f is a constant function, we expect its derivative to be the zero 

transformation.  

Here  f(a + h) – f(a) = c – c = 0. 

If we take T to be the zero transformation, 

0
lim
h

      

   
    

0
lim
h

                   

   
   0. 

Hence f
1
(a) exists and is equal to 0 for every a   R

n
. 

  ii) Since f is a linear transformation, f(a + h) = f(a) + f(h).  If we take T = f, 

r(h) = f(a + h)  f(a)  f(h) = 0     
      

   
       

We have defined the total derivative of a function as a linear transformation. Now we prove a 

result about linear transformations which we may use later. 

Proposition 5.1 : Every linear transformation T from R
n
 to R

m
 is continuous on R

n
. 

Proof : If T is the zero linear transformation, it is clearly continuous. If T   0, let p   R
n
,  

p = (p1, p2, ..., pn), and    . Suppose {e1, e2, ..., en} is the standard basis for R
n
. Choose 

    M, where M =                  ....... +        . 

If x = (x1, x2, ..., xn) is such that          <  , then |xi – pi| <   for i = 1, 2, ..., n. 

Also,          <                  =          

          =                                      

           |       |         +|       |         + ....... +|       |         

          <  (                  +.......+       ) 

          =   

Thus, T is continuous at p. Since p was an arbitrary point of R
n
, we conclude that T is 

continuous on R
n
. 



In fact, since   did not depend on p, we can conclude that T is uniformly continuous on R
n
. 

For functions of a single variable, we know that differentiability implies continuity. The next 

theorem shows that this holds for functions of several variables too. 

Theorem 5.2 : If f : R
n   Rm  

is differentiable at p, then f is continuous at p. 

Proof : Since f is differentiable at p, there exists a linear transformation Tp  such that  

0
lim
h

                  

   
  0.                                                

Thus,                such that  

             
                   

   
 <     

 

Choose               Then 

                                  < (   )          

By Proposition 5.1, Tp is continuous at 0, and Tp(0) = 0. So, there exists       such that  

                        . 

Now choose               Then 

                                                                

                                                            <  
 

 
  

 

 
   . 

Thus,                  , and f is continuous at  p.  

With your knowledge of functions of one variable, you would expect that the converse of 

Theorem 5.2 does not hold. That is, continuity does not imply differentiability. The following 

example shows that it is indeed so. 

Example 5.4 : Consider the function f : R   R2
, f(x) = (|x|, |x|). We shall show that f is 

continuous at 0, but is not differentiable there. 

Given       choose        . Then 

|x| <                                                 . 

Hence, f is continuous at x = 0. 

Now suppose f is differentiable at x = 0. Then there exists a linear transformation  

T : R    R
2
, such that    



0
lim
h

              

 
 = 0     

0
lim
h

              

 
 = 0                                                                                            

                                                     
   

 
                                

Now, (1, 1) and ( −1, −1) are two distinct points in  R
2
, and B((1, 1), 1)   B((−1, −1), 1) =  .          

For   = 1,     > 0, such that                                                                             

              
   

 
                .                                     .............................(5.8) 

Putting h =     in (5.8), we get   
   

 
                              . This means 

T(1)   B((1, 1), 1).                                     

Similarly, taking  h =  −    , we get that T(1)   B((−1, −1), 1).  But this contradicts the fact 

that  B((1, 1), 1) and  B(( −1, − 1), 1) are disjoint.  

Thus, f is not differentiable at x = 0. 

 

If   f : R
n   Rm 

, then, as you know, we can write f = (f1,f2, ...,fm), where each fi  : R
n   R,  

i = 1, 2, ..., m. These fis are called coordinate functions of f. Similarly, a linear transformation 

T : R
n   Rm

 can be written as T = (T1,T2, ...,Tm), where each Ti is a linear transformation 

from R
n
 to R. 

Theorem 5.3 : Let   f = (f1,f2, ...,fm) : R
n   Rm

, and p   R
n
. f is differentiable at p, if and only 

if each fi, 1    m is differentiable at p. 

Proof : f is differentiable at p if and if there exists a linear transformation Tp : R
n   Rm

, such  

that  
0

lim
h

                  

   
 = 0,  that is, if only if                                                                                                                                

0
lim
h

    
                        

   
 = 0, where {e1, e2, ..., em} is the standard basis of R

m
, 

if and only if,     
0

lim
h

                     

   
  = 0,   i,  1    m. 

That is, if and only if each fi is differentiable and Dfi = Ti,     , 1    m. 

Thus, Df(p) = Tp = (Df1(p), Df2(p), ....., Dfm(p)). 

Theorem 5.4 :  Let f : R
n   Rm

 and g : R
n   Rm

 be two functions differentiable at p   R
n
.  If 

k   R, then f + g and  kf are also differentiable at p. Moreover, 

D(f + g)(p) = Df(p) + Dg(p), and  D(kf)(p) = kDf(p). 



Proof : Let  Df(p) = T1, and Dg(p) = T2. Then T1 + T2 is also a linear transformation from R
n
 

to R
m

, and 

0    
0

lim
h

                                

   
 

 = 
0

lim
h

                                          

   
 

    
0

lim
h

                   

   
 + 

0
lim
h

                   

   
 = 0. 

Therefore,  f + g  is differentiable at p, and  D(f + g)(p) = T1 + T2 = Df(p) + Dg(p). 

Now, 
0

lim
h

                      

   
  |k| 

0
lim
h

                   

   
  = 0. 

Therefore, kf  is also differentiable and  D(kf)(p) = kT1 = kDf(p). 

5.3 PARTIAL DERIVATIVES 

We know that the derivative of a function of one variable denotes the rate at which the 

function value changes with change in the domain variable. In the case of functions of several 

variables, change in the domain vector variable means a change in any or all of its 

components. But if we consider change in only one component and study the rate at which 

the function value changes, we get what is known as the partial derivative of the function. 

Corresponding to each component of the variable, there will be a partial derivative. Here is 

the formal definition. 

Definition 5.2  Let f : E   Rm
, where E   Rn

. Let x = (x1, x2, ..., xn) be an interior point of E. 

Then for every i, i = 1, 2, ..., n, the limit 

0
lim
h

                                         

 
, if it exists, is called the ith partial derivative of f 

with respect to xi at x. It is denoted by 
  

   
           . We write 

  

   
    to indicate the point 

at which the partial derivative is calculated. 

Remark 5.2 : i) If a function f has partial derivatives at every point of the set E, we say that f 

has partial derivatives on E. 

ii) It is clear from the definition that a partial derivative can be defined at an interior point of 

E, and not on its boundary. 

iii) If a function has a partial derivative at a point, its value depends on the values of the 

function in a neighbourhood of that point. So, if the function values outside this 

neighbourhood are changed, it does not affect the value of the partial derivative. 

The following examples will make the concept clear. 

Example 5.5 : Find the partial derivative of the function,  f(x, y, z) = xyz + x
2
z. 



Solution :  This is a real-valued function. You are already familiar with the partial 

differentiation of such a function.  

 
  

  
  = 

0
lim
h

                         

 
 = yz + 2xz. Similarly, you can check that fy = xz, and 

fz = xy + x
2
. 

Let us take a vector-valued function in the next example. 

Example 5.6 : Find the partial derivatives of the function, f : R
3   R2

, f(x, y, z) = (xy, z
2
), if 

they exist. 

Solution : 
0

lim
h

                     

 
 = 

0
lim
h

                  

 
 

                 = (
0

lim
h

           

 
 

0
lim
h

   

 
  = (y, 0).  

Therefore, 
  

  
  = (y, 0). 

Proceeding similarly, we find that  
  

  
  = (x, 0), and  

  

  
  = (0, 2z). 

You must have observed that the partial derivatives of a vector function are formed by taking 

the partial derivatives of its coordinate functions. In fact we have the following theorem, 

which establishes the connection between differentiability of a vector-valued function and the 

existence of partial derivatives of its coordinate functions 

 Theorem 5.5 : Let E be an open subset of R
n
, and f : E   Rm

. Suppose f = (f1,f2, ...,fm) is 

differentiable at p   E. Then the partial derivatives  
   

   
 exist for i = 1, 2,  ..., m, j = 1, 2, ..., n. 

Proof : Since f is differentiable at p, there exists a linear transformation T, such that 

0
lim
h

                  

   
  . Let h = tej, where {e1, e2, ...,en} is the standard basis of R

n
. 

Then, h   0  if and only if t   0. Thus, 

 
0

lim
t

                      

   
  . Therefore, 

0
lim
t

             

 
  T(  ). 

That is, 

(
0

lim
t

               

 
 

0
lim
t

               

 
   

0
lim
t

               

 
 ) 

= T(  ).           

Hence the limits exist, and 
   

   
(p) exists for all i = 1, 2, ..., m. 

Since j was arbitrary, we conclude that  
   

   
(p) exists for all i = 1, 2, ..., m, j = 1, 2, ..., n. 

 



If f : E   Rm
, where E is an open subset of R

n
, and if f is differentiable at p   E , then using 

Theorem 5.5, the matrix of the linear transformation T can be written as  

 

 
 
 
 
 
 
 

   
   

   
   
   

     

   
   

   
   
   

    

 

  
   
   

   

  
   
   

   

 
 

   
   

   
   
   

      
   
   

   
 

 
 
 
 
 
 
 

 

This m n matrix is called the Jacobian matrix of f at p, and is denoted by [f’(p)] or [Df(p)]. 

If m = n, the determinant of the Jacobian matrix is called the Jacobian of f at p, and is denoted 

by     
                

             
 .  

Thus, if f is differentiable at p, then the total derivative of f at p, T : R
n   Rm

 is given by the 

Jacobian matrix. For x = (x1, x2, ..., xn)   R
n
,  

T(x) = [f’(p)] 

  
  
  
 
  

 . 

When m = 1, f is a real-valued function, and T(ej) =  
  

   
   . Hence, the Jacobian matrix of T 

is the row matrix, [
  

   
     

  

   
        

  

   
   ]. 

The vector form, (
  

   
    

  

   
      

  

   
   ) is called the gradient of f at p , and is denoted 

by  f(p), or gradf(p). 

If  h = (h1, h2, ..., hn)   R
n
,  

Tp(h) =   [
  

   
     

  

   
        

  

   
   ]  

  
  
  
 

  

 . 

Thus, T(h) =   
  

   
        

  

   
           

  

   
     ,   or Tp(h) =  f(p)  h. 

So, we can say that the total derivative Tp of a real-valued function is given by  

Tp (h) =  f(p) h.  

Example 5.7 : Find the Jacobian matrix of   i)  f(x, y) = (x
2
y, e

xy
)    

  ii)  f(x, y, z) = (xsinz, ye
z
) at (1, 2, 1). 



Solution : i) f1(x, y) = x
2
y,  and  f2(x, y) = e

xy
.  Therefore, 

   

  
 = 2xy, 

   

  
 = x

2
,  

   

  
 = ye

xy
, and  

   

  
 = xe

xy
.  

Hence, [f
i
(x, y)] =  

     

          

   

  
 = sinyz, and 

   

  
  (1, 2, 1) =  sin2 

 
   

  
 (1, 2,  1) =  cos2,   

   

  
 (1, 2,  1) = 2 cos2,    

 
   

  
  (1, 2, 1) = 0,  

   

  
 (1, 2,  1) =  e

-1
,   

   

  
 (1, 2,  1) =  2e

-1
. 

Thus, [f
i
(1, 2,  1)] =  

                  
          

     

 

In the next section we shall consider yet another type of derivative. 

 

5.4 DIRECTIONAL DERIVATIVES 

Partial derivatives measure the rate of change of a function in the directions of the standard 

basis vectors. Directional derivatives measure the rate of change in any given direction. 

Definition 5.3 : Let f : E   R, where E is an open subset of R
n
. Let u be a unit vector in R

n
, 

and p   E. If 
0

lim
t

             

 
 exists, then it is called the directional derivative of f at p in 

the direction u. It is denoted by 
  

  
    or fu(p). 

Example 5.8 : Find the directional derivatives of the following functions: 

i) f(x, y) = 2xy + 3y
2
 at p = (1, 1), in the direction of v = (1, 1). 

ii) f(x, y) = x
2
y  at p = (3, 4), in the direction of v = (1, 1). 

Solution : i)  The unit vector u in the given direction is (
 

  
 
 

  
). Hence the required 

directional derivative is 
0

lim
t

           
 

  
 
 

  
          

 
. 

=  
0

lim
t

     
 

  
      

 

  
          

 
 

=  
0

lim
t

    
 

  
       

 

  
    

 
  =  

0
lim
t

          

 
  = 5  . 

ii)  We have the same unit vector u here. Therefore, 



Duf(p) =  
0

lim
t

     
 

  
      

 

  
          

 
  = 

0
lim
t

   
 

  
 
 
            

 
 = 

    

 
. 

Example 5.9 : Find the directional derivatives, if they exist, in the following cases:                                                         

i) f(x, y) =  
           
           

 ,   at (0, 0),  u = (u1, u2), ||u|| = 1 

 

ii) f(x, y) =    
   

                    

                         
        at (0,0),   u = (1/  , 1/  ). 

 

Solution: i)   if u1   0, u2   0,    
0

lim
t

                           

 
  =  

0
lim
t

     

 
 , which 

does not exist. If either u1 or u2 is zero, we get the standard basis vectors, (1, 0) and (0, 1). 

If u = (1, 0),   
0

lim
t

                     

 
  =        

     

 
  =  1. 

Similarly, if u = (0, 1),  
0

lim
t

                     

 
   = 1. 

Thus, the directional derivatives in these two directions exist, and are equal to one. In any 

other direction, the derivative does not exist. Note that the directional derivative in the 

direction (1, 0) is fx, and that in the direction (0, 1) is fy. Thus, this function has both the 

partial derivatives at (0, 0). 

ii)         

     
 

  
      

 

  
          

 
   = =        

      

  

 
 
  

 

    

 
   = =        

  

      
  = 1/  . 

Thus,   Duf(0, 0) =  1/  . 

In fact, if we take u = (cos , sin ), then we can show that f has directional derivative at (0, 0) 

in the direction of u, whatever be  . That is, the directional derivatives of f at (0, 0) exist in 

all directions. But you can easily show that this function is not continuous at (0, 0) by using 

the two-path test. Recall, that you need to show that the limits of f, at (0, 0) along two 

different paths  are different. Then by Theorem 5.2 we can conclude that f is not 

differentiable at (0, 0). 

This example shows that the existence of all directional derivatives at a point does not 

guarantee differentiability there. But we have the following theorem: 

  

Theorem 5.7: Let f : E   R, where E is an open subset of R
n
. If f is differentiable at p   R

n
, 

then the directional derivatives of f at p exist in all directions. 

Proof : Since f is differentiable at p, there exists a linear transformation, T: R
n
   R, such that  

                
0

lim
h

                  

   
  . 

 
Let u be any unit vector in R

n
, and take h = tu. Then h   0, as t   0. Therefore, 

0
lim
t

                    

   
  .   This means,        



    
0

lim
t

 
                  

   
   .   That is, 

 

0
lim
t

            

 
  T(u),   or,  Duf(p) = T(u).                                    ......................(5.5)  

Since u was an arbitrary unit vector, we conclude that the directional derivatives of f at p 

exist in all directions. 

Now, if  u = (u1, u2, ..., un), T(u) = T( u1e1 +  u2e2 + ... + unen), where {e1, e2, ..., en} is the 

standard basis of R
n
. Therefore, by (5.5), 

T(u) = u1T(e1) + u2T(e2) + ... + unT(en) 

        =  u1    f(p) + u2    f(p) + ... +  un    f(p) 

        =  u1 
     

   
  +  u2 

      

   
  +  ... + un 

     

   
 

            =  f(p)  u     

Thus,   Duf(p) =  f(p)  u                                                                  ........................   (5.6) 

(5.6 ) gives an easy way to find a directional derivative of a differentiable function, if its 

partial derivatives are known. For example, if f(x, y) = x
2
 + y

2
, then fx and fy at (1, 2) are 2 

and 4, respectively. So, the directional derivative of f at (1, 2) in the direction 2i – 3j is given 

by   (2i + 4j)  
     

   
  = 

  

   
. 

This concept of directional derivatives can be extended to vector-valued functions. The 

directional derivative of a vector-valued function is a vector formed by the directional 

derivatives of its coordinate functions. Thus, to find the directional derivative of  

 f(x, y) = (x + y, x
2
), at (1, 2) in the direction of (3, 4) , we first find the directional derivatives 

of f1(x, y) = x + y, and f2(x, y) = x
2
 . You can check that these are 7/5 and 6/5, respectively. 

Therefore, the required directional derivative of f is (7/5, 6/5). 

We have seen in Theorems 5.6 and 5.7, that differentiability of f at a point guarantees the 

existence of partial and directional derivatives there. We have also noted that the converse 

statements are not true. Our next theorem gives us a sufficient condition which guarantees the 

differentiability of a function at a point. 

Theorem 5.8 :    Let E be an open subset of R
n
, and f : E   Rm

, f = (f1,f2, ...,fm). If all the 

partial derivatives, Djfi(x) of all the coordinate functions of f exist  in an open set containing 

a, and if each function Djfi is continuous at a, then f is differentiable at a. 

Proof : In the light of Theorem 5.3, it is enough to  prove this theorem for the case m = 1. So, 

we consider a scalar function f from R
n 

 to R, all whose partial derivatives Djf are continuous 

at a. Since E is open, for a given   > 0, we can find r > 0, such that the open ball,  

B(a, r)   , and || x – a || < r  | Djf(x)  Djf(a) | <  /n, for j = 1, 2, ... , n.      ..................(5.7) 

Now, suppose h = (h1, h2, ... , hn),  ||h|| < r.  Let v0 = 0, v1 = h1e1, v2 = v1 + h2e2, ... ,  

vn = vn – 1 + hnen.    Then  f(a + h) – f(a) =                      
 
   .      ...............(5.8) 



Since ||vj|| < r, vj   B(a, r), and since B(a, r) is convex, the line segment joining the points,  

a+ vj – 1 and a + vj  lies in it, for all j = 1, 2, ... , n. Therefore, we can apply the Mean Value 

Theorem to the j
th

 term in the sum (5.8), and get 

f(a + vj) – f(a + vj − 1) = hjDjf(a + vj – 1 +   hjej) , for some     (0, 1).    Then, using (5.7), we 

can write 

|f(a + h) – f(a)          
 
   (a)| = |        

 
    (a + vj − 1 +   hjej )-         

 
   (a)|    

                                                   
 

 
      

 
           , for all h, such that ||h|| < r. 

This means that   

0
lim
h

                   

   
  0, where    is the linear transformation, whose matrix 

[     ] consists of the row, (D1f(a), D2f(a), ...., Dnf(a)). 

Thus, f is differentiable at a. 

Definition 5.4 : A function f : E   Rm
, f = (f1,f2, ...,fm), where E is an open subset of R

n
, 

is said to be continuously differentiable, or, a C
1
 function, if Djfi  is continuous on E for 

all j, j = 1, 2, ..., n, and for all i, i = 1, 2, ..., m. 

The continuity of partial derivatives assumed in Theorem 5.8, is only a sufficient 

condition, and not a necessary one. That is, there may be functions which are 

differentiable at a point, but do not have continuous partial derivatives there. We now 

give you an example, and ask you to work out the details (See Exercise 3.) 

Example 5.10 : Consider the function f : R
2
→ R given by 

f(x, y) = 

 
 
 

 
  

    
 

 
      

 

 
            

     
 

 
               

     
 

 
               

             

  

This function is differentiable at (0, 0), but neither      
     

 

 
    

 

 
          

        
  , 

nor       
     

 

 
    

 

 
          

        

      is continuous at (0, 0). 

Here are some exercises that you should try. 

Exercises:  

1) Show that the following function is differentiable at all x in R
n
. 

           f : R
n
    ,  f(x) = x   T(x),  where T : R

n
   Rn

  is a linear transformation. 



2) Let f(x, y) = (x
3
 + x, x

2
 – y

2
, 2x + 3y

3
),  p = (2, 1), v = (4, 5). Compute the partial 

derivatives of f, and the directional derivative of f in the direction v, at p.  

3) Prove the assertions in Example 5.10. (Hint : To show that f is differentiable, check 

that f(h, k)  - f(0, 0) – h(hsin
 

 
) + k(ksin

 

 
) = 0, and so, Df = (hsin

 

 
, ksin

 

 
) ). 

 

5.5 SUMMARY 

In this unit we have extended the concept of differentiation from functions of one variable 

to functions of several variables. Apart from the total derivatives, we have also defined 

partial derivatives, and directional derivatives. We have proved that differentiability 

implies the existence of all partial and directional derivatives at a point, but the converse 

is not true. As in the case of functions of one variable, we prove that differentiable 

functions are continuous, but not vice versa. We have also derived a sufficient condition 

for differentiability in terms of the partial derivatives.  
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6.0 OBJECTIVES 

After reading this chapter, you should be able to  

 differentiate a composite of two vector-valued functions 

 define and calculate derivatives of higher order 

 derive the conditions for the equality of mixed partial derivatives 

 state and prove the Mean Value Theorem 

6.1 INTRODUCTION                                                                                                                                                       

In the last chapter you have seen how functions of several variables are differentiated. Now 

we shall start by discussing how a composite function of two differentiable functions can be 

differentiated. The Jacobian matrix introduced in the last chapter proves useful in this.  

One of the important applications of derivatives is the location of extreme points of a 

function. In the next chapter we are going to see how this concept can be extended to scalar 

functions of several variables. But we shall do the necessary spade-work in this chapter. So, 

we shall introduce higher order derivatives. We shall also study the conditions under which 

mixed partial derivatives are equal. You may recall that the Mean Value Theorem was one of 

the most important theorems that you studied in Calculus in F. Y. B. Sc. We shall see 

whether this theorem can be applied to functions of several variables. 

6.2  JACOBIAN MATRIX AND CHAIN RULE                           



 
 

We have seen in Theorem 5.5, that if f: R
n
   R

m
, is differentiable at p, then all partial 

derivatives of all coordinate functions of f exist at p. That is, if f = (f1, f2, ... , fm), then Djfi(p) 

exists for all i = 1, 2, ..., m and all j = 1, 2, ..., n. We have also seen that if {e1, e2, ..., en} is the 

standard basis for R
n
, then   

  (p)(ej) = (Djf1(p), Djf2(p), ..., Djfm(p)). 

If  h =      
 
     is a vector in R

n
, then 

  (p)(h) =     
        

 
          (p), which is a linear transformation from R

n
 to R

m
, thus has 

the matrix,   
, 

 

 
 
 

                
               

 

         
         

 
 

                         

 
 
 

 

 

  As we have already mentioned in Chapter 5, this m  n matrix, called the Jacobian matrix, is 

denoted by [Df(p)]. The k
th
 row of this matrix is the gradient vector,  fk(p),  and the j

th
 

column is the image of ej under the linear transformation Djf(p). 

Thus, the Jacobian matrix of f is formed by all first order partial derivatives of f. This means, 

we can write the Jacobian matrix of any function, all of whose partial derivatives exist. As we 

have noted earlier, the existence of partial derivatives does not guarantee differentiability. So, 

even when a function is not differentiable we would be able to write its Jacobian matrix, 

provided all its partial derivatives exist.  

If f : R
n   R, then its Jacobian matrix, if it exists, will be a 1 x n matrix, or a matrix vector.  

If  f : R
n   R

m
  is differentiable at p   Rn

, and if h is any vector in R
n
, then  

  (p)(h) = [Df(p)]h  is obtained by multiplying the m  n matrix [Df(p)] with the n  1 

column matrix h. Thus, 

||  (p)(h)|| = ||           
 
      ||               

 
      || =            

 
   |, 

since 

 || ej || = 1,  1     n. 

Cauchy-Schwartz inequality for inner products says that | u   v |   || u || || v||. Using this we  

get   ||  (p)(h)||                      
 
     =  || h ||             

 
   . 

If we take M =             
 
   , then   

||  (p)(h)||     M || h ||.                                                                               .........................(6.1)    



 
 

We have seen in Theorem 5.4 how to get the derivative of the sum of two differentiable 

functions, and also that of a scalar multiple of a differentiable function. The next theorem, 

which is known as the chain rule, tells us how to get the total derivative of a composite of two 

functions. 

Theorem 6.1 (Chain Rule) : Let f and g be two differentiable functions, such that the 

composite function f   g is defined in a neighbourhood of a point a   Rn
. Suppose g is 

differentiable at a, g(a) = p, and f is differentiable at p. Then f   g is differentiable at a, and  

         (a) =   (p)    (a) = [Df(p)] [Dg(a)]. 

Proof : If h is such that || h || is small, then a + h will belong to the above neighbourhood of 

a, in which f   g is defined. Now, since g is differentiable at a,  

k = g(a + h) – g(a) =   (a)(h) + || h || Ea(h),                                                      ............(6.2) 

where  Ea(h)   0, as h   0. 

f is differentiable at p = g(a), and therefore,  

f(g(a + h)) – f(g(a)) = f(p + k) – f(p) =   (p)(k) + || k || Ep(k),   where   Ep(k)   0, as k   0. 

                                 =   (g(a))[ g(a + h) – g(a)] + || k || Ep(k) 

                                 =   (g(a))[   (a)(h) + || h || Ea(h)]  + || k || Ep(k), using (6.2). 

                                 =   (g(a))   (a)(h) +   (g(a)) [|| h || Ea(h)] + || k || Ep(k),   since 

  (g(a)) is a linear transformation. Thus, we can write 

f(g(a + h)) – f(g(a)) =   (g(a))   (a)(h) + || h ||[   (g(a)) Ea(h) + 
     

     
 Ep(k)], if h   0. ..(6.3) 

To complete the proof we need to show that the vector in the square brackets in (6.3) tends to 

zero, as h tends to zero. 

We know that Ea(h)   0, as h   0.             ..............(*) 

|| k || = || g(a + h) – g(a) ||   ||   (a)(h) || + || h || || Ea(h) ||, using (6.2). 

If M =             
 
   , then using (6.1), we can write ||   (a)(h) ||   M || h ||. Thus, 

|| k ||    M || h || + || h || || Ea(h) || = || h || (M + || Ea(h) ||). Therefore,  

     

     
  M + || Ea(h) ||. This means that 

     

     
  is bounded. Thus, 

     

     
        0,  as  h   0,  since h   0               .      ....(**) 

Using (*) and (**), we can say that the term in the square brackets in (6.3) tends to zero as 



 
 

 h   0. Therefore,  

           –                          

     
   0 as h   0.  

This shows that f   g is differentiable at a, and          (a) =   (g(a))    (a). 

The Chain Rule can be written in terms of Jacobian matrices as follows: 

D(f   g) (a) = [D(f(g(a)))] [D(g(a))]. 

Here the product on the right hand side is matrix multiplication. If y = g(x), and z = f(y), 

comparing the entries in the matrices in (6.3), we get 

   

   
 =  

   

   

   

   

 
   ,      where   

   

   
 = Dk(f   g)i ,  

   

   
 = Dj(f )i , and 

   

   
 = Dk(g)j . 

Example 6.1 : Write the matrices for   ,    and        for the following functions, and 

evaluate them at the point (2, 5). f(x, y) = (x + y, x
2
 + y

2
, 2x + 3y), g(u, v) = (x, y) = (u

2
, v

3
). 

Solution : Here f1(x, y) = x + y, f2(x, y) = x
2
 + y

2
, f3(x, y) = 2x + 3y,  

g1(u, v) = u
2
 and g2(u, v) = v

3
. This means, D(f) =  

  
    
  

 , and D(g) =  
   
     . 

   ) (u,v) = (u
2
 + v

3
, u

4
 + v

6
, 2u

2
 + 3v

3
). Hence, 

D   ) =  
     

      

     

 .  

At (u, v) = (2, 5),  (x, y) = (4, 125). Therefore, 

, D(f)(4, 125) =  
  
    
  

 ,   D(g)(2, 5) =  
  
   

 , and   D   )(2, 5) =  
   
       
    

 . 

You can now easily verify that D(f   g) (2, 5) = [D(f(4, 125)] [D(g(2, 5))]. 

6.3  HIGHER ORDER PARTIAL DERIVATIVES                           

You are familiar with the concept of partial derivatives. In the last chapter we have calculated 

the partial derivatives of some functions of n variables. If you take a look at those examples, 

you will realise that the partial derivatives are themselves functions of n variables. So, we can 

talk about their partial derivatives. These, if they exist, will be the second order partial 

derivatives of the original function. If we differentiate these again, we will get the third order 

partial derivatives of the original function, and so on. We take a simple example to illustrate.   

Example 6.2 : Find partial derivatives of all possible orders for the function, 



 
 

f(x, y, z) = (x
2
y

2
, 3xy

3
z, xz

3
). 

Solution : Since f is a polynomial function, we do not have to worry about the existence of 

partial derivatives. We get 

fx = (2xy
2
, 3y

3
z, z

3
),     fy = (2x

2
y, 9xy

2
z, 0),   fz = (0, 3xy

3
, 3xz

2
). 

Then,  fxx = 
   

     (2y
2
, 0, 0),   fxy = 

 

  
 
  

  
  = 

   

    
 = (4xy, 9y

2
z, 0),  fxz = (0, 3y

3
, 3z

2
).  

Differentiating fy, we get fyx = (4xy, 9y
2
, 0),   fyy = (2x

2
, 18xyz, 0), and fyz = (0, 9xy

2
, 0). 

Then differentiating fz we get fzx = (0, 3y
3
, 3z

2
),  fzy = (0, 9xy

2
, 0), and   fzz = (0, 0, 6xz). 

These are all possible second order derivatives of f. Proceeding in this way, we can also get 

fxyz = (0, 9y
2
, 0),   fyxz = (0, 0, 0),   fzzz = (0, 0, 6x), and so on. There will be 27 third order 

partial derivatives of f. See if you can get the remaining. 

You know that fxy and fyx   differ in the order in which f is differentiated with respect to the 

variables x and y. These two derivatives have come out to be equal in Example 6.2. But you 

may have seen examples of scalar functions of several variables, for which the two may not 

be the same. Here is an example, to jog your memory. 

Example 6.3 : Consider this function f from R
2
 to R,  f(x, y) = 

         

     
  for (x, y)   (0, 0), 

and f(0, 0) = 0. You can easily check that  

fx(0, 0) = 0, fy(0, 0) = 0, fx(0, k) = 
0

lim
h

             

 
 =  k,  

fy(h, 0) = 
0

lim
k

             

 
 = h. 

Then, fxy(0, 0) = 
0

lim
k

               

 
 = 

0
lim
k

     

 
 =  1, and similarly, fyx(0, 0) = 1. 

Thus, the mixed partial derivatives of this function both exist, but are not equal.  

Remark 6.1 : If f is a function from R
n
 to R, the partial derivative of f with respect to the ith 

variable, xi, is denoted by Dif, and the partial derivative of Dif with respect to xj , that is, 

Dj(Dif)  is denoted  by Djif. 

The following theorem gives a sufficient condition for the two mixed partial derivatives of a 

function to be equal. Since the behaviour of a vector-valued function is decided by the 

behaviour of its coordinate functions, it is enough to derive this sufficient condition for a 

scalar function. Without loss of generality, we state the theorem for a function of two 

variables. 



 
 

Theorem 6.2 : Let f : R
2
   R, such that the partial derivatives, D1f, D2f, D12f and D21f exist 

on an open set S in R
2
. If (a, b)   S, and D12f and D21f are both continuous at (a, b), then 

D12f(a, b) = D21f(a, b). 

Proof :   We choose positive real numbers, h and k, which are small enough so that the 

rectangle with vertices (a, b), (a + h, b), (a, b + k), (a + h, b + k) lies within S. 

Now we consider a function  

 (h, k) = [f(a + h, b + k) – f(a + h, b)] – [f(a, b + k) – f(a, b)]. 

We also define a function G on [a, a + h],  G(x) = f(x, b + k) – f(x, b).  

Now we can write  (h, k) = G(a + h) – G(a). Since G is defined in terms of f, and since f has 

all the necessary properties, G is continuous on [a, a + h], and is differentiable in (a, a + h). 

So, we apply the Mean Value Theorem for functions of a single variable to G, and get 

G(a + h) – G(a) = h  (c), for some c   (a, a + h). Now   (x) = D1f(x, b + k) – D1f(x, b). So, 

we write    (h, k) = G(a + h) – G(a) = h[D1f(c, b + k) – D1f(c, b)]. 

Now D1f (c, y) is a differentiable function of one variable with derivative equal to D21f. So 

applying MVT to D1f(c, y) on the interval [b, b + k], we get   

    (h, k) = h[D1f(c, b + k) – D1f(c, b)] = hkD21f(c, d),                          ..........................(6.4) 

 for some d   (b, b + k). 

We now write  (h, k) = [f(a + h, b + k) – f(a, b + k)] – [f(a + h, b) – f(a, b)], and define 

H(y) = f(a + h, y) – f(a, y),  so that    (h, k) = H(b + k) – H(b). Using the same arguments 

that we used for G, we apply MVT to H, and then to D2f(x, p), we get 

 (h, k) = k[D2f(a + h, p) – D2f(a, p)] = khD12f(q, p),                           ............................(6.5) 

for some p   (b, b + k), and q   (a, a + h).                           

From (6.4) and (6.5) we get D21f(c, d) = D12f(q, p). Since D12f and D21f are continuous, taking 

the limit as (h, k)   (0,0), we get D12f(a, b) = D21f(a, b). 

As we have mentioned earlier, the conditions of this theorem are sufficient, and not 

necessary. In fact, the continuity of just one of the mixed partial derivatives is also sufficient 

to guarantee equality. Functions whose partial derivatives are continuous play an important 

role in Calculus. We classify these functions as follows: 

Definition 6.1 : A function f from R
n
 to R

m
 is said to be continuously differentiable, or 

belong to class C
1
, if all its partial derivatives  Dif are continuous. It is said to belong to class 

C
’’
, if all its second order partial derivatives are continuous, and so on. If all its partial 

derivatives of all orders are continuous, then it is said to belong to class   . 



 
 

We have proved that a function in class C
1
 is differentiable in Theorem 5.8. In Theorem 6.2 

we have seen that the mixed partial derivatives of a function belonging to class C
’’ 

are equal. 

In the next chapter we shall see that a C
k
 function, that is a function, all whose partial 

derivatives of order up to k are continuous, can be approximated by means of a polynomial of 

order k. We shall also discuss the technique to
 
find

 
the maximum and minimum values of a 

function belonging to class C
’’
.   

6.4  MEAN VALUE THEOREM                           

The Mean Value Theorem (MVT) is an important theorem in Calculus. It is used as a tool to 

derive many other results. In the last section we have used it in the proof of Theorem 6.2. In 

this section we shall see if it also holds good for functions of several variables. But first, let 

us recall the one-variable case. 

MVT (single variable): If f : [a, b]   R is continuous on [a, b], and differentiable on (a, b), 

then there exists c   (a, b), such that  

f(b) – f(a) =   (b - a)   (c). 

If we write b = a + h, then there exists          , such that  

f(a + h) – f(a) = h         .  

Unfortunately, it is not possible to extend this theorem to a function f : R
n
   R

m
, when  

m > 1. This will be quite clear from the following example. 

Example 6.4 : Consider f : [0, 2 ]   R
2
, f(t) = (cost, sint). This function is continuous on  

 [0, 2 ] and differentiable on (0, 2 ). Now, f(2 ) – f(0) = (1, 0) – (1, 0) = (0, 0). 

  (t) = ( − sint, cost). For the extension of MVT to hold, we must have  

f(2 ) – f(0) = 2   (c) for some c in (0, 2 ). So, we should have (0, 0) = 2 (  sinc, cosc). 

But this is impossible, since sinc and cosc both cannot be zero. 

So, the extension of MVT in its stated form does not hold. But there is a way around this 

difficulty. A slightly modified version of MVT does hold true for all functions of several 

variables. We now state and prove this modified theorem for functions from R
n
 to R

m
. As a 

special case of this theorem you will realize that MVT holds for real-valued functions of 

several variables.  

Theorem 6.3 : (Mean Value Theorem)  Let f : S   R
m

, where S is an open subset of R
n
. 

Suppose f is differentiable on S. Let x and y be two points in S, such that the line segment 

joining x and y, L(x, y) = {tx + (1  t)y | 0      1}, also lies in S. Then for every a   R
m

, 

there is a point z   S, such that  



 
 

a   {f(y) – f(x)} =  a  {  (z)(y  x)}                                                  ................................(6.6) 

Before we start the proof, let us understand the geometry involved. Let u = y – x. Then x + tu 

gives us a point on the line segment L(x, y), if  0      1. Since S is open, we can find a 

   > 0, such that                     S, and                    S. See Fig. 6.1, in which we show the situation  

when n = 2. The point p is on the extension of L(x, y) and is equal to x + (1 +  )u. Similarly 

the point q is also on the extension of L(x, y), and is equal to  x –  u for some   > 0. 

 

     p 

                                                                        

                                                               

 

 

 

Figure 6.1  

Thus we get a   > 0, such that x + tu   S for every t          . Now we start the formal 

proof. 

Proof : Let a   R
n
. We define a function F :            R, F(t) = a   f(x + tu). This F is 

a differentiable function on         , and                    

  (t) = a                , using chain rule.                                                                                                                                                                                                                                        

  (Recall, that           is a linear transformation.)                                                                                                 

Thus, we can apply MVT for functions of a single variable, and get 

F(1) – F(0) =   ( ), for some        .                           ............................(6.7) 

Now, F(1) = a  f(x + u) = a   f(y),   F(0) = a   f(x), and   

   ( ) = a                 = a              , where z  =         L(x, y). 

Therefore, from (6.7) we get   a   {f(y) – f(x)} = a               for some z   S. 

Remark 6.2 :  i) (6.6) is true for all x, y in S, such that the line segment joining x and y is also 

in S. This means, if S is a convex open set in R
n
, then (6.6) will be true for all x, y in S. 

                      ii) If f is a real-valued function, then m = 1, and a   R. Then for a = 1 we have 

     1 . {f(y) – f(x)} = 1 .              =  f(z)  (y- x),  for some z   S. 

p 

q 

Y 

X 
S 



 
 

So, the MVT for functions of a single variable extends directly to real-valued functions of 

several variables. We can also directly prove MVT for scalar functions. The proof runs 

exactly similar to that of Theorem 6.3, if we put a = 1. 

The MVT has a well-known consequence, which we now state: 

Theorem 6.4 :  Let f : S   R
m

, where S is an open  connected subset of R
n
. Suppose f is 

differentiable on S, and        = 0 for every p   S. Then f is a constant function on S. 

Proof : The set S is polygonally connected, since it is open and connected.  Let x and y be 

two points in S. Then x and y are joined by line segments L1, L2, L3, ... , Lr, lying entirely in 

S. Suppose Li is a line segment joining pi and pi+1, 1      r, p1 = x, and pr+1 = y.   

 Let a   R
m

. Then using Theorem 6.3, we have 

a   {f(pi+1) – f(pi)} = a                   ,  zi   Li 

                                = 0, since        = 0. 

This means, 

 a   {f(y) – f(x)}= a   {f(pr+1) – f(p1)} =    
   a   {f(pi+1) – f(pi)} = 0.   ..................(6.8) 

(6.8) is true for every a in R
m

. So, in particular, it is true for f(y) – f(x). Thus, 

{f(y) – f(x)}  {f(y) – f(x)} = ||f(y) – f(x)||
2
 = 0. 

So,  f(y) – f(x) = 0, or  f(y) = f(x).  

Since x and y were any arbitrary points in S, we have thus proved that f is a constant function 

on S.     

Try a few exercises now. 

Exercises : 

1) Find the partial derivatives, D1f, D2f, D12f and D21f  at (0, 0) , if they exist, for the 

following function f from R
2
 to R.   

f(x, y) =  y 
     

      , if (x, y)   (0, 0), and f(0, 0) = 0. 

2) If u(x, y) = x +y
2
, x(t) = 3t

2
 + 4, and y(t) = sin2t, find   (t) and    (t). 

3) If  u(x, y) = x – 2y + 3, x = r + s + t,  y = rs + t
2
,  find ur, us and ut at (1, 2, 4).  

4) Let  f : R
2
   R

2
, and  g : R

3
   R

2
 be two vector functions, defined as: 

               f(x, y) = (sin(2x + y), cos(x + 2y)), 

               g(r, s, t) = (2r – s – 3t, r
2
 – 3st). 

i) Write the Jacobian matrices for f and g. If  h is the composite function, f g, 

compute the Jacobian matrix of h at the point (1, 0, - 2). 

5) If f  is a function from R
2
 to R, and D1f = 0 at all points, show that f is independent of 

the first variable. If D1f = D2f = 0 at all points, show that f is a constant function. 



 
 

6.5 SUMMARY                                                                                                             

In this chapter we have derived the chain rule for differentiation of composite of two 

functions. We have also seen that the Jacobian matrix for the composite function is the 

product of the Jacobian matrices of the two given functions. We have defined higher order 

partial derivatives of functions of several variables. We have seen functions, whose second 

order mixed partial derivatives depend on the order of the variables with respect to which the 

function is differentiated. On the other hand, we have derived sufficient conditions for such 

mixed partial derivatives to be equal. Finally, through an example we have seen that the 

Mean Value Theorem cannot be extended to all vector functions. We have proved a restricted 

form of the MVT for vector functions. Of course, MVT does extend to scalar-valued 

functions of several variables. As a result of MVT we have proved that a function defined on 

an open connected set is constant, if its derivative is uniformly zero over its domain. 
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7.0 OBJECTIVES 

After reading this chapter, you should be able to  

 state Taylor’s theorem for real-valued functions of several variables 

 obtain Taylor’s expansions for some simple functions  

 define,  locate and classify extreme points of a function of several variables 

 obtain the extreme values of a function of n variables, subject to some constraints 

7.1 INTRODUCTION                                                                                                                                                       

In the two previous chapters we have discussed differentiation of scalar and vector functions 

of several variables. Now we shall tell you about some applications of derivatives. In your 

study of functions of one variable you have seen that a major application of the concept of 

derivatives is the location of maxima and minima of a function. This knowledge is very 

crucial for curve tracing. Here we shall see how the derivatives help us in locating the 

extreme values of a real-valued function of several variables. But before we do that, we are 

going to discuss Taylor’s theorem and Taylor’s expansions, which help us approximate a 

function with the help of polynomials. This knowledge will help us derive some tests for 

locating and classifying the extreme points of a function. 

7.2 TAYLOR’S THEOREM                                                                                                                                                       

It will be useful to recall Taylor’s theorem for functions of one variable, which you have 

studied in F. Y. B. Sc. Here we shall also give you the proof of this theorem. Our method of 

proof involves the use of Rolle’s theorem. You have studied this theorem too in F. Y. We 

now state Rolle’s theorem, and then move on to Taylor’s theorem. 

Theorem 7.1 (Rolle’s Theorem): If f: [a, b]   R is continuous on [a, b], differentiable on  



(a, b), and f(a) = f(b), then there exists c   (a, b), such that   (c) = 0.  

Theorem 7.2 (Taylor’s theorem for real functions of one variable): Let f be a real-valued 

function defined on the open interval (p, q). Suppose f has derivatives of all orders up to and 

including n +1 in (p, q). Let a be any point in (p, q). Then for any x   (p, q),  

f(x) = f(a) +
!1

ax 
  (a) +

!2

)( 2ax 
   (a) + ... +

!

)(

n

ax n
    (a) +

)!1(

)( 1



 

n

ax n

      (c),...(7.1) 

 where c   (a, b).  

Proof: We now define a new function g on [a, x], or [x, a], according as a < x, or x < a, by 

g(y) = f(y) +
!1

)( yx 
  (y) +

!2

)( 2yx 
   (y) + ... +

!

)(

n

yx n
    (y) +         A,   ....(7.2) 

where  A is a constant, chosen so as to satisfy  g(x) = g(a). We can easily write the expression 

for A by using this condition. We leave this to you as an exercise. See Exercise 1).  

Using the properties of f, we can see that g satisfies all the conditions of Rolle’s  theorem on 

its domain. Thus, we can conclude that there exists a point c   (a, x), (or (x, a)) such that 

  (c) = 0. Now, differentiating (7.2), we see that 

  (y) =   (y) −   (y) + (x − y)    (y) − (x − y)    (y) + 
!2

)( 2yx 
    (y) − ... −

)!1(

)( )1(



 

n

yx n

 

    (y) + 
!

)(

n

yx n
      (y) – (n + 1)      A. 

=        [ 
!

)()1(

n

yf n

   (n + 1)A]. 

Hence,    (c) =       [  
!

)()1(

n

cf n

 − (n + 1)A] = 0.  

This means that A = 
!

)()1(

n

cf n

 

Substituting this value of A in (7.2), we get  

f(x) = g(x) =  

g(a) = f(a)+
!1

ax 
  (a) +

!2

)( 2ax 
   (a) + ... +

!

)(

n

ax n
    (a) +

)!1(

)( 1



 

n

ax n

      (c),     

 thus proving the theorem. 



Remark 7.1 : If the function in Theorem 7.2 has derivatives of all orders in (p, q), then we 

can write a Taylor expansion as in (7.1) for any n   N. Further, if all the derivatives of all 

orders are bounded by a positive number M, that is, if  
   

   
  < M for all n, and at all points in 

(p, q), then   
        

      
             

        

      
    0 as n     for every x in some interval  

{x: |x – a| < R}. Therefore, in this case we can write  

f(x) = f(a) +
!1

ax 
  (a) +

!2

)( 2ax 
   (a) + ... +

!

)(

n

ax n
    (a) +

)!1(

)( 1



 

n

ax n

      (c),...(7.3) 

The infinite series in (7.3) is convergent under the given conditions, and is called the Taylor 

series of f about a. 

Now, (7.1) can be written as  f(x) = Pn(x) + Rn(x), where 

Pn(x) =  f(a) +
!1

ax 
  (a) +

!2

)( 2ax 
   (a) + ... +

!

)(

n

ax n
    (a)  is called the n

th
 Taylor 

polynomial of f about a, and  Rn(x) =  
)!1(

)( 1



 

n

ax n

      (c),    is called the remainder. 

We now state Taylor’s theorem for functions of two variables, and then find Taylor 

expansions of some functions. 

Theorem 7.3 (Taylor’s theorem for f: R
2
   R): Let f be a real-valued  C

n+1
 function on an 

open convex set E   R
2
. Let (a, b)   E. Then for any (x, y)   E, 

f(x, y) = f(a, b) + (h
 

  
  

 

  
)f(a, b) + 

 

  
  

 

  
  

 

  
 

 

f(a, b) + ... + 
 

  
  

 

  
  

 

  
 

 

f(a, b) 

+  
 

      
  

 

  
  

 

  
 

   

f(c, d),                                                     ..................................(7.4) 

where h = x – a, k = y – b, and (c, d) is some point on the line segment joining (a, b)  

and (x, y). 

We are not going to prove this theorem. But, note the following points: 

1. Recall that f is C
n+1

  means f has continuous partial derivatives of all orders   n + 1. 

This ensures that all the relevant mixed partial derivatives are equal. 

2. E is convex. This guarantees that the line segment joining any two points of E, lies in 

E, the domain of f. 

Pn(x, y) = f(a, b)+ (h
 

  
  

 

  
)f(a, b) + 

 

  
  

 

  
  

 

  
 

 

f(a, b) + ... + 
 

  
  

 

  
  

 

  
 

 

f(a, b)  

where h = x - a, and k = y – b, is called the n
th

 Taylor polynomial, and  

Rn(x, y) = 
 

      
  

 

  
  

 

  
 

   

f(c, d)  is called the remainder of order n.      



Let us use this theorem to get the expansions of some functions. 

Example 7.1: Find the Taylor expansions of the following functions about the given points 

up to the third order. 

i) f(x, y) = x
3
 + 2xy

2
 – 3xy + 4x + 5,    (a, b) = (1, 2) 

ii) f(x, y) = sin(2x + 3y)        (a, b) = (0, 0).  

Solution: i) Since f(x,y) = x
3
 + 2xy

2
 – 3xy + 4x + 5 is a polynomial, it has partial derivatives 

of all orders. Further, its partial derivatives of order > 3 are all zero. In fact,  

fx = 3x
2
 + 2y

2
 – 3y + 4, fy = 4xy – 3x,  fxx = 6x,  fxy = 4y – 3,  fyy = 4x,  fxxx = 6,  fxxy = 0,  

 fxyy = 4,  fyyy = 0, and all higher partial derivatives are zero. Calculating all these partial 

derivatives at (1, 2), we write 

f(1 + h, 2 + k) = 12 + 9h + 5k + 
 

  
(6h

2
 + 10hk + 4k

2
) + 

 

  
(6h

3
 + 12hk

2
) + R3 . 

Now, R3 involves all fourth order derivatives, and therefore is zero. Hence, 

 f(1 + h, 2 + k) = 12 + 9h + 5k + 
 

  
(6h

2
 + 10hk + 4k

2
) + 

 

  
(6h

3
 + 12hk

2
) . 

ii) f(x, y) = sin(2x + 3y)  also has derivatives of all orders.  

fx = 2cos(2x + 3y) = 2 at (0, 0),  fy = 3cos(2x + 3y) = 3 at (0, 0), 

fxx =  4sin(2x + 3y), fxy =  6sin(2x + 3y),  fyy =  9sin(2x + 3y). These second 

order derivatives are all zero at (0, 0). 

fxxx =  8cos(2x + 3y), fxxy =  12cos(2x + 3y), fxyy =  18cos(2x + 3y),  

fyyy =  27cos(2x + 3y). 

 These are, respectively,  8,  12,  18, and – 27 at (0, 0). Thus,  

f(h, k) =  0 + (2h + 3k) + 
 

  
.0 + 

 

  
( 8h

3
 – 3.12h

2
k – 3.18hk

2
 – 27h

3
) + R3,  where 

R3 = 
 

  
(h

 

  
  

 

  
)

4
sin(2c + 3d), where (c, d) is some point on the line segment joining (0, 0) 

and (h, k). 

We are now going to state Taylor’s theorem for real-valued functions of n variables. For this, 

let us first take a close look at the Taylor expansion of a function of two variables. 

 If we write (x, y) as (a + h, b + k), we get 

f(a + h, b + k) =  f(a, b) + (h
 

  
  

 

  
)f(a, b) + 

 

  
  

 

  
  

 

  
 

 

f(a, b) + ... + 
 

  
  

 

  
 

 
 

  
 

 
f(a, b) +  

 

      
  

 

  
  

 

  
 

   

f(c, d),                                                      

If we take the variables to x1, x2, instead of x and y, take (a, b) to be (a1, a2), and (h, k) to be 
 



  f(a1 + h, a2 + h2) =  f(a1, a2) + (  
 

   
   

 

   
)f(a1, a2) + 

 

  
   

 

   
   

 

   
 

 

f(a1, a2) + ... 

+ 
 

  
   

 

   
   

 

   
 

 

f(a1, a2) +  
 

      
   

 

   
   

 

   
 

 

f(c, d), 

 =  
 

  
   

 

   
   

 

   
 

 
 
   f(a1, a2) + Rn(c, d), 

 =  
 

  
         

 
   f(a1, a2)      ...    

 + Rn(c, d), 

where            
 = 

  

    
    

     

   ,  and        ... ,    = 1 or 2, and the sum is taken over all 

ordered k-tuples (       ... ,   ).  For example,  

                         = D11f(a1, a2)h1
2
 + D12f(a1, a2)h1h2 + D21f(a1, a2)h2h1 + D22f(a1, 

a2)h2
2
  

                                       =     
   

   
       

  

      
   

   

   
  )f(a1, a2) .  

Similarly,                                    

                            = D111f(a1, a2)h1
3
 + D112f(a1, a2)h1

2
 h2 + D121 f(a1, a2)h1 h2 h1 + 

D211 f(a1, a2)h2 h1
2
 + D122 f(a1, a2)h1h2

2
 + D212f(a1, a2)h2 h1 h2 + D221f(a1, a2)h2

2
 h1  

+ D222f(a1, a2)h2
3
     

  =     
   

   
     

   
  

   
    

      
   

      
    

   

   
  )f(a1, a2) . 

You must have noticed that we have added the mixed partial derivative terms, for example, 

D12f and D21f, or  D112f , D121f, and D211f. We could do this, since f      ensures that that 

these partial derivatives are equal. Now we state Taylor’s theorem for real-valued functions 

of several variables. 

Theorem 7.4 : Let f : E
 
   

R, where E is a convex open subset of R
n
. Further, let 

 a = (a1, a2, ..., an)   E, h = (h1, h2, ..., hn)   R
n
, such that  a + h   D. If  f   C

m
, then  

f(a + h) =  
 

  
         

   
   f(a)      ...    

 + Rm-1(c),                             ......................(7.5) 

where         ... ,     take values from the set {1, 2, ..., n}, and the inner summation in (7.5) is 

taken over all possible such k-tuples. 

Further, the remainder Rm-1(c) =  
 

  
         f(c)          .  This sum is taken over all 

possible m-tuples (i1, i2, ..., im), where i1, i2, ..., im take values from {1, 2, ..., n},and c is some 

point on the line segment joining a and a + h. 



This theorem is used to approximate a given function by a polynomial. In the next section we 

shall use it to derive conditions for locating and classifying extreme points of a function. 

Exercises: 1) Write the expression for A appearing in Theorem 7.2. 

7.3 MAXIMA AND MINIMA                                                                                                                                                      

One of the most interesting and well-known applications of Calculus is the location and 

classification of extreme points of a function. You have solved many such problems 

involving functions of one or two variables. We shall now extend the definitions of maxima 

and minima to functions of n variables, and derive suitable tests for their location. 

Definition 7.1 : Let f : R
n
   R. A point a   R

n
 is said to be a local maximum (or relative 

maximum) if there exists a neighbourhood N of a, such that f(x)   f(a) for every x   N.   

f(a) is then called the local or relative maximum value. 

A local minimum (or relative minimum) is defined in a similar manner. You will agree that   

the function f : R
5
   R,   f(x1, x2, x3, x4, x5) = x1

2
 + x2

2
 + x3

2
 + x4

2
 + x5

2
,  clearly has a local 

minimum at (0, 0, 0, 0, 0).
 
Can you find an example of a function with a local maximum? 

Definition 7.2 : A point a   R
n
 is called a saddle point of a function f : R

n
   R, if every ball 

B(a, r), r > 0, contains points x, such that f(x)   f(a), and also other points y, such that f(y)   

f(a). 

 In general, it is not easy to spot the local maximum or local minimum merely by observation. 

For differentiable functions we can derive tests to locate these values. You know that in the 

case of a differentiable function of a single variable, the derivative vanishes at an extreme 

point. We have a very similar test for the location of extreme points of a function of n 

variables, as you can see in the next theorem. 

Theorem 7.5 : If  f : R
n
   R  has a local maximum at  a   R

n
,   then    i = 1, 2, ..., n,  

  

   
(a), if it exists, is equal to zero. 

Proof : Since f has a local maximum at a,   r > 0, such that  x    B(a, r)   f(x)   f(a).  

For   i = 1, 2, ..., n,  consider a function  gi : (ai – r, ai + r)    R,   such that  

gi(x) = f(a1, a2, ..., ai – 1, x, ai+1, ..., an).  Since f(a) is the local maximum value of f, gi(ai) is the 

maximum value of gi.  If   
  

   
(a) exists, then   

 (ai)   also exists, and the two are equal. By 

applying the first derivative test for functions of one variable to gi, we get 

  

   
(a) =   

 (ai)   = 0. 



An exactly similar proof will help us conclude that 
  

   
(a), if it exists, is equal to zero, even 

when a is a local minimum of f. 

Thus, if f has a local extremum at a, and all the partial derivatives exist at a, then   f(a) = 0. 

As in the case of functions of one variable, the condition in theorem 7.5 is a necessary one, 

and is not sufficient. That is, if all the partial derivatives of a function at a point a are zero, 

we cannot say that a is a local maximum or local minimum point. It may be neither.  

  An example is the function f : R
2
   R,  f(x, y) = 1 – x

2
 + y

2
.  Here fx = - 2x, and  fy = 2y. So, 

fx(0, 0) = 0 and fy(0, 0) = 0. But you can see clearly, that f has a maximum in the direction of 

the x-axis, and a minimum in the direction of the y-axis at (0, 0). This means, f has neither a 

minimum, nor a maximum at (0, 0). In fact (0, 0) is a saddle point for this function.    

Definition 7.3 : Let f : R
n
   R  be differentiable, and a   R

n
. If  

  

   
(a) is equal to zero  

for i = 1, 2, ..., n, then a is called a critical point, or a stationary point of f. 

Theorem 7.5, tells us to look for extreme points among the critical points of a function. We 

shall now see how to classify these points as local maxima, local minima, or saddle points. 

This involves second order partial derivatives. This is to be expected, since in one variable 

functions too, we have a second derivative test to classify stationary points. The proof of the 

test for several variables involves quadratic forms. You have studied them in T. Y. B. A. /B. 

Sc. We start with a definition and recall the relevant results. 

Definition 7.4 : If  A = (aij) is a real symmetric n x n matrix, and  x = (x1, x2, ..., xn)   R
n
, 

then Q(x) =          
 
   

 
     is called a quadratic form associated with A. 

We can write Q(x) = xAx
t
.  If A is a diagonal matrix, then Q(x) =       

  
     is called a 

diagonal form. Since A is real symmetric, its eigen values are all real. If all the eigen values 

of A are positive, then Q(x)   0 for every x, and Q(x) = 0   x = 0. Such a quadratic form is 

said to be positive definite. If all the eigen values of A are negative, then Q(x)   0 for every 

x, and Q(x) = 0   x = 0. Such a quadratic form is called negative definite. 

It may not be very easy to get the eigen values. But we have an easier way to decide. 

A principal minor of a square matrix, A, is the determinant of  the matrix obtained by taking 

the first k rows, and the first k columns of A, 1      n.  

If all the principal minors are positive, then the associated quadratic form is positive definite. 

If the principal minors are alternately positive and negative, starting with a negative minor for 

k = 1, then the associated quadratic form is negative definite. 

If a principal minor of order k is negative, when k is an even number, then Q(x) takes both 

positive and negative values.  



We now use these facts about quadratic forms to derive the second derivative test. A 

definition first. 

Definition 7.5 : If f is a C
2
 function from R

n
 to R, then the symmetric matrix 

A = H(x) =  
      

      
   is called the Hessian matrix of f at x. Thus, 

A = H(x) =    

 

 
 

   

   
   

   

      
  

   

      

   
   

      
  

   

      
 

   

   
 

 

 
 

. 

If  a   R
n 

, the first order Taylor formula for f about a gives us the value of f(a + h) for small 

values of ||h|| as 

 
f(a + h) = f(a) +        + R1(c).  

If a is a critical point, then       = 0, and therefore we get   

 f(a + h) − f(a)  = R1(c).    

Now, R1(c) =  
 

  
                 , where 0 <   < 1. 

                     = 
 

  
 hH(a+ h)h

t
 .       We write, 

  
 

  
 hH(a+ h)h

t
 − 

 

  
 hH(a)h

t
  =   

 

  
 h[H(a+ h) – H(a)]h

t
  = ||h||

2
E(a,  ) . Thus, 

   ||h||
2 
|E(a,  )| =   

 

  
                             | 

                         
 

  
                               

Therefore, |E(a,  )|    
 

  
                            when h   0.  ...................(7.6)  

Each term in the finite sum on the right hand side tends to zero as h   0, since f   C
2
, and 

hence the  second order derivatives are continuous. Therefore, E(a,  )   0, as h 0. We write 
 

  
 hH(a+ h)h

t
 = 

 

  
 hH(a)h

t
 + ||h||

2
E(a,  ), where E(a,  )   0, as h 0.  

   Hence, f(a + h) – f(a) =  
 

  
 hH(a)h

t
 + ||h||

2
E(a,  ).                        ..........................(7.7)             

Theorem 7.6 : If f  is a function from R
n
 to R, and has continuous second order partial 

derivatives in a ball B(a; r) around a stationary point a of f, then 

i) f has a relative minimum at a, if H(a) is positive definite 

ii) f has a relative maximum at a, if h(a) is negative definite 

iii) f has a saddle point at a, if H(a) has both positive and negative eigen values. 



Proof : Using the notations that we have used  in the discussion just before this theorem, we 

can write f(a + h) – f(a) =  
 

  
 hH(a)h

t
 + ||h||

2
E(a,  ).   Since E(a,  )   0, as h 0, we can 

conclude that the sign of  f(a + h) – f(a) will depend on that of 
 

  
 hH(a)h

t
 .  

i) This value will be positive for all h, if H(a) is positive definite. Hence,  

f(a + h) – f(a) > 0 for all h, such that 0 < ||h|| < r. This tells us that f(a + h)   f(a) for 

every h   B(a; r), that is , a is a relative minimum point of f. 

The argument for proving ii) and iii) are exactly similar, and we are sure you can write those. 

.Remark 7.2 : i) If  an even principal minor, that is a principal minor of even order is 

negative, then the point is a saddle point. 

ii) If detH(a) = 0, the test is inconclusive, and a is called a degenerate stationary 

point of f. 

Go through the following examples carefully, they illustrate our discussion here.     

Example 7.2: Locate and classify the stationary points of the functions given by 

i) x
2
 + xy + 2x + 2y + 1,   ii) x

3
 + y

3
 – 3xy,    iii) (x − 1)e

xy
. 

Solution : i) Let  f(x, y) =  x
2
 + xy + 2x + 2y + 1.  Then fx = 2x + y + 2,  fy = x + 2. 

fx = fy = 0    x + 2 = 0, and 2x + y + 2 = 0   x = − 2 and y = 2. Therefore, f has only one 

stationary point, ( − 2, 2). Now, fxx = 2, fyy = 1, and fxy = 0. 

Thus, H(( −2, 2)) =  
  
  

 , and det (H(( − 2, 2))) =  −1. 

Therefore, f has a saddle point at ( − 2, 2). 

ii) Let f(x, y) = x
3
 + y

3
 – 3xy. Then, fx = 3x

2
 – 3y, fy = 3y

2
 – 3x. 

fx = fy = 0    y = x
2
, and x = y

2
    x = y= 0, or x = y = 1. Therefore, the stationary points 

are (0, 0) and (1, 1).  Now, fxx = 6x, fyy = 6y, and fxy = - 3. Hence, 

H((0, 0)) =  
   

   
  . det(H(0, 0)) = - 9 < 0, and (0, 0) is a saddle point. 

  H((1, 1)) =  
   

   
  . The principal minors are 6, and 27. Both are positive, and hence f 

has a local minimum at (1, 1).         

iii) Let f(x, y) = (x - 1)e
xy

.  Then fx = e
xy

(xy – y + 1),  fy = x(x - 1)e
xy

 

 fx = 0   xy – y + 1 = 0, and fy = 0   x(x - 1) = 0   x = 0, or x = 1. 

x = 0   y = 1, and x = 1 contradicts fx = 0. So,  (0, 1) is the only stationary point. 



fxx = e
xy

(y + xy
2
 – y

2
 + y),  fxy = e

xy
(x – 1 + x

2
y – xy + x),  fyy = x

2
(x - 1)e

xy
. 

Therefore, H((0, 1)) =   
   

   
  .  det(H(0, 1)) = - 1 < 0. Hence, (0, 1) is a saddle point. 

Example 7.3 : Locate and classify the stationary points of  f(x, y, z) =  i) xyz          
, 

ii)  x
2
y + y

2
z + z

2
 - 8  x,   iii)  x

2
 – xy + yz

3
 – 6z. 

Solution :  i) fx = yz          
− 2x

2
yz          

 =           
yz(1 – 2x

2
) 

fy =           
xz(1 – 2y

2
) ,  fz =           

xy(1 – 2z
2
).   Equating to zero these partial 

derivatives, and solving the resultant equations, we get (a, 0, 0), (0, b, 0), (0, 0, c), 

( 
 

  
   

 

  
    

 

  
 ), where a, b, c are real numbers, as the stationary points. 

fxx =  − 4xyz          
 − 2xyz(1 – 2x

2
)           

 

fxy = z(1 – 2x
2
)           

 − 2y
2
z(1 – 2x

2
)           

, 

fyz =            
x(1 – 2y

2
) – 2xz

2          
(1 – 2y

2)
.  

We have indicated the procedure. We are sure now you will be able to get  fxz, fyy, and fzz. 

Evaluating these second order partial derivatives at the stationary points, we find, 

 H((a, 0, 0)) =  
   

       

      
 

   detH((a, 0, 0)) = 0. Therefore, (a, 0, 0) is a degenerate 

point of f. Similarly, (0, b, 0) and ( 0, 0, c) are also degenerate points. 

H((
 

  
 

 

  
 

 

  
)) =  

          

          

          

  . The minors of this matrix are 

        , 2e
- 3

,          . Therefore, (
 

  
 

 

  
 

 

  
)  is a local maximum. Check the 

remaining 7 points. You should get local maxima at  (
 

  
 
  

  
 
  

  
), (

  

  
 

 

  
 
  

  
), (

  

  
 
  

  
 

 

  
),  

and local minima at (
 

  
 
  

  
 

 

  
), (

 

  
 

 

  
 
  

  
), (

  

  
 

 

  
 

 

  
), (

  

  
 
  

  
 
  

  
). 

ii) fx = 2xy - 8   , fy = x
2
 + 2yz, fz = y

2
 + 2z. Equating these to zero, we get xy = 4  ,  

x
2
 = −2yz , y

2
 = − 2z. If x, y, and z are non-zero, we get x = 2  , y = 2, and z = − 2. So, the 

stationary points are (0, 0, 0)  and (2  , 2, − 2). 

You will find that (0, 0, 0) is a degenerate stationary point, and (2  , 2, − 2) is a saddle point. 



iii) fx = 2x – y, fy = - x + z
3
,  fz = 3yz

2
 – 6. Equating these to zero, we get (1, 2, 1) as the 

stationary point. Check that H((1, 2, 1)) =  
    

    
    

 , and the principal minors are 2, - 

1, - 6. Hence, (1, 2, 1) is a saddle point. 

See  if you can solve these exercises now. 

Exercises: 

1) Find the stationary points of  f(x, y) = i) 
422  yx

x
   ii) (x + y)e

xy
. 

422  yx

x
 

2) Find the extreme values of  f(x, y) = x
2
 + y

3
 + 3xy

2
 – 2x. 

3) Is (0, 0) an extreme point of 2cos(x + y) + e
xy

? 

4) Locate and classify the stationary points of  

i) f(x, y) = (2 - x)(4 - y)(x + y - 3),  ii) f(x, y, z) = 4xyz – x
4
 – y

4
 – z

4
,   

iii) f(x, y, z) = 64x
2
y

2
 – z

2
 + 16x + 32y + z,  iv) f(x, y, z) = xyz(x + y+ z – 1). 

7.4 LAGRANGE’S MULTIPLIERS                                                                                                                                                    

Look at these situations: i) A rectangular cardboard sheet is given. We have to make a closed 

box out of it. What is the maximum volume that is possible? 

ii) Temperature varies on a metal surface according to some formula. Where do the 

maximum and minimum temperature occur on the surface? 

In both these problems we have to maximize or minimize a certain function: volume in the 

first case, and temperature in the second. So these are max-min. Problems. But there is a 

difference between these and the problems considered in the last section. Here, an additional 

constraint or condition is imposed. The given cardboard sheet has a fixed area. The 

maximum/minimum temperature points are to be on the given surface. 

In this section we shall see how such problems are solved. A very useful method was 

developed by Joseph Louis Lagrange. This method gives a necessary condition for the 

extreme points of a function. We now state the theorem and then illustrate its use through 

some examples. 

Theorem 7.7 : Let f : R
n
   R, and f   C

1
. Suppose g1, g2, . . ., gm (m < n) are functions 

belonging to C
1
, which vanish on an open set E in R

n
. If a   E is an extreme point of f, and if 

   (a),    (a), . . . ,    (a) are independent vectors in R
n
, then there exist real numbers,   , 

  , . . . ,   , such that  



Dif(a) +   Dig1(a) +   Dig2(a) + . . . +   Digm(a) = 0,    i = 1, 2, . . . , n. 

We can also write the vector equation  f(a) +       
 
 (a) = 0. 

When we want to find the extreme values of a function  f : R
n
   R, f   C

1
, subject to some 

constraints,  g1(x1, x2, . . . ,xn) = 0, g2(x1, x2, . . . ,xn) = 0, . . . , gm(x1, x2, . . . ,xn) = 0, where    

m < n, we set up the n equations 

Dif(a) +   Dig1(a) +   Dig2(a) + . . . +   Digm(a) = 0,    i = 1, 2, . . . , n. 

These n equations, along with the m equations,   g1(x1, x2, . . . ,xn) = 0, g2(x1, x2, . . . ,xn) = 0, . 

. . , gm(x1, x2, . . . ,xn) = 0, are then solved to get the values of the n + m unknowns, x1, x2, . . . 

,xn,   ,   , . . . ,   . The solutions x = (x1, x2, . . . ,xn) are the stationary points, and contain the 

extreme points of f .  

  ,   , . . . ,    are called Lagrange’s Multipliers. We use one multiplier for each 

constraint. 

To analytically classify these stationary points into local maximum, minimum, or saddle, is a 

very complicated process. It is usually easier to look at the physical or geometrical aspect of 

the problem to arrive at any conclusion. We now solve a few problems, so that the entire 

process is clear to you.  

Example 7.4 : Find the dimensions of the box with maximum volume that can be made with 

a cardboard sheet of size 12 cm
2
. 

Solution : If the dimensions of the box are x, y, z  cms, then its volume V = xyz  c. cms. And 

surface area is 2(xy + yz + xz) sq. cms. Here we have to maximize V, subject to a constraint 

2(xy + yz + xz) = 12, or (xy + yz + xz) = 6. So, f(x, y, z) = xyz, and  

g(x, y, z) = xy + yz + xz – 6. Hence,  

 f(x, y, z) +   g(x, y, z) = 0   

fx +  gx = 0    yz +  (y + z) = 0,  fy +  gy = 0    xz +  (x + z) = 0,   fz +  gz = 0    xy + 

 (x + y) = 0. 

xyz =   (xy + xz) =    (xy + yz) =   (xz + yz). If    = 0, then V = 0, which is the minimum 

volume. If     0, then xy + xz = xy + yz = xz + yz. That is, x = y = z (unless, of course, x = 

y = z = 0).  

Therefore, xy + yz + xz = 6   3x
2
 = 6   x =    cms. Thus, V = 2   c. cms. is the 

maximum volume. 

Example 7.5 : Find the extreme values of the function given by f(x, y, z) = 2x + y + 3z, 

subject to x
2
 + y

2
 = 2, x +z = 5. 



Solution : Let g1(x, y, z) = x
2
 + y

2
 – 2 = 0, and g2(x, y, z) = x + z – 5 = 0. Then 

               = 0   

fx +   g1x +   g2x = 0    2 + 2  x +    = 0 

 fy +   g1y +   g2y = 0    1 + 2     = 0 

fz +   g1z +   g2z = 0    3 +    = 0.   Therefore,    = − 3, 2  x = 1, and  2     = − 1. 

   = 0      = −2. But    = −3. Therefore    cannot be zero.  Hence, x = 
 

   
,  y = 

  

   
. 

Substituting these values in x
2
 + y

2
 = 2, we get    =  

 

 
. This gives, x =  1, y =  1. Hence, 

the stationary points are (1, - 1, 4) and ( - 1, 1, 6), and the extreme values are 13 and 17. 

Example 7.6 : Find the minimum distance of a point on the intersection of the planes,  

x + y – z = 0, and x + 3y + z = 2 from the origin. 

Solution :  The distance of P(x, y, z) from the origin is           . So, we need to 

minimize  f(x, y, z) =         , subject to  g1(x, y, z) =  x + y – z = 0, and 

g2(x, y, z) = x + 3y + z – 2 = 0.  

               = 0   

fx +   g1x +   g2x = 0    2x +    +    = 0 

fy +   g1y +   g2y = 0    2y +    + 3   = 0 

fz +   g1z +   g2z = 0    2x -    +    = 0. Therefore, x = 
        

 
 , y = 

         

 
 ,  

z = 
       

 
 . Putting these values  in x + y – z = 0, we get    +    = 0. Therefore, x = 0 and  

y = z. Using this in x + 3y + z – 2 = 0, we get y = z = ½. Thus, the stationary point is  

(0, 1/2, 1/2). The distance of this point from the origin is 
 

  
 . 

Geometrically, the constraints are equations of two planes. There is no maximum to the 

distance of a point on their line of intersection from the origin. So, the stationary point is a 

minimum point. 

Here are some problems you can try. 

1) Find the extreme values of the function f(x, y) = xy on the surface 
28

22 yx
  = 1.  



2) Find the extreme values of z = 
32

yx
  on the unit circle in the xy-plane.  

3) Find the distance of the point (10, 1, − 6) from the intersection of the planes,  

x + y + 2z = 5 and 2x – 3y + z = 12. 

7.5 SUMMARY 

In this chapter we have introduced Taylor’s theorem for functions of several variables. We 

have also seen how to get Taylor polynomials of a given order for a given function. Of 

course, to be able to do this, the function must have continuous partial derivatives of higher 

orders.  

We have then discussed the location of maxima and minima of a real-valued function of 

several variables. This has tremendous applications in diverse fields of study. In particular, 

we have proved that the extreme points of a function are located among the points at which 

the gradient vector of the function is zero. That is, the points at which all the first order partial 

derivatives are zero. The classification of these points into maxima, minima, or saddle points 

depends on the signs of the principal minors of the Hessian matrix. 

We pointed out that there are some situations, where we need to find the extreme values 

subject to certain constraints. Such problems, and the method of tackling them is also 

discussed, and illustrated through some examples. 
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INVERSE AND IMPLICIT FUNCTION THEOREMS  

Unit Structure 

8.0 Objectives 

8.1 Introduction 

8.2 Inverse Function Theorem 

8.3 Implicit Function Theorem 

8.4 Summary 

8.0 OBJECTIVES 

After reading this chapter, you should be able to  

 state and prove Inverse Function Theorem for functions of several variables 

 check if some simple functions are locally invertible  

 state and prove Implicit Function Theorem for functions of several variables 

8.1 INTRODUCTION                                                                                                                                                       

In this chapter we introduce two very important theorems. You have not come across these 

theorems even for functions of a single variable. In each case, we shall first discuss the single 

variable case, and then extend the concept to functions of several variables. A word of 

caution : these theorems are not easy. To help you understand them better, we are going to 

prove some smaller results, and then use them in the proof of the theorems. Do study this 

chapter carefully and we are sure you would have no difficulty in digesting the concepts.  

8.2 INVERSE FUNCTION THEOREM                                                                                                                                                       

The inverse function theorem is a very important theorem in Calculus. You may be familiar 

with its one dimensional version. Before we introduce the theorem for functions from R
n
 to 

R
n
, we shall recall some results about functions of one variable: 

1) If f : [a, b]   R is continuous, and f(c) > 0 for some c   (a, b), then        such that  

(c      )   (a, b), and f(x) > 0       (c      ). In other words, we can always find a 

neighbourhood of the point c, in which f(x) has the same sign as f(c). 

2) If f : [a, b]   R is a continuously differentiable function, and         for some  

c   (a, b), then using 1) we can prove that        such that f is an injective function on  



(c      )   (a, b). Further,  f
-1

: f(c      )   (c      )  is differentiable at f(c) ,  

The statement in 2) is the inverse function theorem. Note that we do not know whether the 

inverse of f exists on [a, b]. But what this theorem tells us, is that if         , then f is  

“locally invertible” at c. For example, we know that the function f : [0, 2 ]   R, f(x) = sinx    

does not have an inverse. But               is a continuous function, and     
 

 
  

 

 
  .  

So, the theorem says that f is locally invertible at    . That is, we can find a neighbourhood 

N of     , such that f restricted to N has an inverse. Check that f is injective when restricted 

to N = ( 
 

 
 
  

  
 ), and hence has an inverse on N. 

We shall now see if this theorem extends to functions of several variables. Let us start with a 

definition. 

Definition 8.1 : Let f : E   R
n
, where E   R

n
. If f   C

1
, f is said to be locally invertible at 

a   E, if there exists a neighbourhood N1 of a, N1   E, and a neighbourhood N2 of f(a), such 

that f(N1) = N2,  f is injective on N1, and f
-1

 : N2   N1 is a C
1
 function. 

We shall soon state and prove the inverse function theorem. In the proof, we are going to use 

some minor results. You have already studied some in the earlier chapters of this course. 

Next we state and prove one other result, which will be useful to us. 

Theorem 8.1 : Let f = (f1 f2, . . . , fn) : E   R
n
,  where E is an open set in R

n
. Suppose f   C

1
. 

If the Jacobian of f, J(a)   0 for some a   E, then f is injective on a neighbourhood of a in E. 

 Proof : If  X1, X2, . . . , Xn   E, we consider a point X = (X1, X2, . . . , Xn)     
 
, whose first 

n coordinates are the coordinates of X1, the next n are the coordinates of  X2, and so on. We 

define a function, j, such that  

j(X) = det[Djfi(Xi)] = det  

 

 
 
 

                  
                 

 

          
          

 
 

                 
  

           

 
 
 

.     

Now, the function j, being an n×n determinant, is a polynomial of its n
2
 entries, and each 

entry,          is a continuous function, since f   C
1
. Thus, j is a continuous function on its 

domain. We write A = (a, a, . . . , a). Then j(A) = det[Djfi(a)] = J(a)   0. Now, since f   C1
, 

all the entries of j(A) are continuous, and hence, j(A) is also continuous. The continuity of 

j(A) ensures that there exists a neighbourhood N of A, such that j(X)   0 , if X   N. 

In other words, there exists a convex neighbourhood Na of a, such that  j(X)   0 , if  

X = (X1, X2, . . . , Xn) is a point, for which Xi   Na  for every i = 1, 2, . . . , n.   ..........(8.1) 



This Na is the required neighbourhood. We have to show that f is injective on Na. For this, 

suppose x, y   Na , such that f(x) = f(y). Then fi(x) = fi(y)  for every i = 1, 2, . . . , n.    

Then, using the Mean Value Theorem for scalar fields (See Remark 6.2 ii).), we get 

fi(x) − fi(y) =  fi(ci)   (x − y)      fi(ci)   (x − y) = 0 for some ci on the line segment joining 

x and y. So, if x – y   0, then   fi(ci) = 0 for some ci on the line segment joining x and y, that 

is, in the neighbourhood Na, since Na is convex. This means, Djfi(ci) = 0 for every j, 1    

        . Thus, if C = (c1, c2, . . . , cn), then j(C) = det[Djfi(ci)] = 0. But this contradicts 

(8.1). So, we conclude that x – y = 0, which proves that f is injective on Na. 

Remark 8.1 : i) A function may not be injective on its entire domain. But if its Jacobian is 

non-zero at a point, then it is injective on a neighbourhood of that point. In other words, it is 

locally injective. 

ii) If the Jacobian is non-zero, then the linear transformation Df, which represents the 

derivative of f, is non-singular, and hence, is a linear isomorphism. 

Example 8.1 : a) Consider the function f(x, y) = (e
x
cosy, e

x
siny). This function is not 

injective, since f(x, 0) = f(x, 2 ). But,  

J(x, y) =  
             

            
  = e

2x
   0. Thus, f is locally injective at each point in R

2
. 

Here we have a function, which is locally injective at every point of its domain, but is not 

injective on the domain. 

     b)   Consider the function f(x, y) = (x
3
, y

3
), defined on R

2
. The Jacobian of this function is 

zero at (0, 0). But the function is locally invertible at (0, 0). In fact, it is an invertible 

function. 

Theorem 8.2 (The Inverse Function Theorem): Let f = (f1, f2, . . . , fn)   C
1
, f: E   R

n
 , where 

E is an open set in R
n
. Let T = f(E). Suppose J(a)   0 for some a   E. Then there exists a 

unique function f
-1

 from Y to X, where X is open in E, Y is open in T, such that 

i) a   X, f(a)   Y,  ii) Y = f(X),  iii) f is injective on X,  iv) f
-1

: Y  X, f
-1

(Y) = X,  v) f
-1

   C
1
 

on Y. 

Proof : Using Theorem 8.1, we can conclude that f is injective on a neighbourhood N of a in 

E. So, f : N  f(N) is bijective, and hence has an inverse, f
-1

 : f(N)   N. Let r > 0 be such that 

                   N. Since                  is compact in R
n
 , we use Theorem 3.4.1 to conclude that  

f(                )  is also compact in R
n
 . Now f is continuous and injective on the compact set 

                 . Hence, using Theorem 3.4.2, we can say that f
-1 

is continuous on f(                ).   

 Now, B(a, r) is an open set in                 ,  and therefore,  



       (B(a, r)) is open in f(               ). That is, f(B(a, r)) is open in f(               ).  

Also, f(a)   f(B(a, r)). Therefore, there exists a   > 0, such that B(f(a),  )   f(B(a, r)). 

Take X = f
-1

(B(f(a),  )), and  Y = B(f(a),  ). Then X and Y satisfy i), ii), iii) and iv) in the 

statement of the theorem.  

To prove the last assertion v) in the statement, we have to show that all the partial derivatives 

of all the component functions of f
-1

 are continuous on Y. For this we first define the function  

j(X) = det[Djfi(xi)] , as in Theorem 8.1. Here X = (X1, X2, . . . , Xn). Then, as before, there is a 

neighbourhood Na of a, such that j(X)   0, whenever each Xi   Na. We can assume that the 

neighbourhood N   Na. This ensures that j(X)   0, whenever each Xi                   . 

Now we first prove that Dif
-1

 exists on Y. Let y   Y, and consider   
t

yfteyf i )()( 11  
, 

  where ei is the i
th

 coordinate vector, and t is a scalar. Let x = f
-1

(y), and   = f
-1

(y + tei). Then  

f(  ) – f(x) = tei. Thus, fi(  ) – fi(x) = t, and  fj(  ) – fj(x) = 0, when i   j. 

By applying Mean Value Theorem (Remark 6.2 ii)), we can write       




t

xfxf mm )()( '

  fm(xm)   
t

xx '

 ,    m = 1, 2, . . . , n. Here xm is a point on the line 

segment joining x and   . 

So, we get a system of  n equations (for the n values of m). The left hand side of an equation 

in this system is 1, if m = i, otherwise it is 0. The right hand side is of the form  

D1fm(xm) 
t

xx 1

'
'1 

+ D2fm(xm) 
t

xx 2

'

2   + . . . + Dnfm(xm) 
t

xx nn 
'

,   m = 1, 2, . . . , n.   

The determinant of this system of linear equations is j(X), which we know is non-zero. Hence 

we can solve it by Cramer’s rule and get the variables  
t

xx jj 
'

  as the quotient of two 

determinants. Then, as t tends to zero,    approaches x, and hence, each xm also approaches x. 

The determinant in the denominator, j(X) = det[Djfi(xi)]  then approaches J(x), the Jacobian 

of f at x, which is again non-zero. Thus, as t tends to zero, the limit of  
t

xx jj 
'

  exists. That 

is,  
t

yfteyf i

t

)()(
lim

11

0






  exists. Thus, Dif

-1
(y) exists for all i, and for all y in Y. 

We have obtained the partial derivatives of the components of f
-1

 as quotients of two 

determinants. The entries in these determinants are partial derivatives of the components of f, 



which are all continuous. Since a determinant is a polynomial of its entries, we conclude that 

the partial derivatives of f
-1

 are continuous on Y.  

  Example 8.2 : Show that the function f: R
2
   R

2
, f(x, y) = (2xy, x

2
 – y

2
)  is not invertible on  

R
2
, but is locally invertible at every point of E = {(x, y) | x > 0}. Also find the inverse 

function at one such point. 

Solution : Here f(1, 1) = f( − 1, − 1) = (2, 0). Therefore f is not injective, and hence is not 

invertible on R
2
. On the other hand, if (x, y)   E, then  

J(x, y) =  
    
     

  = − 4(x
2
 + y

2
)   0. Hence by the inverse function theorem, f is locally 

invertible.  

Suppose  f(x, y) = (u, v).  If  (x, y)   E,  then y =
x

u

2
, and v = x

2
   

2

2

4x

u
 . Therefore,  

4x
4
 - 4x

2
v – u

2 
= 0. Thus, x

2
 = 

2

22 uvv 
  , and   x = (

2

22 uvv 
)

1/2
,   

y = u(2v + 2      )
−1/2 

8.3 IMPLICIT  FUNCTION THEOREM                                                                                                                                                       

 If  x2
 + y

2
 = 0, find  

  

  
 . You must have done exercises like this in your under-graduate 

classes. Here, we take f(x, y) = x
2
 + y

2
, and find fx = 2x, and  fy = 2y. Then 

dx

dy
 = 2x/2y = x/y. 

Of course, y cannot be zero.  

While doing this exercise, actually we have used a theorem, the implicit function theorem. To 

recall, in this setting, a function which can be written as y = g(x), is called an explicit 

function, and one which can be expressed only as f(x, y) = 0, is called an implicit function. 

The implicit function tells us that under certain conditions, we can express an implicit 

function as an explicit one, and then we can use this expression to find  
dx

dy
 . 

In this section we are going to discuss this implicit function theorem for functions of several 

variables. Before we state and prove the general case, we first prove the case for functions 

involving only two variables, x and y. 

Theorem 8.3 : Let f be a real-valued C
1
 function, defined on the product      , where    and 

   are two intervals in R. Let (a, b)        , and f(a, b) = 0, but fy(a, b)   0. Then there   

exists an interval I in R, containing a, and a C
1
 function g : I   R, such that g(a) = b, and  

f(x, g(x)) = 0 for all x   I. 



Proof : We consider a function, h:         R
2
, given by h(x, y) = (x, f(x, y)). If we write   

 h = (     ), the Jacobian matrix of h is  

Jh(x, y) =  

   

  

   

  

   

  

   

  

  =   
  
  

  

  

  

 .  The determinant of this matrix, 
  

  
  is not zero at (a, b). 

Thus, h is a C
1
 function, with a non-zero Jacobian at (a, b). Therefore, by the inverse function 

theorem, Theorem 8.2 , we can conclude that h is locally invertible at (a, b). Let u = (     ) 

be the local inverse of h. You will agree that    (x, y) = x for all x and y in R. That is,  

u(x, y) = (x,   (x, y)) for all x and y in R.  We now define g as, g(x) =   (x, 0), and show that 

it has all the required properties. 

Now, since h(a, b) = (a, 0), u(a, 0) = (a, b). This means,   (a, 0) = b. Thus, g(a) = b. 

Also, (x, 0) =  h(u(x, 0)) = h(x,   (x, 0)) = h(x, g(x)) = (x, f(x, g(x))). This implies that 

 f(x, g(x)) = 0.  

Since u is a C
1
 function, g is also C

1
. Differentiating  f(x, g(x)) = 0 with respect to x using 

chain rule, we get  D1f(x, g(x)) + D2f(x, g(x))  (x) = 0, and thus, 

  (x) = 
))(,(

))(,((

2

1

xgxfD

xgxfD
,  since D2f(x, g(x))   0.  

Basically, this theorem tells us that under certain conditions, the relation f(x, y) = 0, between 

x and y can be explicitly written as y = g(x). 

Remark 8.2  :  If instead of fy(a, b)   0, we take the condition fx(a, b)   0, then we can 

express x as an explicit function of y. 

Example 8.3  : Can f(x, y) = x
3
 + y

3
 – 2xy be expressed by an explicit function y = g(x) in a 

neighbourhood of the point (1, 1)? 

Solution : Note that f(1,1) = 0, and fy = 3y
2
 – 2x = 1 at (1, 1). Further, f is a C

1
 function on R

2
. 

Therefore, we can apply Theorem 8.3, and conclude that there exists a unique function g, 

defined on a neighbourhood of 1, such that g(1) = 1. Also,   (x) =  
xy

yx

23

23
2

2




  in this 

neighbourhood.   

Example 8.4  : Check whether Theorem 8.3 can be applied at all points, where  

f(x, y) = x
2
 – y

2
 = 0. 



Solution : x
2
 – y

2
 = 0 is true at points (0, 0), (1, 1),(1, −1), ( −1, 1), and ( −1, −1). fy = −2y, 

and fx = 2x. At the point (0, 0), fx and fy  are both zero, and hence we cannot apply the 

theorem. At all the remaining points, the function satisfies all the conditions of Theorem 8.3, 

and hence it can be applied. You will agree that at each of these points, we will get either  

g(x) = x, or g(x) = − x. 

We now go a step further, and consider a real-valued function of several variables. 

Theorem 8.4 : Let f be a real-valued C
1
  function, defined on an open set, U, in R

n
. Let  

a = (a1, a2, ... , an-1)   R
n-1

, such that (a, b)   U,  f(a, b) = 0, and Dnf(a, b)   0. Then there 

exists a unique C
1
function g, defined on a neighbourhood N of a, such that g(a) = b, and  

f(x, g(x)) = 0 for all x   N. 

Proof : We consider a function h : U   R
n−1  R, defined by h(x, y) = (x, f(x, y)). If we write 

h = (h1, h2, ... , hn), then hi(x, y) = xi, for 1   i   n – 1, and hn(x, y) = f(x, y). Therefore, the 

Jacobian matrix of h is given by 

Jh = 

 

 
 
 

    
   
 

   
   

 
 
       

  
      

 
 
 

.     

The determinant of this matrix is Dnf, which is non-zero. Therefore, we can apply the inverse 

function theorem (Theorem 8.2), and conclude that h is locally invertible at (a, b). If u is the 

local inverse of h, and we write u = (u1, u2), then you will see that u1(x, y) = x for all (x, y). 

Thus, u(x, y) = (x, u2(x, y)) for all (x, y). We now define g(x) = u2(x, 0), and show that this 

has the required properties. 

Now, u(a, 0) = (a, b). This gives g(a) = u2(a, 0) = b. 

Also, (x, 0) = h(u(x, 0)) = h(x,   (x, 0)) = h(x, g(x)) = (x, f(x, g(x))). This implies that 

 f(x, g(x)) = 0.  

Example 8.5 : Examine whether the function f(x, y, z) = x
2
 + y

2 
– 4  can be expressed as a 

function  y = g(x, z) in a neighbourhood of the point (0, -2, 0). 

Solution : We note that f(0, −2, 0) = 0, and D2f = 2y = − 4 at (0, −2, 0). So, applying the 

implicit function theorem, there exists the required neighbourhood of (0, −2, 0). In fact, you 

can check that in the neighbourhood, N = B((0, − 2, 0), 1), we can express the function as  

y = − (4 – x
2
)

1/2
 . 



Here are some exercises that you should try : 

1) Determine whether the following functions are locally invertible at the given points : 

i) f(x, y) = (x
3
y + 3, y

2
)      at (1, 3) 

ii) f(x, y, z) = (e
x
cosy, e

x
sinz, z)    at (1, 1, 1). 

2) For each of the following functions, show that the equation f(x, y, z) = 0 defines a 

continuously differentiable function z = g(x, y), in a neighbourhood of the given point: 

i) f(x, y, z) = x
3
 + y

3
+ z

3
 – xyz – 2  ,         (1, 1, 1) 

ii) f(x, y, z) = x
2
 + y

3
 – xysinz ,                (1, - 1, 0). 

That brings us to the end of this chapter. We hope you have studied the concepts carefully, 

and have understood them.  

8.4 LET US SUM UP                                                                                                                                                       

In this chapter we have discussed two very important theorems: the inverse function theorem, 

and the implicit function theorem. The proofs of these theorems are a little complicated. So 

we have tried to go step by step from functions of one variable to functions of many 

variables.  

The Inverse Function Theorem: gives the conditions under which a function, even though not 

invertible on its domain, is seen to be locally invertible. The Jacobian of the function being 

non-zero at a point ensures the local invertibility of the function in a neighbourhood of that 

point. 

The Implicit Function Theorem: gives the conditions, under which an implicit relationship  

between variables can be expressed in an explicit manner. Here, again, the Jacobian plays an 

important role. 
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1
RIEMANN INTEGRAL - I

Unit Structure :

1.1 Introduction

1.2 Partition

1.3 Riemann Criterion

1.4 Properties of Riemann Integral

1.5 Review

1.6 Unit End Exercise

1.1 INTRODUCTION

The Riemann integral dealt with in calculus courses, is well
suited for computations but less suited for dealing with limit
processes.

Bernhard Riemann in 1868 introduced Riemann integral. He
need to prove some new result about Fourier and trigonometric
series. Riemann integral is based on idea of dividing. The domain of
function into small units over each such unit or sub-interval we erect
an approximation rectangle. The sum of the area of these rectangles
approximates the area under the curve.

As the partition of the interval becomes thinner, the number
of sub-interval becomes greater. The approximating rectangles
become narrower and more precise. Hence area under the curve is
more accurate. As limits of sub-interval tends to zero, the values of
the sum of the areas of the rectangles tends to the value of an
integral. Hence the area under curve to be equal to the value of the
integral.

Before going for exact definition of Riemann explained the
following definitions.

1.2 PARTITION

A closed rectangle in n is a subset A of n of the forms.

     1 1 2 2, , .... ,n nA a b a b a b    where i ia b  . Note that

 1 2, ,...., nx x x A iff i i ia x b i   .
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The points 1 2, ,...., nx x x are called the partition points.

The closed interval      1 0 1 2 1 2 1, , , ,......, ,n n nI x x I x x I x x   are

called the component internal of  ,a b .

Norm : The norm of a portion P is the length of the largest sub-
internal of P and is denoted by P .

For example : Suppose that 1 0 1, ,.... kP t t t is a partition of  1 1,a b and

2 0 ,...., rP S S is a partition of  2 2,a b . Then the partition  1 2.P P P of

   1 1 2 2, ,a b a b divides the closed rectangle    1 1 2 2, ,a b a b into Kr-

gub rectangles.

In general if iP divides  ,i ia b into ik sub-interval then

 1,.... nP P P    1 1, .... ,n na b a b  into 1 2..... nK k k k sub-rectangle.

These sub-rectangles are called sub-rectangles of the partition p.

Refinement :
Definition : Let A be a rectangle in n and :f A  be a bounded

function and P be partition of A for each sub-rectangles of the
partition.

    
 1

inf :

. . . ,s s

ms f f x x S

g l b of f on x x

 

    

    
 1

sup :

. . . ,s s

Ms f f x x S

l u b of f on x x

 

    

where 1, 2,....,S n

The lower and upper sums of f for ‘p’ are defined by

     , s
s

L f p m f s and      , s
s

U f p M f s

Since s sm M we have    , ,L f p U f p

Refinement of a partition : Let  1 2, ,..., nP P P P and  * * *
1 ,..., nP P P

be partition of a rectangle A in n . We say that a partition *P is a
refinement of P if *P P .
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If
1P and 2P are two partition of A then 1 2P P P  is also a

partition of A is called the common refinement of 1P and 2P .

A function :f A  is called integrable on the rectangle A

in n if ' 'f is bounded . .g l b of the set of all upper sum of ' 'f and

. .l u b of the set of all lower sum of ' 'f exist.

Let     inf ,U f U f p

    sup ,L f L f p

If    U f L f is called ' 'f is R-integrable over A.

if can be written as    
A

U f L f f   .

Theorem :
Let P and P be partitions of a rectangle A in n . If P

refines P then show that    , ,L f p L f P and    , ,U f P U f p  .

Proof :
Let a function :f A is bounded on A P & *P are two

partition of A and P is retinement to P.

Any subrectangle S of P is union of some subrectangles

1 2, ,...., ks s s of P and        1 2 ..... kV S V s V s V s    .

Now        inf ; inf ;s im f f x x s f x x s   

    1,....,
is sm f m f i k   

     , s
s p

L f p m f V s




          1 ....s s km f V s m f V s V s   

       
1 1 .....

ks s km f V s m f V s  

The sum of LHS for all subrectangle is of P will get

 ,L f P .

   1, ,L f p L f p 

Now,     sup ;sM f f x x S 

  sup ; if x x S 

    1,...,s si
M f M f i K  
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     , s
s p

U f p m f V s




Now,             1 2 ....i kMs f V S Ms f V S V S V S   

           1 2..... ....s s kMs f V s M f V s M f V s    

Taking the of L.H.S. for all subrectangle iS of P will get

     , , ,U f P U f P U f P   .

Theorem :
Let

1P & 2P be partitions of rectangle A & :f A be

bounded function. Show that    2 1, ,L f P U f P &

   1 2, ,L f P f P  .

Proof :
Let a function :f A  be a bounded find

1P & 2P are any

two partition of A.

Let 1 2P P P 

P is a refinement of both
1P & 2P

   1, ,U f P U f P ……….. (I)

   2, ,U f P U f P ……….. (II)

   1, ,L f P L f P ……….. (III)

   2, ,L f P L f P ……….. (IV)

 We get        1 2, , , ,U f P U f P L f P L f P   .

Hence    1 2, ,U f P L f P

Similarly,        2 2 1, , , ,U f P U f P L f P L f P   .

Hence,    2 1, ,U f P L f P

Theorem :
Let a function :f A  be bounded on A then for any

0, a partition P on A such that    ,U f P U f  and

   ,L f P L f 
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Proof :
Let a function :f A  be bounded on A

    inf ,U f U f P and     sup ,L f L f P for any 0, 

partitions
1P & 2P of A such that    1,U f P U f  &

   2,L f P L f  .

Let 1 2P P P  the common refinement of
1P and 2P .

     

     
1

2

, ,

, ,

U f P U f P U f

L f P L f P L f

  

  

    ,U f P U f 

   ,L f P L f 

1.3 RIEMANN CRITERION

Let A be a rectangle in n A bounded function :f A  is

integrable iff for every 0 , there is a partition P of A such that

   , ,U f P L f P .

Proof :
Let a function :f A  is bounded.

    inf ,U f U f P

    sup ,L f L f P

Let f be integrable of A

   U f L f 

for any 0,  a partition P on A such that    , 2U f p U f 

and    , 2L f p L f  .

   , 2U f p U f   &    , 2L f p L f    .

       , , 2 2U f p L f P U f L f      .

   ,U f p L f  

Conversely,
Let for any 0,  a partition P on A such that

   , ,U f p L f P .

           , ,U P f U f U f L f L f L f P               
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Since    , ,U f P U f o 

   U f L f o 

and    ,L f L f P o 

we have,    o U f L f  

Since  is arbitrary,    U f L f

f is integrable over A.

Example 1
Let A be a rectangle in n and :f A  be a constant

function. Show that f is integrable and  .
A

f C V A for some C .

Solution :

 f x C x A  

f is bounded on A

Let P be a partition of A

    
    

inf ;

sup ;

s

s

m f f x x s C

M f f x x s C

  

  

         , s
S S

L f P m f V S C V S CV A    

         , s
S S

U f P M f V S C V S CV A   

     U f L f C V A   

f is integrable over A.

 by Reimann criterion, 0 s.t.

 .
A

f C V A for some C .

Example 2 :
Let    : 0,1 0,1F X  

 ,
1

o if x is rational
f x y

if x is irrational

   
 

   

Show that ‘f’ is not integrable.

Solution :
Let P be a partition of    0,1 0,1 into S subport of P.
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Take any point  1 1,x y S  such that x is rational.

 ,f x y o  and  1 1,x y S  such that 1x , is irrational

 1 1, 1f x y 

    
    

inf ; 0

sup ; 1

s

s

m f f x x S

M f f x x S

   

   

     

     

   

   

, 0

, 1

1, 0

s
S

s
S

L f P m f V S

U f P M f V S

U f L f

U f L f

 

  

  

 





f is not integrable    0,1 0,1

1.4 PROPERTIES OF RIEMANN INTEGRAL

1) Let :f A  be integrable and g f except at finitely many

points show that g is integrable and
A A

f g  .

Proof :
Since f is integrable over A.

 by Riemann Criterion,  a partition P of A.
Such that    , ,U f P L f P  ……… (I)

Let P be a refinement of P, such that
1) x A  with    f x g x , it belongs to 2n subrectangles of P

2)  
 12n

V S
d u




 

Where d = numbers of points in A at which f g

     

     

sup inf

inf sup

x Ax A

x A x A

u g x f x

g x f x



 

 

 

 P is refines P, we have

       

       

, , , ,

, , , ,

L f P L f P U f P U f P

U f P L f P U f P L f P
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Now

   , ,U g P U f P 

       
1

d

ij ij ij
i

Ms g Ms f V s


  

On other rectangle, f g and so    ij ijMs g Ms f .

     supij
x A

Ms g g x


 &          inf infij ij
x A x A

Ms f f x Ms f f x
 

  

   ij ijMs g Ms f u 

     
2

1 1

, ,

nd

ij
i j

U g P U f P u V S
 

 
     

 
 

Let       
2

1 1

1 1

sup , , 2 .

nd
n

ij
i j

V V S U g P U f P uV d u v
 

     …….

(II)

Now similarly we get    1 1, , 2nL g P L f P d V   ……... (III)

by (II) & (III) we get.

       

 

 
 

1 1 1 1

1

, , , 2 , 2

2
2

2

2 2 2 2

n n

n

n

n

U g P L g P U f P d u L f P d

d u V

d u

d u

 



    


  

   
   











   1 1, ,U g P L g P  

By Reimann Criterion G is integrable by equation (II)

   

   

1 1

1 1

, , 2

, , 2

n

n

U g P U f P d uv

U g P U f P d u

 

   

Note that    1 1, , 2n

A

g U g P U f P d u  

 1, 2
2

nL f P d u


  

 
 

1

1

2
,

2 2

n

n

d u
L f P

d u
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1

1

,
2 2

,

A

L f P

L f P

f

   

 

 

This is true for any 0

A A

g f  ………………….. (IV)

Now    , ,
2

A

g L g P L f P    

 ,

2
A A

U f P

f f



   

  inf ,

2

A

A A

f U f P

g f

 

  



 

This is true for any 0

A A

g f   ……… (V)

from (IV) & (V) we get

A A

g f 

2) Let :f A  be integrable, for any partition P of A and sub-

rectangle S, show that

i)      s s sm f m g m f g   and

ii)      s s sM f M g M f g  

Deduce that

     , , ,L f P L g P L f g P   and

     , , ,U f g P U f P U g P  

Solution :
Let P be a partition of A and S be a Subrectangle

    
   

inf ;s

s

m f f x x S

m f f x x S
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Similarly    sm g g x x S  

       s sm f m g f x g x x S     

   s sm f m g  is lower bound of

         ; ;f x g x x S f g x x S    

   s sm f m g  is lower bound of

         ; ;f x g x x S f g x x S    

       
 

inf ;s s

s

m f m g f g x x S

m f g

    

 

     s s sm f m g m f g   

ii)     ;Ms f sub f x x s 

   Ms f f x x s   

Similarly    Ms g g x x S  

       Ms f Ms g f x g x x S     

   Ms f Ms g  is upper bound of

         ; ;f x g x x S f g x x S    

    supMs f Ms g        ;f g x x S Ms f g   

     Ms f Ms g Ms f g   

Hence,

          

    

 

, ,

,

s p

s p

L f P L g P Ms f Ms g V S

Ms f g V S

L f g P





  

 

 





     

          

    

 

, , ,

, ,

,

s

s

L f P L g P L f g P

U f P U g P Ms f Ms g V S

Ms f g V S

U f g P

   

  

 

 





     , , ,U f P U g P U f g P   Proved.
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3) Let :f A  be integrable, & :g A integrable than show

that f g is integrable and  
A A A

f g f g     .

Proof :
Let P be any partition of A then

           , , , , , ,U f g P L f g P U f P U g P L f P L g P        

       , , , ,U f P U g P L f P L g P    …………………….. (I)

f is integrable.

By Rieman interion for given 0,  a partition P, of A such

that    1 1, ,
2

U f P L f P   ……………………………….… (II)

Similarly g is integrable for 0,  a partition 2P of A such that

   2 2, ,
2

U g P L f P   ……………………………………… (III)

Then *
1 2P P P  is a refinement of both 1 2&P P .

   *
1, , ;L f P L f P     *

1, ,U f P U f P &    *
2, , ;L g P L f P

   *
2, ,U g P U g P ………………………………………….. (IV)

       * *
1 12 , , , ,U f P L f P U f P L f P    

       * *
2 22 , , , ,U g P L g P U g P L g P     ……………….. (V)

The equation I is true for any partition P of A.

In general, it is true for partition *P of A

   
       

* *

* * * *

, ,

, , , ,

2 2

U f g P L f g P

U f P L f P U g P L g P

   

   

  

   * *, ,U f g P L f g P    

By Riemann Criterian f g is integrable.

Let 0 since  sup ,
A

f f P so a partition P such that

 1,
2

A

f f P   .
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Similarly a partition 2 3, ,.... nP P P of A S

 

 

 

2

3

4

,
2

,
2

,
2

A

A

A

g L g P

U f P f

U g P g

 

  

  







Let 1 2 3 4P P P P P    .

Then    1, ,
2 2

A

f f P L f P    

Similarly  ,
2

A

g L g P  

 ,
2

A

U f P f   and  ,
2

A

U g P g  

     , , ,
A A A

f g L f P L g P L f g P f g        

 

   

,

, ,

2 2
A A

A A

U f g P

U f P U g P

f g

f g

 

 

    

  

 

 

A A A A A

f g f g f g          

This is true for any 0

A A A A A A A A

f g f g f g f g f g                

4) Let :f A  be integrable for any constant C, show that

 
A A

Cf C f  .

Proof :
Let C

Case 1
Let 0 and suppose 0C  .
Let P be a partition of A and S be a subrectangle of P.
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sup ;

sup ;

sup ;

sM Cf Cf x x S

Cf x x S

C f x x S

CMs f

 

 

 



Similarly,

   sms Cf Cm f

         

 

,

,

S S

U Cf P Ms Cf v S C Ms f v S

C U f P

  

 

 

Similarly    , ,L Cf P C L f P 

f is integrable for above 0,  a partition P of A such that

   , ,U f P L f P C 

       

   

, , , ,

, ,

U Cf P L Cf P C U f P C L f P

C U f P L f P

C C
C

     

   

  

By Riemann Criteria.

 Cf is integrable

for 0, a  partition P of A such that

   

 

 

, ,

,

,

A A

A

A

A A A A

C f C f C L f P L Cf P
C

Cf U Cf P

C U f P C f
C

f Cf C f C f
C C

      
 

 

     
 

             
   

 





   

This is true for any 0

 
A A A

A A

C f Cf C f

Cf C f

 

 

  

 

Case II
Now suppose 0C 

Let P be a partition of A and S be any subrectangle in P.

   Ms Cf C Ms f   and
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   sm Cf C Ms f 

   , ,L Cf P C U f P   and

   , ,U Cf P C L f P 

f is integrable for above 0, a partition P of A such that

     
, ,U f P L f P

C
 



       

   

, , , ,

, ,

U Cf P L Cf P C L f P C U f P

C U f P L f P

C
C

     

    

 




By Riemann Criteria  Cf is integrable.

for 0,  a partition P of A such that
A A A

C f Cf C f     .

This is true for every 0

A A A

A A

C f Cf C f

Cf C f

  

 

  

 

Example 3:
Let , :f g A R be integrable & suppose f g show that

A A

f g  .

Solution :

By definition   inf ,
A

f U f P and   inf ,
A

g U g P .

Let P be any partition of A & S be any subrectangle in P
as f g

   

   

     

, ,

inf , inf ,

s sm f m g

U f P U g P

U f P U g P



 



This is true for any partition

A A

f g  
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Example 4:
If :f A  is integrable show that if is integrable and

A A

f f  .

Solution :
Suppose f is integrable first we have to show that f is integrable.

Let P be a partition of A & S be subrectangle of P then

    
  

  

 

sup ;

sup ;

sup ;

Ms f f x x S

f x x S

f x x S

Ms f

 

 

 



Similarly

   Ms f Ms f

         

     

             

   

,

,

, ,

s s
S S

s
S

s s s s
P P

U f P M f V S M f V S

L f P m f V S

M f m f V S M f m f V S

U f P L f P

  

 

     

 

 



 

f is integrable, for 0,  a partition P such that

   , ,U f P L f P .

       , , , ,U f P L f P U f P L f P    

By Riemann criteria
f is integrable over  .

Now   inf ,
P

A

F U f P

   

   

 

inf

inf

inf

s
P

S P

s
P

s
P

P

M f V S

M f V S

M f V S
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inf

inf ,

s
P

M f V S

U f P







A A

f f  

Example 5:
Let :f A  and P be a partition of A show that f is

integrable iff for each sub-rectangle S the function f
s

which consist

of f restricted to S is integrable and that in this case
SA S

ff
s

  .

Suppose :f A is integrable.

Let P be a partition of A & S be a sub-rectangle in P.

Now to show that ;f S
s

 is integrable.

Let 0,  a partition P of A such that    , ,U f P L f P  ( f

is integrable)
Let P P P   then 1P is refinement of both P & P .

   1, ,U f P U f P  &    1, ,L f P L f P 

       1 1, , , ,U f P L f P U f P L f P     ………………… (I)

1P is refinement of P

S is union of some subrectangle of 1P say
1i

S U si


 .

          
1

1 1, , s s
S P

U f P L f P M f m f V S


     for all rectangle.

      

   
1

, ,

i

k

i s
i

Ms f m f V S

f fU P L P
S S



  

 



By Riemann Criterion
f

S
 is integrable.

Conversely, Suppose f
S

is integrable for each S P .

To show that f is integrable.
Let 0,  partition SP of S such that
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   , ,S S

f fU P L P k
s s

  ………………………………. (II)

f
S

 is integrable for each S P where K is number of rectangle in

P.

Let 1P be the partition of A obtained by taking all the
subrectangle defined in the partition SP .

There is a refinement 1
SP of SP containing subrectangles in

1P .

   1 1, ,S SU f s P L f s P k   …………………………… (III)

          1 1

1 1

1 1 1, ,
S S

S P

U f P L f P M f m f V S


    

      

    

1

1 1

1 1

1 1, ,

,

S

s
S P S P

S S
S P

S P

Ms f m f V S

U f s P L f s P

k

k k

 





 
    

 

 

 

  

 





By Riemann Criterian f is integrable.

Let 0

 

   
1 1

1

,

S

S
S P S PS

s
S P S P

f S k L f S P

m f V S

 

 

 
  

 

 
   

 

 

 

Let 1P be a partition of A, obtained by taking allthe subrectangle
defined in SP .
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1

1 1

1

1 1

1

1 1

1

1 1

1

1

, ,

s
S P S PS

A

s
S P

s
S P S P

f S k m f V S

L f P f U f P

M f V S

M f V S

 



 

 
    

 

  

 

 
  

 

 





 

  , S
S P S P S

S P S PA

CU f S P f S
k

f S C f f S

 

 

 
   

 

   

  

   

This is true for all 0

S P S P S

S PA S

f S f f S

f f S

 



  

 

   

 

Example 6:
Let :f A be a continues function show that f is

integrable on A.
Solution :

Let :f A  be a continuous function to show that f is

integrable.

Let 0 , since A is closed rectangle it is closed and bounded
in n .

A is compact.

f is continuous function on compact set f is uniformly

continuously on  .
for the above 0, 0   such that , ,x g A 

     x y f x f y V A     .

Let P be a partition of A such that side length of each

subrectangle is less than n .

If ,x y S for some subrectangles S then

   
2 2

1 1 .... n nx y x y x y     
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2

Sn
n

   
 

     f x f y V A 

S is compact
f is continuous

f attains its bound in S.

Let 1 2, ,....., kS S S be the subrectangle in A. Then for

1 , ,i i ii k x y S    such that        i i si iMs f f x m f f y  .

          
1

, ,
i

k

i s i
i

U f P L f P Ms f m f V S


    

      

 
 

   
 

 
 

1

1

k

i i i
i

k k

i i
i V A

f x f y V S

V S V S
V A V A

V A
V A





 

 
 


 



 

By Riemann Criterion f is integrable.

1.5 REVIEW

After reading this chapter you would be knowing.
 Defining R-integral over a rectangle in n
 Properties of R-integrals
 R-integrabal functions
 Continuity of functions using  -intervals.

1.6 UNIT END EXERCISE

I) Let    ; 0,1 0,1f   be defined by

  1, 0 0
3

13 1
3

f x y if y

if y

    

    

show that f is integrable.

II) Let Q be rectangle in n & ;f Q  be any bounded

function.
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a) Show that for any partition P of Q    , ,L f P U f P

b) Show that upper integral of function f exit.

III) Let f be a continuous non-negative function on  0,1 and

suppose there exist  0 ,x a b such that  0 0f x  show that

 
0

f x dx a  .

IV) Let f be integrable on  ,a b and  : ,F a b  and

   1F x f x then prove that      
a

f x dx F b F a  

V) Which of the following functions are Riemann integrable
over  0,1 . Justify your answer.

a) The characteristic function of the set of rational number in

 0,1 .

b)   sinf x x xy for 0 1x 

 0 3f 

VI) Prove that if f is  -integrable then f is also R-integrable is

the converse true? Justify your answer.

VII) Show that a monotone function defined on an interval  ,a b is

R-inegrable.

VIII) A function  ; 0,1f   is defined as   1 1

1 1 1

3 3 3n n n
f x x

 
   

where n

 0 0f 

show that f is R-integrable on  0,1 & calculate  
1

0

f x dx  .

IX)  f x x x     1,3x  where x   denotes the greatest integer

not greater than x show that f is R-integrable on  1,3 .

X) A function  ; ,f a b   is continuous on  ,a b   0f x 

 ,x a b  and   0
b

a

f x dx  show that   0f x   ,x a b  .
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2
MEASURE ZERO SET

Unit Structure :

2.1 Introduction

2.2 Measure zero set

2.3 Definition

2.4 Lebesgue Theorem (only statement)

2.5 Characteristic function

2.6 FUBIN’s Theorem

2.7 Reviews

2.8 Unit End Exercises

2.1 INTRODUCTION

As we have seen, we cannot tell if a function is Riemann
integrable or not merely by counting its discontinuities one possible
alternative is to look at how much space the discontinuities take up.
Our question then becomes : (i) How can one tell rigorously, how
much space a set takes up. Is there a useful definition that will
concide with our intuitive understanding of volume or area?

At the same time we will develop a general measure theory
which serves as the basis of contemporary analysis.

In this introductory chapter we set for the some basic
concepts of measure theory.

2.2 MEASURE ZERO SET

Definition :
A subset ‘A’ of n said to have measure ‘O’ if for every

0 there is a cover  1 2, ....U U of A by closed rectangles such that

the total volume  
1i

v Ui




 .

Theorem :
A function ‘f’ is Riemann integrable iff ‘f’ is discontinuous

on a set of Measure zero.



22

A function is said to have a property of Continuous almost
everywhere if the set on which the property does not hold has
measure zero. Thus, the statement of the theorem is that ‘f’ is
Riemann integrable if and only if it is continuous atmost
everywhere.

Recall positive measure : A measure function  : 0,u M   such

that  
11

i i
ii

V u V u
 



 
 

 
 .

Example 1:
1) “Counting Measure” : Let X be any set and  M P X the set of

all subsets : If E X is finite, then    E E  if E X is

infinite, then  E  

2) “Unit mass to 0x - Dirac delta function” : Let X be any set and

 M P X choose 0x X set.

  0

0

1

0

E if x E

if x E

    

   

Example 2:
Show that A has measure zero if and only if there is countable

collection of open rectangle 1 2, ,....V V such that iA V  and

 iV v  .

Solution :
Suppose A has measure zero.
For 0,  countable collection of closed rectangle 1 2, ,....V V

such that
1

i
i

A V




 and  
1 2

i
i

V V





 .

For each i , choose a rectangle iu such that i iu v and

   2i iV u V v .

Then
1 1

i i
i i

A v u
 

 

   and      
1 1 1

2i i i
i i i

V u V u V v
  

  

   

 
1

2 2
2

i
i

v u





  

Note that : iu are open rectangles in n conversely,
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Suppose for 0,  countable collection of open rectangles

1 2, ,....u u such that
1

i
i

A u




 and  
1

i
i

V u




 .

For each ,i consider i iV u then iV is a closed rectangle and

   i iV v V u .

Then
1 1

i i
i i

A u v
 

 

   and    
1 1

i i
i i

V v V u
 

 

   .

A has measure zero.

Note : Therefore we can replace closed rectangle with open
rectangles in definition of measure zero sets.
Example 3:

Show that a set with finitely many points has measure zero.

Solution :
Let  1,...., mA a a be finite subset of n .

Let  1 20, , ,.....,i i i ina a a a  and
1 1

1 11 1

1 1
, ...

2 2 2 2

n n

i ii i
Vi a a

 

     
       

     
1 1

1 1

1 1
... ,

2 2 2 2

n n

in ini i
a a

 

     
      

     

Then  

1

1 1
1 2 2

n n

i i
i

V Vi
 



  
  

 


Clearly ia Vi for 1 i m 

1

m

i

A Vi


  and   1 1
1 1 1

1 1

2 2 2

m m

i i
i i i

V Vi


 
  


     

By definition of measure of zero
 A has measure of zero.

Example 4:
If 1 2 3 ....A A A A    and each Ai has measure zero, then

show that A has measure zero.

Solution :
Let 0 and 1 2 ....A A A   with each Ai has measure zero.
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 Each Ai has measure zero for 1, 2,....i   a cover

 1 2, ,....,i i inu U U of Ai

By closed rectangle such that  
1

, 1,2,....
2

ii i
i

V u i





  

Then the collection of iiU is cover A

 
1 1 2

i i
i i

V V
 

 


   

Thus 1 2 ....nA A A A   has measure zero.

Example 5:
Let nA  be a Rectangle show that A does not have

measure zero. But A has measure zero.

Proof :
Suppose A has measure zero.

 A is a rectangle in n

  0V A 

Choose 0 such that  V A …………………….. (I)

A has measure zero

 countable collection of open rectangle  iu such that
1

i
i

A u






and  iV u  .

 A is compact

This open cover has a finite subcover after renaming. We may
assume that  1 2, ,.... ku u u is subcover of the cover  iu .

1
i

i

A u




  .

Let P be partition of A that contains all the vertices all ' 1iu s i  to

k. Let 1 2, ,...., nS S S denote the subrectangle of partitions.

       
1 1 1

n k

j i i
j i i

V A V S V u V u
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which is a contradiction to (I)

 A does not have measure zero.

Note that A is a finite union of set of the form

     1 1, , ..... , ,i i n nB a b a b a b     . B can be covered by are closed

rectangle.      1 1, ..... , ..... ,i i n nB a b a a a b      .

Then  V B depend on  and   0V B  as 0  .

B has measure zero

Boundary of A  A is finite union of measure zero.

A has measur5e zero.

Example 6:
Let nA  with A   . Show that A does not measure zero.

Solution :
Let nA  , with A  

Let x A 

 0r  , such that  , ,B x r A But

   

1

, ;

;
n

i i
i

B x r y A y x r

y A y x r


   

 
    

 


A does not have measure zero.

Example 7:
Show that the closed interval  ,a b does not have measure

zero.

Solution :
Suppose  

1i i
u


be a cover of  ,a b by open intervals.

 ,a b is compact this open cover has a finite subcover.

After renaming, we may assume  1 2, ,...., nu u u is the subcover of  iu

of  ,a b .
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We may assume each iu intersect  ,a b (otherwise replace iu with

 ,iu a b )

Let
1

n

i
i

u u




If u is not connected then  ,a b is contained in one of connected

component of u.

 , ia b u  for some i

 , ja b u  for i j

Which is not possible
u is connected
u is an open interval say  ,u c d Then as    , ,a b u c d 

 iV u d c b a    

In particular we cannot find an open cover of  ,a b with total length

of the cover
2

b a
 .

 ,a b does not have measure zero.

Example 8:
If  0,1A is the union of all open intervals  ,i ia b such that

each rational number in (0,1) is contained in some  ,i ia b . If

 
1

1
i

T bi ai




   then show that the boundary of A does not have

measure zero.

Solution :
We first show that  0,1 \A A 

Note that \A A A  

A is open A A  

Also  0,1Q A

 0,1Q A 

 0,1 A 

But    0,1 0,1A A  

 

 

0,1

0,1 \

A

A A
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Let 1 0T  

If A has measure zero then since 0,  a cover of A with open

intervals such that sum of length of intervals 1 T 

A is closed and bounded
A is compact

 finite subcover  
1

n

i i
u


for A

  1iu T  

Note that   1;1 ; ,i i i i
u i n a b




   cover  0,1 and sum of lengths

of these open intervals is less than 1 1T T   which is not possible

as     10,1 ; 1 ; ,i i i i
u i n a b A




      does not have measure zero.

2.3 DEFINITION

A subset ‘A’ of n has content ‘O’ if for every 0 , there is
a finite cover  1 2, ,....., nu u u of A by closed rectangles such that

 
1

n

i
i

V u




Remark :
1) If A has content O, then A clearly has measure O.
2) Open rectangles can be used instead of closed rectangles in the

definition.

Example 9:
If A is compact and has measure zero then show that A has

content zero.

Solution :
Let A be a compact set in n
Suppose that A has measure zero

 a cover  1 2, ,....u u of A such that  
1

i
i

V u




 for every 0 .

A is compact, a finite number 1 2, ,....., nu u u of iu also covers A and

   
1 1

n

i i
i i

V u V u


 

  

A has content zero.
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Example 10 :
Give one example that a set A has measure zero but A does

not have content zero.

Solution :
Let  0,1A Q 

Then A is countable
A has measure zero

Now to show that A does not have content zero.

Let   , ;1i ia b i n  be cover of A

   , .... ,i i n nA a b a b   

   1 1, .... ,n nA a b a b   

But  0,1A 

  
1

, 1
n

i i
i

a b


 

In particular, we cannot find a finite cover for A such that

 
1

1,
2

n

i i
i

a b




A does not have content zero.

Example 11:
Show that an unbounded set cannot have content zero.

Solution :
Let nA  be an unbounded set.

To show that A does not have content zero
Suppose A has content zero for 0,  finite cover of closed

rectangles  
1

k

i i
u


of A such that

1

k

i
i

A u


 and  
1

k

i
i

V u


 .

Let    1 1, .... ,i i i in inu a b a b  

Let  1 2min , ,.....i i i kia a a a

 1 2max , ,.....i i i kib b b b

then    1 1, .... ,i n nu a b a b  

   1 1, .... ,n nA a b a b   

A is bounded
Which is contradiction

A does not have content zero.
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Example 12:

:f A  is non-negative and 0
A

f  where A is rectangle,

then show that   ; 0x A f x  has measure zero.

Solution :

For   1, ;nn A x A f x
n

   

Note that      , 0 ; 0x A f x x A F x    

 f is non-negative}

  
1 1

1; n
n n

x A f x A
n

 

 

    

We have to show that nA has measure zero

0
A

f  and   inf , 0
P

A

f U f P  for 0,  a partition P such that

 ,U f P n

Let S be a subrectangle in P

if   1
n sS A M f

n
  

clearly  ; nS P S A   covers nA and

       

 

 

1 1

,

s s
S P S P

n

V S M f V S M f
n n

f P n

V S

S A

s p

 

 
   

 

 

 

  

 

 









By definition nA has content zero

nA has measure zero

  , 0x A f x   is countable union of measure zero set.

  ; 0x A f x   has measure zero.

* Oscillation  ,o f a of ‘f’ at a

 for 0  , Let     , , sup ; &M a f f x x A x a      

    , , inf ; &m a f f x x A x a      

The oscillation  ,o f a of f at a defined by

      , lim , , , ,
o

o f a M a f m a f
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This limit always exist since    , , , ,M a f m a f  decreases as 

decreases.

Theorem :
Let A be a closed rectangle and let :f A  be a bounded

function such that  ,O f x  for all x A show that there is a

partition P of A with      , ,U f P L f P V A  .

Proof :
Let       , lim , , , ,

O
x A U f x M x f m x f


 


    

 a closed rectangle xu containing x in its interior such that

u ux x
M M  by definition of oscillation.

 ;xu x A  is a cover of A

A is compact

This cover has a finite subcover say  1 2, ,....,x x xku u u

1

k

i
xi

A u


  .

Let P be a partition for A such that there each subrectangle ‘S’ of P
is contained in some xi

u then    s sM f m f  for each

subrectangle ‘S’ in f

          

 

 

, , s s
S P

S P

U f P L f P M f m f V S

V S

V A





    









2.4 LEBESGUE THEOREM (ONLY STATEMENT)

Let A be a closed rectangle and :f A  is bounded

function. Let B x ; f is not continuous at x}. Then f is integrable

iff B is a set of measure zero

2.5 CHARACTERISTIC FUNCTION

Let nC   . The characteristics function c of C is defined by

  1c x if x C    

0 if x C   
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If C A where A is a closed rectangle and :f A is bounded

then
C

f is defined as c

C

f  provided cf  is integrable [i.e. if f

and c are integrable]

Theorem :
Let A be a closed rectangle and C A . Show that the

function :c A   is integrable if and only if C has measure zero.

Proof :
To show that :C A  is integrable iff C has measure

zero.

By Lebesgue theorem, it is enough to show that  : cC x A    is

discontinuous}

Let a C   an open rectangle ‘u’ containing a such that u C

  1c n n U   

c is continuous at a.

Let  a Ext c  Exterior of C

[By definition union of all open sets disjoints from C]
Ext (C) is an open set

 an open rectangle u containing such that  U Ext c

  0c n n u   

c is continuous at a

If a c then c is continous at a ……………………. (I)

Let a c  for any open rectangle U with a in its interior contains
a point y C  & a point nz c

   1& 0c cy z   

c is not continuous at a

 : cc x A    is discontinuous at x }

By Lebesgue Theorem.

c is interrable if and only if c has measure zero.

Theorem :
Let A be a closed rectangle and C A
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If C is bounded set of measure zero and c

A

 exist then show that

0c

A

  .

Proof :
C A be a bounded set with measure zero.

Suppose c

A

 exist c is integral

To show that 0c

A

 

Let P be a partition of A and S be a subrectangle in P.

S does not have measure zero

S C

x S  but x C

 

 

0

0

c

s c

x

m





 

 

This is true for any subrectangle S in P

     , 0c s cL P m V C   
This is true for any partition P

 sup , ;c c

A

L P P   is partition of}

c

A

O 

2.6 FUBINI’S THEOREM

Fubini’s Theorem reduces the computation of integrals over
closed rectangles in , 1n n  to the computation of integrals over

closed intervals in  . Fubini’s Theorem is critically important as it
gives us a method to evaluate double integrals over rectangles
without having to use the definition of a double integral directly.

If :f A R is a bounded function on a closed rectangle then

the least upper bound of all lower sum and the greatest lower bound
of all upper sums exist. They are called the lower integral and upper

integral of f and is denoted by
A

L F and
A

U F respectively.
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Fubini’s Theorem
Statement : Let nA  and nB   be closed rectangles and let

:f A B  be integrable for x A , Let :xg B  be defined by

   ,xg y F x y and let

   

   

,

,

x

B B

x

B B

x L g L f x y dy

u x U g U f x y dy

  

  

 

 



Then  and  are integable on A and  
A B A A B

f L L f x dy dx


 
   

 
   

   ,
A B A A B

f u x dx U f x y dy dx


 
    

 
   

Proof :
Let AP be a partition of A and BP be a partition of B. Then

 ,A BP P P is a partition of A B

Let AS be a subrectangle in AP and BS be a subrectangle in BP

Then by definition,

A BS S S  is a subrectangle in P

     

   

1

A B

B B

s
S P

s s A B
S P

L f P m f V S

m f V S S








 





     
A B

A A B B

s s B A
S P S P

m f V S V S
 

 
  

 
  …………………. (I)

For    ,
A B BA s s s xx S m f M g 

For ,Ax S

       
A B B

B B

s s A B s x B
S P

m V S V S m g V S


   

   ,x B x

B

L g P L g L x  

This is true for any x A

       

    

,
A B

A A B B

A

A A

s s B A
S P S P

s A
S P

L f P m f V S V S

m L x V S


 



 
   

 



 



  , AL x P  ……………………………………… (II)
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From (I) & (II)

    , , AL f P L x P ………………………………………… (III)

Now      , S
S P

U f P M f V s




   
A B

A A

B B

S S A B
S P
S P

M f V S S



  

     
A B

A A B B

S S B A
S P S P

M f V S V S 
 

      
  …………….. (IV)

For    ,
A B BA S S S xx S M f M g 

For Ax S ,

       

   ,

A B B

B B B B

S S B S x B
S P S P

x B x

B

M f V S M g V S

u g P u g x

 

 


 



  

 



This is true for any x A .

     
A B

A A B B

S S B A
S P S P

M f V S V S 
 

     
 

    
A

A A

S A
S P

M u x V S


 

  , Au x P ……………………………………….. (V)

from (IV) & (V)

    , , AU f P U u x P ……………………………. (VI)

 By (III) & (VI)

       , , ,A AL f P L x P u L x P 

    , ,Au x P U f P  ………………………… (VII)

Also

          , , , ,A A AL f P L x P L x P u x P    …………. (VIII)

f is integrable

     

       

sup , inf ,

sup , inf ,
B

A

PP
A B

A A
PP

A B

L f P U f P f

L x P u x P f





 

  



 

 x  is integrable
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   ,
A B A A B

f x L f x y dx


      
     ………………………. (IX)

Also by (VIII) & (IX)

       sup , inf ,
A

A

A A
PP

A B

L L x P U u x P f


  

 u x is integrable.

   ,
A B A A B

f u x dx U f x y dx 


       
   

Hence Proved

Remark :
The Fubini’s theorem is a result which gives conditions under

which it is possible to compute a double integral using interated
integrals, As a consequence if allows the under integration to be
changed in iterated integrals.

 

 

,

,

A B B B

B A

f L f x y dx dy

U f x y dx dy

 

  



     

     

  

 

These integrals are called iterated integrals.

Example 13:
Using Fubini’s theorem show that 12 21D f D f if  12D f and

 21D f are continuous.

Solution :
 Let A R and :f A  continuous

T.P.T 12 21D f D f

Suppose 12 21D f D f

0 0,x y in domain of f such that

    12 21 0D f a D f a 

without loss of generality,     12 21 0D f a D f a  or

  12 21 0D f D f a  ………………………………….. (I)
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  12 21 , 0
A

D f D f x g  

Let    , ,A a b c d 

 By Fubini’s Theorem

   

    

       

21 21

2 2

, ,

, ,

, , , ,

d b

A c a

d

c

D f x y D f x y dx dy

D f b y D f g y dy

f b d f b c f a d f a c

 

  





   

  



Similarly,

         

   

  

12

21 12

21 12

, , , , ,

, ,

, 0

A

A A

A

D f x y f b d f b c f a d f a c

D f x y D f x y

D f D f x y

   

 

  



 



Which is contradiction to (I)

12 21D f D f proved

Example 14:
Use Fubini’s Theorem to compute the following integrals.

1)

211

2 2

0 0

.

1

x
dy dx

I
x y




  

Solution :
2

2

2

11

2 2

0 0

11

2 2

0 0

11

1

2 2
0 0

.

1

1

1
tan

1 1

x

x

x

dy dx
I

x y

dy
dx

x y

y
dx

x x














 


 

 
   

   

 

 


1

2
0

1
. .

41
dx

x
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1

2
0

1
2

0

4 1

log 1
4

log 1
4

dx

x

x x

x










 
   

 

    



ii)
1 1 2

0

sin
2

y

x
I dy dx

        

Solution :

  , ; 1,0 1C x y y x y    

By Fubini’s Theorem

 

1 1 2

0

1 2

0 0

1 2

0

0

1 2

0

sin
2

sin
2

sin
2

sin
2

y

x

x

x
I dxdy

x
dxdy

x
y dx

x
x dx









      

      

      

      

 

 







 

 

 

x  1
Put

2

,
2

x
t




t 0
2



2

2

x
dx dt

dt
xdx









 

 

2 2

2
0

0 0

1 1
sin sin cos

1 1
0 1

dt
I t t dt t
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2.7 REVIEWS

After reading this chapter you would be knowing.
 Definition of Measure zero set and content zero set.
 Oscillation  ,O f a

 Find set contain measure zero on content zero
 Statement of Lebesgue Theorem
 Definition of characteristic function & its properties.
 Fubini’s Theorem & its examples.

2.8 UNIT END EXERCISES

1. If B A and A has measure zero then show that & has measure
zero.

2. Show that countable set has measure zero.
3. If A is non-empty open set, then show that A is not of measure

zero.
4. Give an example of a bounded set C if measure zero but C does

not have measure zero.
5. Show by an example that a set A has measure zero but A does

not have content zero.
6. Prove that    1 1, .... ,n na b a b  does not have content zero if i ia b

for each i .
7. If C is a set of content zero show that the boundary of C has

content zero.
8. Give an example of a set A and a bounded subset C of A measure

zero such that c

A

 does not exist.

9. If f & g are integrable, then show that gf is integrable.

10. Let  0,1U  be the union of all open intervals  ,i ia b such that

each rational number in  0,1 is contained in some  ,i ia b . Show

that if cf  except on a set of measure zero, then f is not

integrable on  0,1 .

11. If    : , ,f a b a b   is continuous; then show that

   , ,
b b b b

a x a x

f x y dx dy f x y dy dx     

12. Use Fubini’s theorem, to compute
2 2

0 0

sin x
dy dx

x y

 

 



39

13. Let    1,1 0, 2A    and :f A  defined by

 , sin xf x y x y ye  compute
A

f

14. Let    , , sinf x y z z x y  and    0, , 0,1
2 2

A        

computer
A

f .




