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Unit I. Dual spaces 

1. Vector spaces over a field, linear independence, basis for finite dimensional and 

infinite dimensional vector spaces and dimension. 

2. Kernel and image, rank and nullity of a linear transformation, rank-nullity 

theorem (for finite dimensional vector spaces), relationship of linear 

transformations with matrices, invertible linear transformations. The following 

are equivalent for a linear map T : V → V of a finite dimensional vector space V: 

(a) T is an isomorphism. 

(b) ker T = {0}. 

(c) Im(T) = V. 

3. Linear functionals, dual spaces of a vector space, dual basis (for finite 

dimensional vector spaces), annihilator      in the dual space      of a subspace W of 

a vector space V and dimension formula, a k-dimensional subspace of an n- 

dimensional vector space is intersection of n−k many hyperspaces. Double dual 

    of a Vector space V and canonical embedding of V into is 

isomorphic to V when V is of finite dimension. 

(ref:[1] Hoffman K. and Kunze R.). 

4. Transpose of a linear transformation T. For finite dimensional vector spaces: 

rank ( ) =rank T, range( ) is the annihilator of kernel (T), matrix representing 

   . (ref:[1] Hoffman K and Kunze R) 



Unit II. Determinants & Characteristic Polynomial 

Rank of a matrix. Matrix of a linear transformation, change of basis, similar 

matrices. Determinants as alternating -forms, existence and uniqueness, Laplace 

expansion of determinant, determinants of products and transposes, adjoint of a 

matrics. determinants and invertible linear transformations, determinant of a 

linear transformation. Solution of system of linear equations using Cramer’s rule. 

Eigen values and Eigen vectors of a linear transformation, Annihilating 

polynomial, Characteristic polynomial, minimal polynomial, Cayley-Hamilton 

theorem. 

(Reference for Unit II: [1] Hoffman K and Kunze R, Linear Algebra). 

Unit III. Triangulation of matrices 

Triangulable and diagonalizable linear operators, invariant subspaces and simple 

matrix representation (for finite dimension). 

(ref: [5] N.S. Gopalkrishnan & [3] Serge Lang) 

Nilpotent linear transformations on finite dimensional vector spaces, index of a 

Nilpotent linear transformation. Linear independence of                        

where N is a nilpotent linear transformation of index k ≥ 2 of a vector space V and 

u ∈ V with         

(Ref: [2] I.N.Herstein). 

For a nilpotent linear transformation N of a finite dimensional vector space V and 

for any subspace W of V which is invariant under N, there exists a subspace    of V 

such that . 

(Ref:[2] I.N.Herstein). 

Computations of Minimum polynomials and Jordan Canonical Forms for 3×3- 

matrices through examples. 

(Ref:[6] Morris W. Hirsch and Stephen Smale). 



 
 

Unit IV. Bilinear forms 

1. Inner product spaces, orthonormal basis, Gram-Schmidt process. 

2. Adjoint of a linear operator on an inner product space, unitary operators, 

self adjoint operators, normal operators. 

(ref:[1] Hoffman K and Kunze R). 

Spectral theorem for a normal operator on a finite dimensional complex inner 

product space. (ref:[4] Michael Artin, Ch. 8). 

Spectral resolution (examples only). (ref:[1] Hoffman K and Kunze R, sec 9.5). 

3. Bilinear form, rank of a bilinear form, non-degenerate bilinear form and 

equivalent statements. 

(ref:[1] Hoffman K and Kunze R). 

4. Symmetric bilinear forms, orthogonal basis and Sylvester’s Law, signature 

of a Symmetric bilinear form. (ref:[4] Michael Artin). 
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LINEAR EQUATIONS

Unit Structure :

1.0 Introduction

1.1 Objectives

1.2 System of Linear Equation

1.3 Solution of the system of Linear Equations by Gaussian
Elimination method

1.0 INTRODUCTION

Linear word comes from line. You know the equation of a
straight line in two dimensions has the form ax by c   . This is a

linear equation in two variables x any y. solving this equation means
to find x and y in . which satisfied ax by c   . The geometric

interpretation of the equation is that the set of all points satisfying
the equation forms a straight line in the plane through the point

 / ,c c o  and with slope /a bc  . In this chapter, we shall review the

theory of such equations in n variables and interpret the solution
geometrically.

1.1 OBJECTIVES

After going through this chapter, you will be able to :

 Understand the characteristic of the solutions.
 Solve if the equations are solvable.
 Interpret the system geometrically.

1.2 SYSTEMS OF LINEAR EQUATIONS

The collection of linear equations :

11 1 1n n 1

21 1 2n n 2

a x + ...+ a x = b

a x + ...+ a x = b



1 1 n n mam x + ...+ am x = b
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is called a system of m linear equations in n
unknowns 1 nx ,..., x . Here ij ia ,b ∈ R are given. We shall write this in

a short form as


n

ij j i
j =1

a x = b ,1 ≤ i ≤ m ………………….. (1.2.1)

Solving this system means to find real numbers

1 nx ,..., x which satisfy the system. Any n-tuple ( 1 nx ,..., x ) which

satisfies the system is called a solution of the system. If

1 2 mb = b = - = b = 0 , we say that the system is homogeneous which

can be written is short form, in


n

ij j
j =1

a x = 0,1 ≤ i ≤ m …………………… (1.2.2)

Note that 0 = (0, … , 0) always satisfies (1.2.2). This solution
is called the trivial solution. We say ( 1 nx ,..., x ) is a nontrivial if

( 1 nx ,..., x )  ≠ 0,..,0 . That is if there exits it least one such

that ix ≠ 0 .

Perhaps the most fundamental technique for finding the
solutions of a system of linear equations is the technique of
elimination. We can illustrate this technique on the homogenous
system

1 2 3

1 2 3

2x - x + x = 0

x + 3x + 4x = 0
.

If we added (-2) times the second equation to the first
equation we obtain 2 3-7x - 7x = 0 i.e. 2 3x = -x . Similarly eliminating

x2 from the above equation, we obtain 1 37x + 7x = 0 i.e. 1 3x = -x . So

we conclude that if  1 2 3x ,x ,x is a solution then 1 2 3x = x = -x . Thus

the set of solutions consists of all triples (a, a, -a). Let  1 na ,..,a be a

solution of the homogeneous system (1.2.2). Then we see that

 1 nαa ,...,αa is again a solution of (1.2.2) for any . This has the

following geometric interpretation in the case of the three
dimensional space 3  .

Let (r, s, t) be a solution of the systemax + by + cz = 0 . That

is, ar + bs + ct = 0 . Then the solution set is a plane through the
origin. So the plane contains (0, 0, 0) and (r, s, t). The line joining

these two points is  
x - 0 t - 0 z - 0

= = = -α
0 - r 0 - s 0 - t

(say) i.e.
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x = αr, y = αs,z = αt is again a solution of the system ax + by +

cz = 0.

Also if  1,...., nb b  is another solution of (1.2.2), then

 1 1 n na + b ,..,a + b is again a solution of (1.2.2). These two together

can be described as the set of solutions of a homogeneous system of
linear equations closed under addition and scalar multiplication.

However, the set of solutions of a non-homogeneous system
of linear equations need not be closed under addition and scalar
multiplication. For example, consider the equation 4x - 3y = 1, a =

(1, 1) is a solution but    α 1,1 = α,α is not a solution ifα ≠1 . Also,

    

1
b = ,0

4
is another solution but

    

5
a + b = ,1

4
is not a solution.

The homogeneous system given by (1.2.2) is called the
associated homogeneous system of (1.2.1).

Let S be the set of solutions of the non-homogenous system
and hS be the set of solution of the associated homogenous system

of equations. Assume S  . hS  is always non-empty, as the privial

solution 0,...,0 hS  . Let x S and ny S . We will show that for

any , x y S  .

Since x S we have
1

n

ij j i
j

a x b


  similarly,
1

0
n

ij j
j

a y


 for

1 i m  . For  and1 i m  , we have

 
1

n

ij j j
j

a x y


 =
1 1

n n

ij j ij j
j j

a x a y
 

 

1

n

ij j
j

a x




1ib for i m   

So x y is also a solution of (1.2.1).

Now if  1,...,
s

nz z  z and  1,...,
s

nx x   thus

1

n

ij i i
j

a z b


  and
1

n

ij i i
j

a x b


  .Therefore

 
1 1 1

n n n

ij j j ij j ij j
j j j

a x z a x a z
  

     0i ib b    .
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That is, if x and z are any two solutions of the non-
homogeneous system then x - z is a solution of the homogeneous
system. That is, hS  x z . So by the above two observations we can

conclude a single fact by following way.

Let us fix x S . Then if we define  h hx + S = x + y y ∈ S  .

The first observation that x + αy is also a solution if (1.2.1)

implies nx S S   . Also for all  z ∈ S,z = x + z - x ∈ x + S . This

impliesS ⊂ x + S . So hS = x + S . This x is called a particular

solution of (1.2.1). So we have the fact :

To find all the solution of (1.2.1) it is enough to find all the
solutions of the associated homogeneous system and any particular
solution (1.2.1).

These are mainly for the purpose of reviewing the so-called
Gaussian elimination method of solving linear equations. Here we
eliminate one variable and reduce the system to another set of linear
equations with fewero number of variables. We repeat the above
process with the system so obtained by deleting again one equation
till we are finally left with a single equation. In this last equation,
except for the first xi terms, the rest of the variables are treated as
“free” and assigned arbitrary peal numbers. Let us clarify this by the
following examples.

Example 1.2.1 :

1

2

: 1

2 2

E x y z

E x y z

  

   

To eliminate y we do 1 2E E and get the equation 3 2 3x z  .

We treat z as the free variable and assign the value t to z. i.e. z = t. so
2

1
3

x t  . Substituting y and z in E1 we get / 3x t . Thus the

solution set S in given by
           

2 1
S = 1 - t,- t,t / t ∈ R

3 3

 
           

2 1
= 1,0,0 + t - ,- ,1 / t ∈ R

3 3
.

So (1,0,0) is a particular solution of the given system which
satisfies both E1 and E2, hence lies on both the planes defined by the
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equations E1 and E2. And
    

2 1
- ,- ,1

3 3
is a point of 3 which lies on

the plane through the origin corresponding to the associated
homogeneous system. Hence all the point on the line joining
    

2 1
- ,- ,1

3 3
and the origin also lie on the plane through the origin.

Example 1.2.2 :

Consider the system -

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

E := x + x + x + x =1

E := x + x + x - x = -1

E := x + x + x + 5x = 5

Here E1 - E2 gives us 2x4 = 2. So x4=1 substituting this value
in above equation we get x1 + x2 + x3 = 0. This is a linear equation in
three variables and we can think x2 and x3 as free variables. So we
let x2=s and x3 = t so that x1 = - s - t. Hence the solution set is

S :   = -s - t,s,t,1 s,t ∈ R

      

      

= s -1,1,0,0 + t -1,0,1,0 + 0,0,0,1 s,t ∈ R

= 0,0,0,1 + s -1,1,0,0 + t -1,0,1,0 s,t ∈ R

Check your Progress :

Solve the following systems :

1) 3x + 4y + z = 0

x + y + z = 0  
 Ans. t(-3,2,1)t ∈ R

2) x - y + 4z = 4

2x + 6z = -2  
 Ans. s(-1,-5,0)+ t(-3,1,1)s t ∈ R

3) 3x + 4y = 0

x + y = 0  Ans(. 0,0)

Observation :

By the above discussion we see that a homogeneous, system
need not always have non-trivial solutions. We also observe that if
the number of unknowns is more than the number of equations then
the system always has a non-trivial solution.
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This can be geometrically interpreted as follows :

Let ax + b = 0, this single equation has two variables and its
solutions are all points lying on a line given by the equation.

Again

1 1 1

2 2 2

a x + b y + c z = 0

a x + b y + c z = 0

always has non-trivial solutions which lie on the line of
intersection of the above two planes.

Theorem 1.2.1 :

The system 
n

ij j
j =1

a x = 0 for 1 ≤ i ≤ m always has non-trivial

solution if m < n.

Proof : Let m = 1 and n > 1.

11 1 1n n∴ a x + ...+ a x = 0 .

If each 0ia  then any value of the variables will be a solution and

a non-trivial solution ceptainly exists. Suppose some co-efficient,
say ija ≠ 0 . Then we write

 -1
j 1j 11 1 1j -1 j -1 ij +1 j +1 1n nx = -a a x + ..1 + a x + a x + .....+ a x .

Hence if we choose i  arbitrarily for all i j and take

 -1
j 1 j 11 1 1j -1 j -1 1j +1 j +1 1n nα = -a a α + ..+ a α + a α + ..+ a α . then 1,.., n  is a

solution of 
n

xj
ij

j =1

a = 0 . Thus for m = 1 and n > 1 we get a non trivial

solution.

We prove the result by induction on m. As induction
hypothesis, let the system (m-1) equation in k variables where (m-
1)<k, has a non-trivial solution. We prove it for m and n with m < n.

Let 
n

xj
ij

j =1

a = 0 for 1 ≤ i ≤ m be a system of m equations in n

unknowns with m < n. If each a ij = 0, only n tuple (x1, …. , xn) is a

solution. Hence non-trivial solutions exist. If not let there exist (i, j)
such that 0ija  . Let



7

1 11 1 1n n

2 21 1 2n n

E := a x + ....+ a x = 0

E := a x + ....+ a x = 0



i i1 1 ih nE := a x + ....+ a x = 0



m m1 1 mn nE := a x + ....+ a x = 0

Since 0ija  , from Ei we have -1
j j j ij 1 i, j -1 j -1x = -a a x + ..+ a x +

i, j +1 j +1 in na x + ..+ a x .

If we substitute this value of xj in other equations we will get
a new system of (m-1) equations in (n-1) variables 1 j -1 j +1 nx ,..x ,x ,..x

as follows :

For 1 ≤ k ≤ m,k ≠ i  
   -1

k kr kj i j ir r
r ≠ j

E := a + a(-a )a x = 0

because by E1 we get

  
  

-1
11 1 1, j -1 j -1 1j i j i1 1 i, j -1 j -1 i, j +1 j +1 in na x + ..ta x + a -a a x + ..+ a x ta x + ..+ a x +

1, 1 1 1.. 0j j n na x a x     which implies.

  
  

-1
11 1j ij i1 1a + a -a a x + - - - - - +

  
 
 

-1

1j -1 1j ij i, j -1 ja + a -a a x + - - - - - +

  
  

-1
1n 1j ij in na + a -a a x = 0

i.e.   
  

r≠ j

n
-1

i 1r ij ij ir r
r =1

E := a + a -a a x = 0 so by induction

hypothesis (m-1) equation Ek has a non-trivial solution.

1 j -1 j +1 nx ,...,x ,x ,..,x as m-1 < n -1 . In particular, kx ≠ 0 for

some k ≠ j . We take j jx = α so, -1
j ij ir p

r ≠ j

α = -a a α . We claim

1 j -1 j nα ,..,α ,α ,..,α is a non-trivial solution.

For 1 k m  ,

k kr r kj j
r j

E a x a


  

 1
kr r kj ij is s

r j r j

a a a a

 

     

 1
kr kj ij ir p

r j

a a a a



      

kE  for k i
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As  1,... n  is a solution of iE ,  ir p ir r ij
r

a a a    

1
ij ir r

r j

a a



      
   0ir ir r

r j

a


   

 1, , n   is non-trivial since 0k  for some k j by the induction

hypothesis.

Thus 1,...., n  is a non-trivial solution of the original system.

Exercise 1.1 :

1) Find one non-trivial solution for each one of the following
systems of equations.

a) x + 2y + z = 0

b) 3x + y + z = 0
x + y + z = 0

c) 2x - 3y + 4z = 0
3x + y + z = 0

d) 2x + y + 4z + 19 = 0
-3x + 2y - 3z + 19 = 0
x + y + z = 0

2) Show that the only solution of the following systems of
equations are trivial.

a) 2x + 3y = 0
x - y = 0

b) 4x + 5y = 0
-6x + 7y = 0

c) 3x + 4y - 2z = 0
x + y + z = 0
-x - 3y + 5z = 0

d) 4x - 7y + 3z = 0
x + y = 0
y - 6z = 0
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1.3 SOLUTION OF THE SYSTEM OF LINEAR
EQUATIONS BY GAUSS ELIMINATION METHOD

Let the system of m linear equations in n unknown be

1

,1
n

ij j i
j

a x b i m


   .

Then the co-efficient matrix is -

11 12 1

1 2

....

....

....

n

m m mn

a a a

a a a

         

  

Also we define the augmented matrix by

11 12 1 1

1 2

.... b

....

.... b

n

m m mn m

a a a

a a a

         

   

We will perform the following operations on the system of
linear equations, called elementary row operations :

Multiply one equation by a non-row number.

Add are equation to another.

Interchange two equations.

These operations are reflected in operations on the augmented
matrix, which are also called elementary row operations.

Suppose that a system of linear equations is changed by an
elementary row operation. Then the solutions of new system are
exactly the same as the solutions of the old systems. By making row
operations, we will try to simplify the shape of the system so that it
is earier to find the solutions.

Let us define two matrices to be row equivalent if one can be
obtained from the other by a succession of elementary row
operations. If A is the matrix of co-efficients of a system of linear
equations, and B the column vector as above, so that (A, B) in the
augmented matrix and if (A1,B1) in row-equivalent of the system.
AX = B are the same as the solutions of the system A1 X = B1.
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Example 1.3.1 :

Consider the system of linear equations

3 2 2 1

2

2 3 4

x y z

x y z

x y z

   

  

  

The augmented matrix is :

3 -2 1 2 1

1 1 -1 -1 -2

2 -1 3 0 4

        

Subtract 3 times second row from first row :

0 -5 4 5 7

1 1 -1 -1 -2

2 -1 3 0 4

        

Subtract 2 times second row from third row :

0 -5 4 5 7

1 1 -1 -1 -2

0 -3 5 2 8

        

Interchange first and second row.
1 1 -1 -1 2

0 -5 4 5 7

0 -3 5 2 8

        

Multiply second row by -1

1 1 -1 -1 -2

0 5 -4 -5 -7

0 -3 5 2 8

        
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Multiply second row by 3 and third row by 5

1 1 -1 -1 -2

0 15 12 15 -21

0 -15 25 10 40

           

Add second row to third row.

1 1 -1 -1 -2

0 15 -12 -15 -21

0 0 13 -5 17

        

The new system whose augmented matrix is the last matrix
coin be written as :

2

15 12 15 21

13 5 19

x y z

y z

z

  

  

 

Now it we consider

,

19 5

13

t

t
z






 
12

15 19 5 15 21
13

255 51

195

255 51 19 5
2

195 13

15 54

194

y t t

t
y

t t
x t

t

   




 
   




This method is known as Gauss elimination method.

Example 1.3.2 :

Consider the system of linear equations.

1 2 3 4 5

1 2 5

1 2 5

3 4 5

1 2 3 4 5

1

1

2 2 1

1

2 2 2 1

x x x x x

x x x

x x x

x x x

x x x x x

    

   

   

  

    
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The augmented matrix is :

1 1 1 1 1 1

-1 -1 0 0 1 -1

-2 -2 0 0 1 1

0 0 1 1 1 -1

1 1 2 2 2 1

                

Adding 2nd row to 1st row, two times 3rd row to 1st row and
subtracting last row from 1st row we get.

1 1 1 1 1 1

0 0 1 1 2 0

0 0 2 2 3 3

0 0 1 1 1 -1

0 0 1 1 1 0

                

Subtracting twice the 2nd row from 3rd row, 4th row from 2nd

row and 5th row from 2nd row we get

1 1 1 1 1 1

0 0 1 1 2 0

0 0 0 0 -1 3

0 0 0 0 0 -4

0 0 0 0 0 -3

                

The equations represented by the last two rows are :

1 2 3 4 5

1 2 3 4 5

4

3

ox ox ox ox ox

ox ox ox ox ox

    

    

Which implies that the system is inconsistent.

Exercise 1.2 :

For each of the following system of equations, use Gaussian
elimination to solve them.

i) 1 2 33 2 4x x x  

1 2 3

1 2 3

2 2 1

11 2 14

x x x

x x x

  

  
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ii) 1 2 32 4x x x  

1 2 3

1 2 3

2 3 1

7 3 4 7

x x x

x x x

  

  

iii) 1 2 3 4 0x x x x   

1 2 3 4

1 2 3 4

1 2 3 4

2 3 2

2 2 3

2 5 2 2 4

x x x x

x x x x

x x x x

   

   

   

iv) 1 2 3 43 3x x x x   

1 2 3 4

1 2 3 4

2 2 2 8

3 2 1

x x x x

x x x x

   

   

Answer

Exercise 1.2 :

i)
5 1 7

, , :
4 8

x x
x x rual

            
    

ii) inconsistent

iii) inconsistent

iv)
15 5 1 1

, , , ,
4 8 4 8

x
x x

               
          


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2

VECTOR SPACE

Unit Structure :

2.0 Introduction
2.1 Objectives
2.2 Definition and examples

2.2.1 Vector Space
2.2.2 Sub space
2.2.3 Basis and Dimension

2.0 INTRODUCTION

The concept of a vector is basic for the study of functions of
several variables. It provides geometric motivation for everything
that follows. We know that a number can be used to represent a
point on a line, once a unit length is selected. A pair of numbers (x,y)
can be used to represent a point in the plane where as a triple of
numbers (x,y,z) can be used to represent a point in 3 dimensional
space denoted by 3 . The line can be called 1- dimensional space
denoted by  or plane. 2-) dimensional space denoted by

2 Continuing this way we can define a point in n-space as (x1, x2, -
z, xn). Here  is a set of real numbers and x is an element in
which we write as x . 2 is a set of ordered pair and
(x,y) 2 . Thus X is an element of n or nX  means X = (x1, x2,
…, xn). These elements as a special case are called vectors from
respective spaces. The vectors from a same set or space can be added
and multiplied by a number. It is now convenient to define in general
a notion which includes these as a special case.

2.1 OBJECTIVES

After going through this chapter you will be able to :

 Verify that a given set is a vector space or not over a field.
 Get concept of vector subspace.
 Get concept of basis and dimension of vector space.
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2.2 DEFINITION AND EXAMPLES

We define a vector space to be a set on which “addition” and
“readar multiplication” are defined. More precisely, we can tell.

2.2.1 Definition : Vector Space

Let (F, + , . ) be a field. The elements of F will be called
scalars. Let V be a non-empty set whose elements will be called
vectors. Then V is a vector space over the field F, if

1. There is defined an internal composition in V called addition of
vectors and denoted by ‘+’ in such a way that :

i) V for all , V  (closer property)

ii)  for all , V  (commutative property)

iii)         for all , , V    (Associate property)

iv) an element O V such that O  for all V  (Existence of
Identity)

v) To every vector V  a vector V such that    

(Existence of inverse)

2. There is an external composition in V over F called scalar
multiplication and denoted multiplicatively in such a way that :

i) a V for all a F and V  (Closer property)
ii)  a a a    for all a F and , V  (Distributive

property)

iii)  a b a b    for all , ,a b F V  (distributive property)

iv)     ,ab a b a b F     and V  .

v) 1 for all V  and 1 in the unity element of F.

When V is a vector space over the field F, we shall say that
V(F) is a vector space or sometimes simply V is a vector space. If F
is the field  or real numbers, V is called a real vector space;
similarly if F is Q or C, we call V as a rational vector space or
complex vector space.

Note 1 : There should not be any confusion about the use of the
word vector. Here by vector we do not mean the vector quantity
which we have defined in vector algebra as a directed line segment.
Here we shall call the elements of the set V as vectors.
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Note 2 : The symbol ‘+’ is used for addition of vectors which is also
used to denote the addition of two scalars in F. There should be no
confusion about the two compositions. Similarly for scalar
multiplication, we mean multiplication of an element of V by an
element of F.

Note 3 : In a vector space we shall be dealing with two types of zero
elements. One is the zero elemen of F which is owl well known 0.
Another is the zero vector in V i.e. if 3 , (0,0,0)V O  .

Example 1 : The n-triple space, Fn.

Let F be any field and let V be the set of all n-tuples

 1 2, ,..., nx x x of scalars xi in F. If  1 2, ,..., ny y y with yi in F,

the sum of  and  is defined by  1 1,... n nx y x y   . The

product of scalar c and vector  is defined by  1 2, ,..., nc cx cx cx  .

This vector addition and scalar multiplication satisfy all conditions
of vector space. (Verfication is left for the students).

For n = 1, 2 or 3, F =  , 2 or 3 are basic examples of
vector space.

Example 2 : The space of mxn matrices, Mmxn(F).

Let F be any field and let m and n be positive integers. Let
Mmxn(F) be the set of all mxn matrices over the field F. The sum of
two vectors A and B in Mmxn(F) is defined by   ij ijij

A B A B   .

The product of a scalar C and the matrix A is defined by

  ijij
CA CA .

Example 3 : The space of functions from a set to a field.

Let F be any field and let S be any non-empty set. Let V be
the set of all function from the set S into F. The sum of two vectors
ƒ and g in V is the vector ƒ + g i.e. the function from S into F,

defined by       .n n nf g f f f g f  

The product of the scalar c and the function ƒ is the function

e ƒ defined by     n ncf f cf f .

For this example we shall indicate how one verifies that V is

a vector space over F. Here  : :V f f S F  . We have,
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       .f g s f s g s s S     Since ƒ (s) and g(s) are in F and F is

a field, therefore ƒ (x) +g(x) in also in F. Thus ƒ+g is also a
function from S to F. Therefore ,f g V f g V    . Therefore V is

closed under addition.

Associatvity of addition :

We have         f g h x f g x h x       (by def.)

  ( ) ( )f x g x h x     (by def)

    ( )f x g x h x    

[  , ( ), ( )f x g x h x are elements of F and addition in F is

associative]

    

   

f x g h x

f g h x

  

    

   f g h f g h     

Commutativity of addition :

We have       f g x f x g x  

   g x f x  [ addition is commutative in F]

  ƒg x 

f g g f   

Existence of Additive identity :

Let us define a function  :O S F such that   O x O x S   .

Then O V and it is called zero function.

We have         ( ) ( )f O x f x O x f x O f x     

f O f  

 The function O is the additive identity.

Existence of additive inverse :

Let .f V Let us define a function :f S F  by

   f x f x x S      . Then f V  and we have

        f f x f x f x          
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   

   
  

f x f x

f x f x

O O x

    

 

 

  f f O   

 the function - ƒ in the additive inverse of f.

Now for scalar multiplication if F and f V , then

    

,x S

cf x cf x

 


.

Now  f x F and c F . Therefore c ƒ (x) is in F. Thus V is

closed with respect to scalar multiplication.

Next we observe that
i) If c F and ,f g V then

          c f g x c f g x c f x g x              
( ) ( )

( )( ) ( )( )

cF x cg x

cf x cg x

 

 

( )c f g cf cg   

ii) If c1, c2 F and f V , then

     1 2 1 2ƒ ( )c c x c c f x
    

1 2

1 2

( ) ( )

( )( ) ( )( )

c f x c f x

c f x c f x

 

 

 1 2 1 2c c f c f c f   

iii) If 1 2,c c F and f V then

         1 2 1 2 1 2c c f x c c f x c c x        

  

   

1 2

1 2ƒ

c c f x

c c x

   
   

   1 2 1 2ƒc c f c c 

iv) If 1 is the unity element of F and f V , then

      1 1ƒ

1

f x x f x

f f

 

 

Hence V is a vector space over F.
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Example 4 : The set of all convergent sequences over the field of
real numbers.

Let V denote the set of all convergent sequences over the
field of real numbers.

Let    1 2 ,, ,..., ..... ,n n          1 2 ,, ,..., .....n n     

and    1 2 ,, ,..., .....n n       be any three convergent sequence.

1. Properties of vector addition.
i) We have    n n     n n   which is also a

convergent sequence. Therefore V is closed for addition of
sequences.

ii) Commutativity of addition : We have    n n    

       n n n n n n         

iii) Associativity of addition : We have

       n n n
         

   

  

  

     

 

n n n

n n n

n n n

n n n

    

    

   

       

  

iv) Existence of additive identity : The zero sequence

   0 0,0,..,0,.. is the additive identity.

v) Existence of additive inverse : for every sequence  n  a

sequence  n such that        0n n n n       .

2) Properties of scalar multiplication :

i) Let a  . Then    n na a a    which is also a

convergent sequence because lim limn n
h h

a a
 

   .

Thus V is closed for scalar multiplication.
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ii) Let a  and , V  , then we have

       n n n na a a          

  

     

   

n n

n n n n

n n

a

a a a a

a a a a

  

       

      

iii) Let ,a b  and V  ,

       n na b a b a b      

     

   
n n n n

n n

a b a b

a b a b

       

      

iv)           n n nab ab ab a b      

     n na b a b a b       

v)      1 1 1n n n       

Thus all the postulates of a vector space are satisfied. Hence
V in a vector space over the field of real numbers.

Check your Progress :

1. Show that the following are vector spaces over the field  .
i) The set of all real valued functions defined in some interval

[0,1].
ii) The set of all polynominals of degree at most n.

Example 5 :

Let V be the set of all pairs (x, y) of real numbers and let F be

the field of real numbers. Let us define      1 1 1, , ,0x y x y x x  

( , )c x y ( ,0)cx .

Is V with these operations, a vector space over the field  ?

Solution :

If any of the postulates of the vector space in not satisfied,
then V will not be a vector space. We shall show that for the
operation of addition of vectors as defined in this problem the

identity element does not exist. Suppose  1 1,x y is additive identity

element.
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Then we must have

     1 1, , , ,x y x y x y x y     1,0x x   ,x y which is not

possible unless y = 0. Thus no element  1 1,x y of V s.t.

       1 1, , , ,x y x y x y x y V    .

As the additive identity element does not exist in V, it is not a
vector space.

Exercise : 2.1

1) What is the zero vector in the vector space 4 ?
2) Is the set of all polynomials in x of degree 2 a vector space?.
3) Show that the complex field ¢ is a vector space over the real
field  .

4) Prove that the set   , : ,V a b a b  is a vector space over the

field  for the compositions of addition and scalar multiplication

defined as          , , , , ,a b c d a c b d k a b ka kb     .

5) Let V be the set of all pairs (x, y) of real numbers and let F be the
field of real numbers. Define

       1 1 1 1 1, , , ,x y x y x x y y c x y      ,ex y . Show that with

these operations V is not a vector space over  .

2.2.2 Definition : Vector subspace

Let V be a vector space over the field F and let WCV . Then

W is called a subspace of V if W itself is a vector space over F with
respect to the operations of vector addition and scalar multiplication
in V.

Theorem 1 :

The necessary and sufficient condition for a non-empty subset
W of a vector space V(F) to be a subspace of V is ,a b F and

, W a b W    

Proof :

The condition necessary :

If W is a subspace of V, by the definition it is also a vector
space and hence it must be closed under scalar multiplication and
vector addition. Therefore ,a F W a W      and

, ,b F W b W    and ,a W b W a b W      . Hence

the condition is necessary.
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The condition sufficient :

Now W is a non-empty subset of V satisfying the given
condition i.e. ,a b F and , W a b W     . Taking 1, 1a b 

we have ,W W   . Thus W is closed wider addition taking

1, 0a b  we have W W  . Thus additive inverse of each

element of W is also in W.

Taking ,a b 0 0 , we have that if W , W 0 0

W  0 0 W 0 .

Thus the zero vector of V belongs to W which is also the zero
vector in W.

Since the elements of W are also the elements of V, therefore
vector addition will be associatine as well as commutative in V.

Now taking   0 , we see that if ,a b F and W , then

a l W 0 i.e. a W 0 i.e. W0 So W is closed under scalar
multiplication.

The remaining postulates of a vector space will hold in W
since they hold in V of which W is a subset. Thus W(F) is a vector
space. Hence W(F) is a subspace of V(F).

Example 5 :

a) If V is any vector space V is a subspace of V. The subset
consisting of the zero vector alone is a subspace of V, called the zero
subspace of V.

b) The space of polynomial functions over the field F is a
subspace of the space of all functions from F into F.

c) The symmetric matrices form a subspace of the space of all
nxn matrices over F.

d) An nxn matrix A over the field ¢ of complex numbers is

Hermitian if kjjkA A for each j, k, the bar denoting complex

conujugation. A zxz matrix is Hermitian if and only if it has the form
z x iy

x iy

 
 
   

where x, y, z and w are real numbers.
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The set of all Hermitian matrices is not a subspace of the
space of all nxn matrices over ¢. For if A is Hermitian, its diagonal
entries A11, A22 are all real number but the diagonal entries of iA are
in general not real. On the other hand, it is easily verified that the set
of nxn complex Hermitian matrices is a vector space over the field
with the usual operations.

Theorem 2 :

Let V be a vector space over the field F. The intersection of
any collection of subspaces of V is a subspace of V.

Proof :

Let  Wa be a collection of subspaces of V and let

W Wa be their intersection. By definition of W, it is the set of all
elements belonging to every Wa. Since each Wa is a subspace, each
contains the zero vector. Thus the zero vector is in the intersection
W and so W is non-empty. Let b W  and ,a b F . So, both

,  belong to each Wa. But Wa is a subspace of V and hence

Wa b a  . Thus Wa b  . So W is a subspace of V.

The above theorem follows that if S is any collection of
vectors in V, then there is a smallest subspace of V which contains
S, that is, a subspace which contains S and which is continued in
every other subspace containing S.

Definition : Let S be a set of vectors in a vector space V. The
subspace spanned by S is defined to be the intersection W of all
subspace of V which contain S when S is a finite set of vectors,

 1 2, ,.... nS     , we shall simply call W the subspace spanned by

the vectors 1 2, ,..., n   .

Definition : Linear Combination :

Let V(F) be a vector space. If 1 2, ,..., n V    , then any vector

1 1 ... n na a      when 1 2, ,.... na a a F is called a linear

combination of the vectors 1 2, ,... n  

Definition : Linear Span :

Let V(F) be a vector space and S be any non-empty subset of
V. Then the linear span of S is the set of all linear combinations of
finite sets of elements of S and is denoted by L(S). Thus we have

 1 1 2 2 1 2( ) ... : , ,..,n n nL S a a a S           and 1 2, ,... na a a F .
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Theorem 3 :

The linear span L(S) of any subset S of a vector space V(F) is
a subspace of V generated by S i.e. L(S) = {S}.

Proof :

Let ,  be any two elements of L(S). Then

1 1 .... n na a      and 1 1 .... n nb b     where

, , , , 1,... , 1,....i i i ia b F S i m j n      .

If a, l be any two elements of F, then a b 

 1 1 .. m ma a a     1 1 ... n nb b b     =  1 1 ..a a    m ma a 

 1 1b b    .. n nb b  =    1 1 .. maa aa m   

   1 1 ... n nbb bb     .

Thus a b  has been expressed as a linear combination of a

finite set 1 1,..., , ,...,m n    of the element of S. Consequently

( )a b L S  . Thus ,a b F and , ( ) ( )b L S a b L S    .

Hence L(S) is a subspace of V(F). Also each element of S
belongs to L(S) as if r S  , then 1r r   and this implies that

( )r L S  . Thus L(S) in a subspace ov V and S in contained in L(S).

Now if W is any subspace of V containing S, then each
element of L(S) must be in W because W is to be closed under
vector addition and scalar multiplication. Therefore L(S) will be
contained in W. Hence L(S) = {S} i.e. L(S) in the smallest subspace
of V containing S.

Check your progress :
1) Let   2 1 2, ,0 : ,W a a a a  . Show that W is a subspaces of 3 .

2) Show that the set W of the elements of the vector space 3 of the
form (x + 2y, y, -x + 3y) where ,x y  is a subspaces of 3 .

3) Which of the following are subspaces of 3 .

i)   , 2 ,3 : , ,x y z x y z 

ii)   , , :x x x x

iii)   , , : , , are rational numbersx y z x y z
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Definition : Linear Dependence :

Let V(F) be a vector space, A finite set  1,..., n  of vectors

of V is said to be linearly dependent if there exist scalars

1,..., Fna a  not all of them O such that 1 1 .. 0n na a     .

Definition : Linear independence :

Let V(F) be a vector space. A finite set  1,... n  of vectors of

V is said to be linearly independent if every relation of the form

1 1 ..a   0, ,1 0n n i ia a F i n a       for each 1 i n  .

Any infinite set of vectors of V is said to be linearly
independent if its every finite subset is linearly independent,
otherwise it is linearly dependent.

Exercises : 2.2
1) Which of the following sets of vectors  1,.. na a  in n are

subspaces of n ? 3n .

i) all  such that 1 0a  .

ii) all  such that 1 2 33a a a  .

iii) all  such that 2
2 1a a .

iv) all  such that 1 2 0a a  .

v) all  such that 2a is national..

2) State whether the following statements are true or false.
i) A subspace of 3 must always contain the origin.

ii) The set of vectors   2,x y  for which 2 2x y is a

subspace of 2
iii) The set of ordered triads (x,y,z) of real numbers with x > 0 is

a subspace of 3 .
iv) The set of ordered trials (x, y, z) of real numbers with x + y =

0 is a subspaces of 3 .

3) In 3 , examine each of the following sets of vectors for linear
dependence.

i)     2,1,2 , 8,4,8

ii)       1,2,0 , 0,3,1 , 1,0,1

iii)     2,3,5 , 4,9,25

iv)       1,2,1 , 3,1,5 , 3, 4,7
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4) Is the vector (2,-5,3) in the subspace of 3 spanned by the
vectors (1,-3,2), (2, -4, -1), (1, -5, 7)?

5) Show that the set {1, x, x(1-x)} is a linearly independent set of
vectors in the space of all polynomials over  .

2.2.3 Basis and dimension :

In this section we will assign a task to give dimension to
certain vector spaces. We usually associate ‘dimension’ with
something geometrical. But after developing the concept of a basis
for a vector space we can give a suitable algebraic definition of the
dimension of a vector space.

Definition : Basis of a vector space

A subset S of a vector space V(F) is said to be a basis of
V(F), if
i) S consists of linearly independent vectors.
ii) S generates V(F) i.e. L(S) = V i.e. each vector in V is a linear

combination of a finite number of elements of S.

Example 1 :

Let nV   , If  1,.....,
n

nx x x  we call xj, the ith co-

ordinate of x.. Let ei : (0, …, 0, 1, 0, .. 0) be the vector whose it is
co-ordinate in 1 and others are 0. It is easy to show that

 1ie i n  is a basis of V. This called the standard basis of n .

Example 2 :

The infinite set  21, , ,..., ,..nS x x x is a basis of the vector

space F[x] of polynomials over the field F.

Definition : Finite Dimensional Vectors Spaces. The vector space
V(F) is said to be finite dimensional or finitely generated if there
exists a finite subset S of V such that V = L(S).

The vector space which is not finitely generated may be
referred to as an infinite dimensional space.

Theorem 1 :
Let V be a vector space spanned by a finite set of vectors

1 2, ,.... m   . Then any independent set of vectors in V is finite and

contains no more than m elements.
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Proof :

To prove the theorem it suffices to show that every subset S
of V which contains more than m vectors is linearly dependent. Let S
be such a set. In S there are distinct vectors 1 2, ,... n   where n > m.

Since 1,... m  span V, there exists scalars Aij in F such that

1

m

j ij i
i

A


   . For any n scalars 1 2, ,..., nx x x we have

1 1
1

....
n

n n j j
j

x x x


     

 

1 1

1 1

1 1

n m

j ij i
j j

n m

j ij j i
j i

m n

ij j i
i j

x A

x A x

A x

 

 

 

 

 

      

 

 

 

Since n > m, the homogeneous system of linear equation

1

0,
n

ij j
j

A x


 1 i m  has non trivial solution i.e. 1 2, ,... nx x x are not all

0. So for 1 1 2 2 1 2.... 0, , ,....,n n nx a x x x x x      are not all 0. Hence S

in a linearly dependent set.

Corollony 1 : If V is a finite - dimensional vector space, then any
two bares of V have the same number of elements.

Proof :

Since V is finite dimensional, it has a finite basis  1 2, ,... m   .

By above theorem every basis of V is finite and contains no more

than m elements. Thus if  1 2, ,...., n   is a basis, n m . By the

same argument .m n Hence m = n.

This corollany allows us to define the dimension of a finite
dimensional space V by dimV. This leads us to reformulate,
Theorem 1 as fallows :

Corollany 2 : Let V be a finite - dimensional vector space and let n
= dim V. Then (a) any subset of V which contains more than n
vectors in linearly dependent (b) no subset of V which contains
fewer than n vectors can span V.
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Lemma. Let S be a linearly independent subset of a vector space V.
suppose  is a vector in V which in not in the subspace spanned by

S. then the set obtained by adjoining  to S in linearly independent.

Proof :
Suppose 1,...., m  are distinct vectors in S and that

1 1 .. 0m me x e l     . Then 0le  for otherwise

1 1
1 .. m

e e

l l

                   
and  is in the subspace spanned by S.

thus 1 1 .. 0m me e     and since S is a linearly independent set each

ei=0.

Theorem 2 :

If W is a subspace of a finite dimensional vector space V
every linearly independent subset of W is finite and is part of a basis
for W.

Proof :

Suppose 0S is a linearly independent subset of W. if S is a

linearly independent subset of W containing 0S . Hence S is also a

linearly independent subset of V. Since V in finite dimensional, S
contains no more than dim V elements.

We extend 0S to a basis for W, as follows. If 0S spans W,

then 0S is a basis for W and our job is done. If 0S does not span W,

we use the preceding lemma to find a vector  , in W such that the

set  1 0 1S S  is independent. If S1 spans W, our work is over. If

not, apply the lemma to obtain a vector 2 in n such that

 2 1 2S S  is independent. If we continue in this way them by at

most dim V steps. we reach a set  0 1,....m mS S   which is a basis

for W.

Carollony 1 : If W is a proper subspace of finite - dimensional
vector space V, then W is finite dimensional and dim W < dim V.

Proof :

Let us consider W contains a vector 0  . So there is a basis
of W containing  which contains no more than dim V elements.
Hence W is finite-dimensional and dim W  dim V. Since W is a
proper subspace, there is a vector  in V which is not in W.
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Adjoining  to any basis of W, we obtain a linearly independent

subset of V. Thus dim W < dim V.

Theorem 3 :

If W1, and W2 are finite-dimensional subspaces of a vector
spaces V, then W1+W2 is finite-dimensional and dim W1 + dimW2 =

dim  1 2 1 2dim( )W W W W  .

Proof :

1 2W W has a finite basis  1 1,..., , ,...,n m    which is part of a

basis  1 1,..., , ,...,n m    for W, and part of a basis

 1 1,..., , ,...,n n    . The subspaces W1+W2 is spanned by the vectors

 1 1 1,..., , ,..., , ,....n m n      and these vectors form an independent

set. For suppose

0i i j j r rx y z        .

Then

r r i i j jz x y        which shows that r rz  belong

to W1. As r rz  also belongs to W2 it follows that

p p i iz e    for certain sectors 1,...., .kc c Because the set

 1 1,..., , ,...,n n    is independent, each of the scalars 0rz  .

Thus

0i i j jx y     and since  1 1,..., , ,...,n m    in also an

independent set, each 0ix  and each Tj=0. Thus

 1 1 1,..., , ,..., , ,....n m n      is a basis for W1+W2. Finally dim W1 +

dimW2    k m k n   

 

   1 2 1 2dim dim

k m k n

W W W W

   

  

Example 1 :

The basis set of the vector space of all 2X2 matrices over the

field F is
1 0 0 1 0 0 1 0

, , ,
0 0 0 0 1 0 0 1

                                   
So the dimension of that vector

space is 4.
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Exercises : 2.3

1) Show that the vectors      1 2 31,0, 1 , 1,2,1 , 0, 3,2       

form a basis for 3 .

2) Tell with reason whether or not the vectors (2,1,0), (1,1,0) and
(4,2,0) form a basis of 3 .

3) Show that the vectors 1 (1,1,0)  and 2 (1, ,1 )i i   are in the

subspace W of c3 spanned by (1,0,i) and (1+I, 1, -1), and that 1

and 2 form a basis of W.

4) Prove that the space of all mxn matrices over the field F has
dimension mn by exhibiting a basis for this space.

5) If  1 2 3, ,   is a basis of 3 ( )V  show that

 1 2 2 3 3 1, ,      is also a basis of 3( )V  .

Answer

Exercises 2.1

1. (0,0,0,0) 2. Yes

Exercises 2.2

1. (i) not a subspace (ii) Subspace
(iii) not a subspace (iv) not a subspace
(v) not a subspace.

2. (i) tpul (ii) false (iii) false (iv) tpul

3. (i) dependent (ii) independent
(iii) dependent (iv) independent

4. no


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3

LINEAR TRANSFORMATION

Unit Structure :

3.0 Introduction

3.1 Objective

3.2 Definition and Examples

3.3 Image and Kervel

3.4 Linear Algebra

3.5 Invertible linear transformation

3.6 Matrix of linear transformation

3.0 INTRODUCTION

If X and Y are any two arbitrary sets, there is no obvious
restriction on the kind of maps between X and Y, except that it is
one-one or onto. However if X and Y have some additional
structure, we wish to consider those maps which in, some sense
‘pruserve’ the extra structure on the sets X and Y. A ‘linear
transformation’ pruserves algebraic operations. The sum of two
vectors is mapped to the sum of their images and the scalar multiple
of a vector is mapped to the same scalar multiple of its image.

3.1 OBJECTIVE

This chapter will help you to understand
 What is linear transformation.
 Zero and image of it.
 Application of linear transformation in matrix.

3.2 DEFINITION AND EXAMPLES

Let U(F) and V(F) be two vector spaces over the some field
F. A linear transformation from U into V is a function T from U into

V such that  T T( ) T( )a l a l      for all ,  in U and for all a, b

in F.
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Example 1 :

The function    3 2T :V V  defined by    T , , ,a b c a b

, ,a b c  . Let      1 1 1 2 2 2 3, , , , ,a b c a b c V    . If ,a b  then

     1 1 1 2 2 2T T , , , ,a b a a b c b a b c      
 

 

   

   

   

   

1 2 1 2 2

1 2 1 2

1 1 2 2

1 1 2 2

1 1 1 2 2 2

T , , ,

,

, ,

, ,

T , , T , ,

T T

aa ba ab bb ac bc

aa ba ab bb

aa ab ba bb

a a b b a b

a a b c b a b c

a b

   

  

 

 

 

   

T is a linear transformation from  3V  to  2V  .

Example 2 : The most basic example of linear transformation is

: n mT F F defined by

1 1

2 2

. .
T

.

. .

n n

A
a

                                                

where A is a fixed mxn

matrix.

Example 3 : Let V(F) be the vector space of all palimonies over dit

f(x) = 0 1a a x be a polymonial of ... n
na x EV    n in the

inderminate F. Let us define   1
1 12 .. n

nDf x a a x na x     if n > 1

and Df(x) = 0 if f(x) is a constant polynomial. Then the
corresponding D from V into V is a linear transformation on V.

Example 5 :

Let  V  be the vector space of all continuous functions from

 into  . If f V and we define T by     T
x

o

f x f t  dt x  ,

then T is a linear transformation from V into V.

Some particular transformation :
1) Zero Transformation : Let U(F) and V(F) be two vector spaces.

The functions T, from U into V defined by   0T   (zero vector of
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V) U in a linear transformation from U into V. it is called zero

transformation and is denoted if O .

2) Identity operator : Let V(F) be a vector space. The function I

form V into V defined by  I    V is a linear transformation

from V into V, I is known as identity operator on V.

3) Negative of a linear transformation : Let U(F) and V(F) be two
vector spaces. Let T be a linear transformation from U into V. The

corresponding - T defined by     T T U        is a linear

transformation from U into V. - T is called the negative of the linear
transformation of T.

Some properties of linear transformation :

Let T be a linear transformation from a vector space U(F) into
a vector space V(F). Then
i) T (O) = O where O on the left hand side is zero vector of U and

O on the right hand side

ii)    T T U   

iii)      T T T , U      

iv)        1 1 2 2 1 1 2 2T ... T T ... Tn n n na a a a a a            

where 1 2, ,.... n U    and 1 2, ,... na a a F

3.2 IMAGE AND KERNEL OF A LINEAR
TRANSFORMATION

Definition : Let U(F) and V(F) be two vector spaces and let T be a
linear transformation from U into V. Then the range of T is the set of

all vectors in V such that  T  for some  in U. This is called the

image set of U under T and by Im T, i.e.   T T :mI U   .

Definition : Let U(F) and V(F) be two vector spaces and let T be a
linear transformation from U into V. Then the kernel of T written as
kept T is the set of all vectors  in U such that T( ) O  (zero vector

of V). Thus ker T =   :U T O V    , ker T is also called null

space of T.
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Theorem 1:

If U(F) and V(F) are two vector spaces and T is a linear
transformation from U into V then i) Ker T is a subspace of U (ii)
ImT is a subspace of V.

Proof :

i) ker   T : TU O V     Since T( ) ,O O V  therefore at

least 0ker T. Thus ker T is a non-empty subset of U. Let

1 2,  ker T, Then    1 2,T O T O    .

Let ,a b F . Then 1 2a b U    and      1 2 1 2T T la b a T      

1 2 ker TaO bO O O O V a b           .

Thus Ker T is a subspace

ii) Obviously Im T is a non-empty subset of V.

Let 1 2, TmI   . The 1 2,  EU such that    1 1 2 2T ,T    

Then    1 2 1 2. T .Ta b a b        

 1 2T .x b  

Now, U is a vector space.
 1 2, U   and ,a b F

1 2a b U    

Consequently  1 2 1 2T . ImTa b d a b       

Thus, ImT is s subspace of V.

Theorem 2 : Rank nullify theorem.

Let U(F) and V(F) be two vector spaces and T be a linear
transformation. Suppose U is finite dimensional. Then,
dim dim dim ImU Ker T T      

Proof : If  0ImT  , then kerT V and theorem is proved for the

trivial case.

Let  1 2, , ..., rv v v  be a basis of ImT for 1r  .

Let 1 2, , ..., rv v v U    such that  i iv T v

Let  1 2, , ..., qv v v   be the basis of kerT .

We have to show that  1 2 1 2, , ..., , , , ...,r qv v v v v v       forms a basis of U.
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Let u U . Then  T u ImT . Hence there are real numbers

1 2, , ..., rc c c   such that

  1 1 2 2 ... r rT u v v v v v v      

     1 1 2 2 ... r rv T u v T u v T u   

 1 1 1 2 2 ... r rT v u v u v u      

   1 1 2 2 ... 0r rT u v u v u v u       

  1 1 2 2 ... r ru v u v u v u ker T        

This would again mean that there are numbers 1 2, , ..., qa a a   such that

 1 1 2 2 ... r ru v u v u v u      

= 1 1 2 2 ... q qa u a u a u     

i.v. 1 1 2 2 1 1 2 2... ...r r q qu v u v u v u a u a u a u             

So, u is generated by 1 2 1 2, , ..., , , , ...,r qu u u u u u       .

Next to show that these vectors are linearly independent, let

1 2 1 2, , ..., , , , ...,r qx x x y y y       be the real numbers, such that

1 1 2 2 1 1 2 2... ... 0r r q qx u x u x u y u y u y u       

Then  0 0T

 1 1 1 1... ...r r q qT x u x u y u y u         

     1 1 1 1... ...r r q qx T u x T u T y u y u       

1 1 ... 0r rx v x v    

But 1,..., rv v being basis of ImT are linearly independent.

So, 1 2 , ..., 0rx x x    .

 , 1 ... 0q qy u y u    

By the same argument

1 2 ... 0qy y y   

So, 1 2 1, , ..., , , ...,r qu u u u u      are linearly independent.

Thus, dimU r q 

dim Im dim kerT T    

Example 1 : Let 3 3:T   is defined by

   , , 2 , , 2T x y z x y z y z x y z          .
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Let us show that T is a linear transformation. Let us also find
ker , ImT T , their bases and dimensions.

To check the linearity let ,a b  and    1 1 1 2 2 2, , , , ,x y z x y z     

    1 1 1 2 2 2, , , ,T a x y z b x y z    

 1 2 1 2 1 2, ,T ax bx ay by az bz     

 1 2 1 2 1 2 1 2 1 2 1 22 2 , ,ax bx ay by az bz ay by az bz ax bx           

1 2 1 22 2ay by az bz  

        1 1 1 2 2 2 1 1 2 22 2 , ,a x y z b x y z a y z b y z         

   1 1 1 2 2 22 2a x y z b x y z    

  1 1 1 1 1 1 1 1 2 2 2 2 2 22 , , 2 2 , ,a x y z y z x y z b x y z y z x              

2 22y z

   1 1 1 2 2 2, , , ,aT x y z bT x y z      .

Hence, T is a linear transformation.

Now,  , , kerx y z T   iff    , , 0, 0, 0T x y z    

i.e. iff    2 , , 2 0, 0, 0x y z y z x y z         

This gives us
2 0

0

2 0

x y z

y z

x y z

  

  

  

By second equation y z substituting in third equation

2 0 3x z z x z    

3 1 1

x y z
  



   , , 3, 1,1x y z z    

  ker 3, 1,1 :T z z    

So, kerT is generated by  3, 1,1  . Hence its basis is   3, 1,1  and

dimension is 1.

Now,    , , 2 , , 2T x y z x y z y z x y z         

     1, 0,1 2,1,1 1,1, 1x y z         

But      1,1, 2 3 1, 0,1 1 2,1,1         ,
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Hence,           , , 1, 0,1 2,1,1 3 1, 0,1 1 2,1,1T x y z x y z              

     3 1, 0,1 2 2,1,1x z y        

 Basis of     Im 1, 0,1 , 2,1,1T       and its dimension is 2.

Exercise : 3.1

1. Let F be field of complex numbers and let T be the function from
3F into 3F defined by

   1 2 3 1 2 3 1 2 3 1 2, , 2 , 2 , 2T x x x x x x x x x x x          . Verify that T is a

linear transformation.

2. Show that the following maps are not linear.

i)    3 3: ; , , , , 0T T x y z x y       

ii)    2 2 2 2: ; , ,T T x y x y     

iii)    3 2: ; , , , 0F F x y z x        

iv)  2: ; ,S S x y x y       

3. In each of the following find  1, 0T  and  0,1T  where
2 2:T   is a linear transformation.

i)        3,1 1, 2 , 1, 0 1,1T T       

ii)        4,1 1,1 , 1,1 3, 2T T      

iii)        1,1 2,1 , 1,1 6, 3T T       

4. Let 3 3:T   be the linear transformation defined by

   , , 2 , , 2T x y z x y z y z x y z          . Find a basis and the

dimension of ImT and kerT .

3.3 ALGEBRA ON LINEAR ALGEBRA

Definition :

Let F be a field. A vector space V over F is called on linear
algebra over F if there is defined an additional operation in V called
multiplication of vectors and satisfying the following postulates.
1. V , V  

2.     , , V      

3.     and   , , V     

4.       , Ve c e       and e F
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If there is an element 1 in V such that 1 1 V,     then

we call V a linear algebra with identity over F. Also 1 is then called
the identify of V. The algebra V is commutative if , V  

Polynomials : Let T be a linear transformation on a vector space
V(F). Then TT is also a linear transformation on V, we shall write T1

= T and T2 = TT. Since the product of linear transformation is an
associative operation, therefore if m is a positive integer, we shall
define Tm = TTT … upto m times. Obviously Tm is a linear
transformation on V. Also we define T0 = I (identity transformation).

If m and n are non-negative integers, it can be easily seen that
m n m nT T T  and  

nm mnT T , The set L(V,V) of all linear

transformation on V is a vector space over the field F. If
2

0 1 1 2, ,...., .. ( , )n
na a aneF a T a T a T L V V     i.e. P(T) is also a linear

transformation on V because it is a linear combination over F of
elements of L(V,V). We call P(T) as a polynomial in linear
transformation T. The polynomials in a linear transformation behave
like ordinary polynomials.

3.4 INVERTIBLE LINEAR TRANSFORMATION

Definition : Let U and V be vector spaces over the field F. Let T be
a linear transformation from U into V such that T is one-one onto.
Then T is called invertible.

If T is one-one and onto then we define a function from V
into U, called the inverse of T and denoted by T-1 as follows :

Let  be any vector in V. Since T is onto, therefore

V U  such that  T   .

Also  determined in this way is a unique element of U because
T is one-one and therefore 0 , U   and

   0 0T T     we define  1T  to be  . Then
1 :T V V  such that    1T T      . The function 1T is

itself one-one and onto.
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Properties :

1. 1T is also a linear transformation from V into U.

2. Let T be an invertible linear transformation on a vector space
V(F). Then 1T T = I = T 1T .

3. If A, B and C are linear transformations on a vector space V(F)
such that AB = CA = I, then A is invertible and A-1 = B = C.

4. Let A be an invertible linear transformation on a vector space
V(F). The A possesses unique inverse. (The proof of the above
properties are left for the students)

Example :

If A is a linear transformation on a vector space V such that
2 0A A I   , then A is invertible.

2 0A A I   , then A2 - A = - I. first we shall prove that A is
one-one.

Let 1 2, .V   Then    1 2A A  

   

   

       

     

     

   

1 2

2 2
1 2

2 2
1 1 2 2

2 2
1 2

1 2

1 2

1 2 1 2

A A A A

A A

A A A A

A A A A

I I

I I

         

   

       

     

     

         

   

A is one-one.

Now to prove that A is onto Let V  . Then  A V   .

We have      2A A A A       

  

 

2A A

I

  

  

Thus  V A V     such that  A A    

A is onto.

Hence A is invertible.
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Check your progress :

1. Show that the identity operator on a vector space is always
invertible.

2. Describe 3 4:T   which has its range the subspace spanned
by the vectors (1,2,0,-4), (2,0,-1,3)

3. Let T and U be the linear operators on 2 defined by

 , ( , )T a b b a and ( , ) ( , )U a b a b . Give rules like the one defining

T and U for each of the transformations U + T, UT, TU, T2, U2

4. Show that the operator T on 3 defined by T (x,y,z) = (x+z, x-z,
y) is invertible.

3.5 REPRESENTATION OF TRANSFORMATION BY
MATRICES

Matrix of a linear transformation :

Let U be an n-dimensional vector space over the field F and Let

V be an m-dimensional vector space over F. Let  
1

,...., nB a a


    and

 1,...., nB    be ordered bases for U and V respective. Suppose T is

a linear transformation from U into V is a basis of into V.

Now for  ,j jU T V     and .

  1 1 2 2 ....j j j mj mT a a a         

1

n

ij i
i

a


 

This gives rise to an mxn matrix [ ]jja whose jth column

represents the numbers that appear in the presentation of  jT  as a

combination of elements of B. Thus the first column is

 

11

21

11 21 1

1

, ,....,
T

m

m

a

a
a a a

a

            


 , the second column is (a12, …., am2)

T and so

on. We call [aij] the matrix of T with respect to the ordered basis B,
B of U, V respectively. We will denote the matrix so induced by

 
1

.

B

B
m T 
   .
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Example :

Let 4
1: ( )T P   given by    1 2 3 4 1 3 2 4, , , .T x x x x x x x x x   

The basis of 4 be         1 1,1,1,1 , 1,1,1,0 , 1,1,0,0 , 1,0,0,0B  and that

of 1( )P  be  2 1 ,1 .B x x  

 

(1,1,1,1) 2 2 2(1 ) 0(1 )

3 1
(1,1,1,0) 2 (1 ) 1

2 2

(1,1,0,0) 1 1(1 ) 0(1 )

1 1
(1,0,0,0) 1 (1 ) (1 )

2 2

T x x x

T x x x

T x x x

T x x

     

     

     

    



Then   2

1

3 1
2 1

2 2

1 1
0 0

2 2

B

B
m T

             

3.6 MATRIX OF SUM OF LINEAR
TRANSFORMATION :

Theorem : Let 1 :T V W and 2 :T V W be two linear

transformation. Let  1 1 2, ,..., mB     and  2 1 2, ,..., mB     be the

bases of V and W respectively.

Then      1 1 1

2 2 2
1 2 1 2

B B B

B B B
m T T m T m T            

Proof :

For  1,i iV T W    and  2 iT W  . Since

 2 1 2, ,..., nB      is the basis of W,  1
1

n

i ij j
j

T a w


   and

 2
1

n

i ij j
j

T b w


   ; 1,...., .i m 

Now       1 2 1 2j j jT T T T      

 

n N

ij j ij j
n i j i

n

ij ij j
j i

w

ij j
j i

a W b w

a b w

c w

 





 

 



 






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Where

ij ij ijc a b  

     2 2
2

1
1 1

1 2 1 2

ij ij ij

T T T

ij ij ij

B BB
B B B

c a c

c a b

m T T m T m T

                 

                 

             

Matrix of scalar multiplication of linear transformation :

Theorem : Let :T V W be a linear transformation. Let

 1 1,..., mB    and  2 1 2, ,..., mB     be the bases of V and W

respectively.

Then    2 2

1 1

, .
B B

B B
m kT k m T k         

For  ,i iV T W    and B2 is the basis of W.

So,  
1

; 1
n

i ij
j

T a i m


     

Now    
1

;
n

i i ij
j

T k kT k a


      

 
1

1

;

;

n

ij
j

n

ij
j

ka

b





 

 







Where ij ijb Ka 

   2 2

1 1

.

T T

ij ij

B B

B B

b k a

m kT k m T

          

       



Matrix of composite linear transformation :

Theorem : Let :T V W and :S W U be two linear

transformations. Let  1 1,..., mB    ,  2 1,..., nB    and

 3 1,..., kB u u  be the bases of V, W and U respectively.

Then      2 2 2

1 1 1

B B B

B B B
m ST m S m T          
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Proof :

For i V  and jw W ,

 iT W  and  jS w U 

 
1

n

i ij j
j

T a w


   

 
1

k

i ir r
r

S w b u


 

 
1

. ( ( )) ;
n

i i ij j
j

S T S T S a w


         
 

1

( )
n

ij j
j

a S w




 

 

1 1

1 1

1 1

1

n k

ij jr
j j p

n k

ij jr r
j j

k n

ij jr r
r j

n

ir r
r

a b u

a b u

a b u

c u

 

 

 



      







 









Where

1

n

ir ij jr
j

c a b


 

Which is the (i, p) th element of the matrix.

 

 

ir ij jr

T TT

ir jr ij

c a b

c b a

          

          



     2 2 2

1 1 1

.
B B B

B B B
m S T m S m T           

Example :

2 2:T   and 2 2:S   be two liner raw formations defined
by
T (X, Y) = (X + Y, X – Y) and
S(X, Y) = (ZX + Y, X + 2Y)
Let in basis is {(1, 2) , (0, 1)}.
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Then T(1, 2) = (3, -1) = a(1, 2) + C(0, 1) which implies a = 3,
b = -7

T(0, 1) = (1, -1) = (1, 2) (0,1)p q    which implies 1, 3p q     

So  ( )
B

B
m T

 
 
  

 
3 1

-7 -3

Similarly  ( )
B

B
m S

 
 
  

 
4 1

-3 0

     ( . ) ( ) ( )
B B B

B B B
m S T m S m T  

   
   
      

3 1 4 1

-7 -3 -3 0

 
 
  


s 1

-q -3

(SOT) (X, Y) = S(T(X,Y) = S(n+y, n-q)
= (3 x + y , 3 x – y)

By above way are can find  ( )
B

B
m SOT and verify the result.

Exercise 3.2

1. Let 3 3:T    and 3 3:S   be two lincer transformations
difined by

( , , ) ( , 2 , 3 )T x y z x y z       and

( , , ) ( , , ).S x y z x y y z z x              

Let { }.B (1,0,0)(, 0,1,0)(, 0,0,1)

Verify that

     ( ) ( ) ( )
B B B

B B B
m SOT m s m T  

2. Let 2 2
1 :T    and 2 2

2 :T  

Be two linear transformations defined by

1 ( , ) (2 3 , 2 )T x y x y x y            and

2 ( , ) ( , ),T x y x y x y        

{ )}B  (1,0)(, 0,1 be the basis of 2 . Show that B

     1 2 1 2( ) ( ) ( )
B B B

B B B
m T T m T m T       



45

RANK OF MATRIX and linear of transformation :

Row Space and column space Let is consider a matrix A as follows

4 6

3 0 4 5

a z
A

 
 
  

    

We can consider A as a matrix of two vectans in 4 an as a

matrix of four rentors in 2 .

We will consider linear span of two rectons i.e.,

pW L {(4,6,9, 2)(, 3,0,4,5)}.

It is called naw space of matrix A. Similany colum space of A
is represented by cW L {(4,3)(, 6,0)(, 9, 4)(, 2,5)}.

Definition :

Row space and column space : Let A be a matrix of order

mxn. Then the subspace of n generated by the now vectors of A is

called the now space and the subspace of m generated by the
calumn vectors of A is called the Column space of A.

Example :

A

 
 
   
 
  

 

1 10 0

0 01 1
1 1 1 0

Here now space is 1 2 3{ , , }R R R  Where

1R  2 3(1,0,1,0), R =(0,1,0,1),R =(1,1,1,0). The set

1 2 3{ , , }R R R  is line on by independent.

So now space = L { 1 2 3   }.

Hence dim (now space) = 3.

Now calumniation we have two vectans

1 2 3 4C ={1,0,1},C ={0,1,1},C ={1,0,1},C ={0,1,0}.

Here 1 3C C   and 1 2 4{C ,C ,C }are line an by independent,

 column space 1 2 4{ , , }L C C C   

 dim (column space) = 3.
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The dim of the now space of a matrix A is called now rank of
A and the dim of the column space of A in called calumn rank.

In enery matrix dim (now space) = dim (calumn space) if now
rank = calumn rank.

Rank of zero matrix is new.

Rank of identify matrix of order n is n.

Rank of
t

A  Rank of A where tA is transpore of A.

or mxn matrix A, now space is subspace of n .
 now rank  n.

Similanery column rank  m
 rank of A  min (m, n}.

Example :

A

 
 
   
 
  

 

2 31

5 64
7 8 9

Here 1 2 3(1, 2, 3), (4,5,6), (7,8,9)R R R           

3 2 1R ZR R    

1 2{ , }R R are lance by independent

 now rank = Z
 rank of A = Z

Change of Basis.

Sometimes it is imperative to change the basis in representing
a linear transformation T, because relative to this new basis, the
representation of T may become very much simplified. We shall thru
fare turn own attention to established are important result concerning
the matrix represecutations of a liner transformation when the basis
in changed.

Theaum :

If two sets of vectors 1 2 nX ={x , x , .. x }and

x x x x   
1 2 n={ , , ... }are the bases of a rectum space ,nV these there

exists a nonsingular matrix B = [bij] such that

i 1 2i 2 nx = bij x + b x + ..+ bni x ,

i =1, 2, ... n.
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The nonsingular matrix B is defined as a transformation matrix
in .nV

Proof :

Suppose that X and x are two bases in .nV Then x i s (I = 1,2, .. n)

can be expressed 1 2, , ... , . .nx n x i e    

1 2 .. ,ij zi ni nix b x b x b x              

1, 2, ,, ,i n    

Where ijb s are realer.

Let is define its matrix 1 2[ ... ]nB b b b    

Where

[ ... ] T
i ij zi nib b b b     

Is an vector.

We have to show that B is non singular.

For realer 1 2...x x   we write, 1 1 .... n nx x x x    

1 11 1 1 1 1( ... ) ... ( .. )n n n n nn nx b x b x x b x b x                      

1
1 11 1 1 1( .. ) ... ( .. ) xx n

n n n n nnx b x b x b x b                    

Now

1 1 ... 0n nx b x b        

Implies

1 1 .. 0, 1, 2, ... ,i n inx b x b i n                Substituting this in the above

equation we have

1 1 ... 0.n nx x x x          

Since, 1 , .. , ux x    are lines only independent, it follows that

1 .... 0nx x       and hence 1, ... nb b   are linearly independent.

 B is non singular.

Theorem :

Suppose that A is an mxn matrix of the linear transformation
: n mT V W   with respect to the bases 1{ , ... , }nX n x    and
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1{ , ... , }.my y y      If Â in an mxn matrix of T with respect to diffluent

bases 1{ , ... }nx x x        and
1

, ... }
m

y y y       than there exist non

singular matrix B and C of order n and m respectively, such that
 1 .A C AB  

Proof :

If [ ]kiA a  in the matrix of T with aspects to the bases X and Y, we

have the lunation, 1 1 2 2( ) ...i i i mi mT x a y a y a y              similarly,

for  [ ],ijA a   we can write,     
1 2 2( ) , , , .. ,m mjT x a j a y a y             .

By the previous formula thus exist non singular coordinate
transformation matrix [ ]ijB b  and [ ]kiC e  satisfying.


1 2 ..i ij zj nj nj b x b x b x            


1 2 ..i ij zi mi my c y c y c y          

Hence   

1 1 1

( )
m m m

j i i i ki n
c i k

T x a y a c y
  

      



1 1

m m

ki ij k
k c

c x y
 

     
 

Alternatively sinner T in liner, we have,



1

( ) ( )
w

j ij i
i

T x b T x


   T

1 1

n m

ij ki n
i n

b a y
 

  

1 1

m n

ki ij n
k i

a b y
 

     
 

1

. .i e c a AB

a c AB



 





   

   

Ex. A Linear transformation 3 2:T   in defined by

1 2 3 1 2 3 2 3( , , ) ( , )T x x x x x x zx x       

Of the bares in 3 are

1, 2 3v(x x ,x )={(1,0,0)(, 0,1,0)(, 0,0,1)}



49

  
1 2 3v( x ,x ,x )={(2,2,1)(, 0,1,0)(, 1,0,1)}and these in 2

are

1 2w(y , y )={(2,1),(1,1)}

  
1 2w( y , y )={(1,0)(, 1,1)}

Here we will find the matrix A w.p.t. the bases defined by V

and W, and A w.p.t. v and w of the linear transformation T. Also
we have to determine non singhan matrixes B and C such that
 1 .A C AB  

Here
T(1,0,0)=(1,0)=1(2,1)-1(1,1)

T(0,1,0)=(1,2)= -1(2,1)+ 3(1,1)

Τ(0,0,1) =( 1,1) = 0(2,1) +( 1,1)

 
 
 
  

w 1 -1 0
∴ m(T)  =   

-1 3 1

i.e. T(V) = WA.

Similarly considering the bases V of 3 and w of 2 we find

 
  

 
  


w

v

0 -1 1
m(T) = = A

5 2 1
 . . ( )s t T v w A   

The matrix B and C are determined by the change of
relationship as

andv VB w wc      
   
   
   
   
   
   


2 0 1 1 0 0

∴ v  = VB ⇒ 2 1 0  = 0 1 0

1 0 1 0 0 1

B =

2 0 1

2 1 0

1 0 1

 
 
 
 
 
 

 .w wc 

    
    
         

11 12

21 22

a a1 1 2 1
i ∴  =   

a a0 1 1 1
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 
 
  

1 0
c =

-1 -1

We can such the result cA AB 

LINEAR FUNCTIONALS : DUAL SPACE

Definition

A linear transformation T from a vector space V one a field
 into this field of scalars in called a linear functional on the
space V. The set of all function on V in a victor space defined as the
dual space of V and in denoted by V.

Example :

Let V be the vector space of all mal valued function internals
over the interval a t b     . Then the transformation

:f v  defined by ( )1 ( )

t

a

x t x t dt     is a linear functional on V.

This mapping f assigns to each internals function x(e) a real number
on the internal .a t c    

Example :

Let  1 2, , ... , nx x x    be a basic of the n dimensional vector

space v one  . Any vector x in V can be reprinted by

1 1 2 2 ... ,n nx x x x x x x            when ix s one realans in we now

consider a fined vector Z in V and spurned it by

1 1 2 2 .... n nz c n c x c x              when 'ic s are sealers in  .

Denote by 1 2 1 2[ ... ] [ ... ] ,T T
n nw e e e and n x x x            the coordinate

vectors of z and x respective by. Thus the linear transformation

2 :f v   defined by t
2 1 1 2 2 n nf (x)= c x + c x + ...+ c x = w u in

a linear functional on V. In fact, ( )f x   is abstained as an inner

product of coadunate vectors of z and x. Restricting Z to be the basis
vector ,ix s we get Z number of linear functional

nif (i =1, 2,→, n) in V given by ( )xi if n x  because now the

eliminating vector T
ie = [0, -1, ... o] is the co ordinate vector of

ix with respect to the basis vectors  1 2, , ... , nx x x      and should

replaes W. This functional may be reconcile as a linear
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transformation as V that maps each vector in V onto its i-th co
ordinates. Sulative to the respected basis. A note worthy property of
thus function is, ( ) , , 1, ...xi j ij if x f i j n x             when ijx in the

kpronceluers delta defined by
,

1,

ijx i j

i j

 

 

    

     
because je is the co

ordinate vector of jx with uspect to the basis  1 2, , ... , nx x x    and

.j iu e and w e      Mover if x in a zero vecor in V, then 0 ( ) 0f x   

the sealer zero in  .

Now we shall state and prove a very email they are on dual
basic.

Theaum :

Let  1 2, , ..., nx x x     be a basis of the n-delusional vector space V one

a field  . Then the unique linear functional 1 2, ,x x xnf f f   defined by

( ) , , 1, 2, ...,xi j ijf x f i j n         farm a basis of the dual space V*

defined as the dual basis of  1 2, , ..., nx x x   and any element f in V*

can be expressed as 1 1( ) ... ( )x n xnf f x f f x f          and for each

vector X in V, we have 1 2 2 4, ( ) ( ) ... ( )x x x nx f x x f x x f x x                .

Proof :

We have to prove that (a) 'xif s are linear by independent in V*.

(i) Any vector f in v* can be expressed as a liner combination of
' .xif s

Suppose that far realer 1 2, , ... nx x x in     we have

1 1 2 2 ...n x n xn qx f x f x f f             

Then

1 1 2 2 0( ... ) ( )x x n xn i ix f x f x f n f x               which, by taking into

account that 0( ) , , 1, 2, ... , ( ) 0ni j ijt n f i j n and f x                   we get.

0, 1, 2, ... .ix i n       Hence, 'nif s are linearly independent in V*.

Suppose now that f is any linear functional in V*. Than we can find
n sealers 1 2, , , na a a in     satisfying ( ) , 1, 2, ... ,f x i a i i n           

because f n pursuable a known liner functioned. For any vector

1 1 2 2 ... n nx x n x x x x               in V, because of the inanity of f, we

get 1 1 2 2( ) ( ) ( ) ... ( )n nf x x f x x x x f x               



52

1 1 2 2 ... n nx a x a x a            

1 1 2 2( ) ( ) ( )n n n xua f n a f x f x          

1 2 2( , .. ) ( ).n n n nua f a f a f n             

Since x is arbitrary and a combination of linear functional is again a
linear functional, we have the rulation.

1 1 2 2 ...x n n nnf a f a f a f              .

Definition : Dual Basis :

For any basis 1 2{ , , ... }nx x x   of a vector space V one a field  , thus

exists a unique basis 1 2{ , , ... , }nf f f    of V* such that

i j ijf(x )= f , i, j =1,2, .. , n of the basis 1 2 n{f , f , ... , f }of V* is said

to be dual to the given basis 1 2 n{x , x , ... x }of V.

Suppose :

2{(3, 2) , (1,1)} .B V          be a basis in We will find a dual basis

x1 x2 1 2{f , f }inV * when B ={x , x }. Let, 1 1 2 2x = x x + x x i.e.

   
   
   
   

  
  
     

1 1
1 2

2 2

1

2

x x
i.e. = [x x ]

x x

x3 1
=

x2 1

Which gives 1 1 2 2 1 2x = x - x , x = - 2 x + 3 x

i. e. n1 1 2 n2 1 2f (x)= x - x , f (x)= - 2n + 3x

Example :

2
1 2 3{ 1, 1 , }Let B n n t x t t                  in a basis in 2 ( )t one  .

1 1 2 2 3 3( )x t x x x x x x          
2

1 2 3(1) (1 ) ( )x x t x t t               

 1 2 2 3 3( ) 2x x x x t x             
2

1 2( ) ox t a a t a t           

0 1 2 1 2 3 2 3, ,x x a x x a x                  

1 0 1 2 2 1 2 3 2, ,x a a a x a a x a                     

 me obtain the dual basis as,

0 1 2 2 1 2 3 2, ( ) , ( ) ( ) .n nf n a a a f x a a f n a                   
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Answer

Exercise : 3.1

3. (i)
    

2
,1 (, -1, -1)

3

(ii)
            

2 11
- ,1 , , - 3

3 3

(iii)(1,0,1)(, 4, 2)

4. {(1, 0,1) , (2,1,1)}      in a basis of Inc(T) din(Im T) = 2.

{(3, 1,1)}   is a basis of kur T and dim (ku T) = 1


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4

DETERMINANT

Unit Structure :

4.0 Introduction

4.1 Objective

4.2 Determinant as n-farm

4.3 Expansion of determinants

4.4 Some properties

4.5 Some Basic Results.

4.6 Laplaer Expansion

4.7 The Rank of a Matrix

4.8 Gramer’s Rule

4.0 INTRODUCTION

In previous three chapters we have discarded about vcetans
line on equations and lincer transformations. Every when we see that
we need to check wheather the vectors are linearly independent or
not. In this chapter we mill develop a computational technique to
find that by using determinants.

4.1 OBJECTIVE

 This chapter will help you to know about determinants and its
properties.

 Expiring of determinants by various methods.
 Calculation of rank of a matrix using determinants.
 Existence and uniqueness of a system of equations.

4.2 DETERMINANT AS N-FARM

To discuses determinants, we always consider a square meters

Determinant of a square meters in a value associated with the
matrix.
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Definition :

Define a determinant function as dut : ( , )M n    where

( , )M n  is a collection of square meters of order n, such that

(i) the value of determinant remain same by adding any multiple
of 1st now to i th now i.c.
Det 1 2( , , , , 1,i j i nR R R K R R R         

1 2det ( , , .. , , .. , )j nR R R R

fan i j





          

   

(ii) the value of the determinant changes by sign by swapping any
two rows i.e. det 1 2( , , .. , , .. , , .. , )j j nR R R R R         

1 2det ( , , .. , .. , , .. , )j i nR R R R R          

(iii) if element of any now in multiplied by k then am value of
determinant in is k tines its original value i.c.
Det 1 2( , , .. , , .. , )i nR R R R      

1 2det ( , , .. , , .. , )

0

i nk R R R R

far k





         

  

(iv) det (I) = 1, where In an identify matrix.

If is n-linear skin symmetries function on

.. .

( , )

n n nx x x

A M n



 

   



       

    

1 2

1 2

det det ( , , .. , )

det det ( , , .. , )

n

n

A R R R

or A C C C

 



         

        

Which iR denote i-th row or iC denote i-th column of meters A.

Each
n

i i

n n n

R or C

A x x x



  



  

   

        
 Determinant in an n-linear skew symmetric function from

..n n nx x x to          

e.g. the function 2 2x       in give by ,
a b

ad be
c d

                   
     

there &
a b

c d

             
  are ordered pairs from 2 each.

Also ,
a b

ab leilinear
c d

 
   
  
    

Skeen symmetric and alternating function.
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4.3 EXPANSION OF DETERMINANT

Let ( )ijA a  be an arbitrary nxn matrix as follows

11 12 1

1 2

1 2

j in

i i ij in

n n nj nn

a a a a

A a a a a

a a a a

          

 

Let ijA be the (n-1) x (n-2) matrix obtained by deleting the i-th

row and j-th column from A.

1 1 1 111 12

11 12 1 1 1 1 1

1 12 1 1 1 1 1

1 2 1 1

a a a a aij j n

a a a a ai i j i i n
Aij

a a a a ai i i j i j i n

a a a a an n nj nj nn

                                 



We will give an expressian for the determinant of an nxn
matrix in terms of determinants of (n-1) x (n-1) matrix. We define,

2
1 1det det ( ) ( 1) det ( )i i n
i i in ina a a A            

This sum is called the expansion of the determinant according
to the i-th expand det A according to the first now,

11 11 12 12

13 13 14 14

det det ( ) det ( )

det ( ) det ( )

A a A a A

a A a A

 

 

        

      

Where A in an 4 x 4 matrix.

For example det
        

3 2 -1

A = 5 0 2

1 3 -4

Then

0 2 5 2 5 0
det 3 2 ( 1)

3 4 1 4 1 3
A   

 
       

= 3(-6) -2 (-20-2) -1 (15)
= -18 + 44 – 15 = 44 – 33 = 11

4.4 SOME PROPERTIES

The determinant satisfies the following properties :
1. As a function of each column vector, the determinant in
linear, i.e. if the j-th column jc is equal to a sum of two, column

vectors, say jc c c   then
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1
1 1 1( , .. , , , , .. )j j nD c c c c c c         

1 1

1
1 1

( , .. , , .. , )

( , .. , , , .. , )

j n

j n

D c c c

D c c c c









       

        

2. If two columns are equal i.e. if ,j kc c where j k   hun det

(A) = 0

3. If one adds a sealer multiple of one column to another three the
value of the determinant does not change i.e.

1( , .. , ... , ) ( 1, .. , )k i n nD c c x c c D c c              

We can prove this profile as follows.

1

1

( , .. , , .. )

( , .. , .. , .. , )

k x i n

j k n

D c c c c

D c c c c





     

       

1

1

( , .. , .. , , .. , )

( , .. , .. , , .. )

j j n

j n n

x d c c c c

D c c c c





           

          

As the second determinant on right has same columns and
hence its value is zero.

All the properties stated above are valid for both row and
column operations.

Using the above properties we can computer the determinants
very efficiently. By using the property if a sealer multiple of are now
(or column) in added to another now then the value of the
determinant does not change, we will by to make as many enemies
in the meters square to 0 and then expand.

Example :

2 1 2

0 3 1

4 1 1

D  

First we will interchange first two columns to keep first entry
as 1.

1 2 2

3 0 1

1 4 1

D     
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Next we will make first two entries of 2nd and 3rd columns as
zero. So we subtract trick the first now from 2nd and 3rd columns.

1 0 0

3 6 7

1 2 1

D  



  

So if nc expand it along the first now nc get only a 2 x 2 determinant
as.

6 7
(6 14) 20

2 1
D

 
   


        

Exercises 4.1

1. Computer the following determinates.

3 0 1 2 0 4

( ) 1 2 5 ( ) 1 3 5

1 4 2 10 1 0

i ii

 

  

3 1 2 2 4 3

( ) 4 5 1 ( ) 1 3 0

1 2 3 0 2 1

iii iv 

 

  

2. Computer the following determinants.

1 1 2 4 1 1 2 0

0 1 1 3 0 3 2 1
( ) ( )

2 1 1 0 0 4 1 2

3 1 2 5 3 1 5 7

i ii

 


  

1 1 1 1 1 1 1 1

1 1 1 1 2 2 1 3
( ) ( )

1 1 1 1 4 4 1 9

1 1 1 2 8 8 1 27

iii iv
   

 

   

  

4.5 SOME BASIC RESULTS

(1) If k is constant and A is n x n matrix thus nKA k A   where

KA is obtained by multiplying each element of A by K.
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Proof :

Each term of the determinants KA has a factor k. This k can be

taken out column from each now i.e.
.. ( )

n

KA k x k x x k n thus A

KA k A

 

 

          

 

(2) If A and B are two n x n matrix AB A B   But

A B A B       

This can be proved by simple examples.

(3)
1

1
A

A
 

Proof :

,AB A B considering       
1

1 1

,B A we get

AA A A









   

  

1

1

1

1

1

I A A

A A

A
A











 

  

  

  

(4) t tA A where A    is transfer of matrix A.

Proof :

The determinant can be expanded by any now or column. Let A is

expanded using i-th now. This i-th now in i-th column in tA . So the

expansion remain same i.e. the value of the determinant remain
same.

tA A   

(5) If A has a now (or column) of zeros then 0.A  
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Proof :

By expanding along the new now, the value of the determinant
becomes zero.

(6) If A and B are square meters then 1BAB A  

Proof :

1 1 1
BAB B A B B A

B

A

  



      

 

(7) The determinants is linear in each now (column) if the other
rows (column) are fined.

1 2 3

1 2 3

1 2 3

a k a k a k

b b b

c c c

  

1 2 3

1 2 3 2 2 3

1 2 3 1 2 3

a a a k k k

b b b b b b

c c c c c c

   

1 2 1 2 3

1 2 3 2 2 3

1 2 3 1 2 3

a a a a a a

kb kb kb k b b b

c e e c c c

  

4.6 LAPLAER EXPANSION

Definition :

Mainor – The minor of an element of a square matrix in the
determinant obtained by deleting the now and column which interest
in that element.

So minor of the element ija is obtained by deleting i-th now

and j-th column, deleted by .ijM
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For example, let

1 2 3

4 5 6

7 8 9

A

 
 
 
 
 
 

 

Then,

Minor of 1 is 11

5 6
3

8 9
M     

Minor of 8 is 32

1 3
6 .

4 6
M etc     

Laplaer expansion –

1

( 1)
n

i j
ij ij

J

A a M



    

If wc consider i-th previous example.

11 12

5 6 4 6
3, 6

8 9 7 9
M M          

13 21

4 5 2 3
7, 6

7 8 8 9
M M          

22 23

1 3 1 2
12, 6

7 9 7 8
M M         

31 32

2 3 1 3
3, 6

5 6 4 6
M M          

33

1 2
3

4 5
M     

 BY Laplaer Expansion

11 1 12 12 13 13

21 21 22 22 23 23

A a M a M a M

M a M a M

  

 

       

       

31 1 2 32 33 33

1 ( 3) 2 ( 6) 3 7 4 (6)

a M a M a M

x x x x

  

     

       

             

5 ( 12) 6 ( 6) 7 ( 3) 8 ( 6)

( 3)

x x

a x

       

 

          

  

3 12 21 24 60 36 21 48 27

30

        



               


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4.7 THE RANK OF A MATRIX

Theorem :

Let 1 2, , ... , nc c c    be column vectors of disunion n. They are linear by

dependent if and only it.

1 2det ( , , ... ) 0nc c c      

Proof :

Let 1 2, , ... , nc c c    are linear by dependent. So there exists a solution.

1 1 2 2 ... 0n nx c x e x c              with numbers 1, ... , nx x   not all 0.

Let 0jx  

1 1 1 1... ...j j j j n nx c x c x c x c               

1
1

1

. . .... n
j n

j j

n

k k
k

xx
i p c c c

x x

a c

k j



 







     

 

   

Thus
Det 1( ) det ( , ... , , ... , )i nA c c e        

1
1

det ( , ... , , ... )
n

k k n
k

c a c c


        

1
1

det ( , ... , , ... , )
n

k k n
k

c a c c

k j







        

  

Where kc occurs in the j-th place. But kc also occurs in the k-th

place and k j  . Hence two column of the determinant in equal. So

the value of the determinant in 0.

Conversely :

If all the columns of a matrix A in linear by independent, then
the matrix A is now equivalent to a triangular matrix B as

11 12

220

0 0

in

zn

nn

b b b

B b b

b

        

 
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When all the diagonal elements 11 22, , ... , 0.nnb b b      

But by the rule of expiations. Det 11 22( ) ... , 0.nnB b b b        

Now, B is obtained by some operation like multiplying a row
by non zero scalar.

Which multiplies the determinant by this scalar; or
interchanging rows, which multiplies the determinant by -1 , or
adding a multiple of are now to another, which does not charge the
value of the determinant since det ( ) 0B     it follows that det

( ) 0.A  

Hence the proof.

Corollary :

If 1 2, , nc c c   are column vectors of n such that

1 2( , , ... ) 0,nD c c c      and if B in a column vector, then thus exist

number 1 , ... , nx x     such that 1 1 ... .n nx c x c B         

These numbers are uniquely determined by B.

Proof :

1 2( , , ... , ) 0nD e c c       

1 2, , ... nc c c    are linear by independent and hens from a basis of .n

So, nBE can be written as a linear combination of 1 2, , ... , nc c c    for

some unique numbers 1 2, , ... , .nx x x   

1 1 2 2 ... n nx c x c x c B                for unique 1 2, , ... , .nx x x     

The above corollary can be placed an important feature of
system of linear equations like :

If a system of n linear equations in n unknowns has a matrix
of coefficients whose determinant in not zero, then the system has a
unique solution.

Now recall that the rank of a matrix in dimension of row
space on column space i.e. number of independent now of column
vectors in the matix.

Let a 3 x 4 matrix is given and we have to find out its rank. Its
rank is at most 3. If we can show at last one 3 x 3 determinant from
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the co-efficient matrix is non-new, we consider the rank of the
matrix in 3. If all 3 x 3 determinants are new, we have to check 2 x 2
determinants. If at last one of then is non-zero, we can conclude the
rank of the matrix in 2.

For example let
        

3 5 1 4

A = 2 -1 1 1

5 4 2 5

3 5 1 5 1 4

2 -1 1 = 0 , -1 1 1 = 0

5 4 2 4 2 5

One can check that any such 3 x 3 determinant from A in zero.

So, rank ( ) 3.A  

Now
3 5

= -13 ≠ 0.
2 -1

No need to check other 2 x 2 determinant. We can conclude
that rank (A) = 2.

Exercise 4.2

1. Find the rank of the following matrix.
                     

3 1 2 5 1 1 -1 2

(i)1 2 -1 2 (ii)2 -2 0 2

1 1 0 1 2 -8 3 -1

                              

1 1 1 1 3 1 1 -1

1 1 -1 1 -2 4 3 2
(iii) (iv)

1 -1 1 -1 -1 9 7 3

1 -1 -1 2 7 4 2 1

2. Find the values of the determinants using Laplaec expansion.

                     

2 4 6 2 0 3

(i)7 8 3 (ii)5 1 0

5 9 2 0 4 6
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                     

1 -2 -3 3 2 0

(iii)-2 3 4 (iv)1 1 3

3 -4 5 2 -1 2

3. Check only uniqueness of the solution for the following systems
of equations.

n z

y

n y

(i)2 - y + 3 = 9

n + 3 - z = 4

3 + 2 + z =10

n

z

y

(ii)2 + y - z = 5

x - y + 2 = 3

- x + 2 + z =1

n

z w

n z w

(iii)4 + y + z + w =1

n - y + 2 - 3 = 0

2 + y + 3 + 5 = 0

n + y - z - w = 2

y z w

n z

(iv)x + 2 - 3 + 5 = 0

2 + y - 4 - w =1

n + x + z + w = 0

- n - y - z + w = 4

[Hint : Just check that determinant of the co-efficient matrix is non
few far the uniqueness ]

4.8 GRAMER’S RULE

Determinants can be used to solve a system of linear
equations.

Thearim :

Let 1 2, , ... , nc c c    be column vectors such that

1 2( , , ... , ) 0.nD c e e       Let B be a column vector and 1 2, , ... , nx x x     are

numbers such that 1 1 2 2 ... ,n nx c x c x c B              then for each J = 1,

2, … , n.
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1 2

1 2

( , , , , )

( , , , )
n

n

D c e B e
nj

D e e e


    
 

   

Where B column vector replaces the column jc in numerator of jx .

Proof :

1 2

1 2 1 1 2 2

( , , ... , , ... )

( , , ... , ... ),

n

n n

D c c B c

D c c x c n c x c  

      

            

1 2 1 1

1 2 2 2

( , , ... , ... , )

( , , ... , , ... , )

n

n

D c c x c c

D c c x c c





         

          

1 2( , ... , , ... )j j nD c c x c c         

1 2( , ... , , ... )n n nd c c x c c       

1 1 2 1( , , ... , , ... , )

.........

nx D c c c c



         



1 2

1 2

( , , ... , ... )

...........

( , , .... , , ... , )

j j n

n n n

x D c c c c

x D c c c c







      



        

In every term of this sam except the j-th term, two column vectors
are equal. Hence every term except the j-th term is equal to 0. so we
get.

1 2

1 2

( , , ... , , ... )

( , , ... , , ... )

n

j j n

D c c B c

x D c c c c

     

       

1 2

1 2

( , , .. , , ... )

( , , ... , , ... )
n

j
j n

D c c B c
x

D c c c c
 

      
  

      

So we can salve a system of equations using above rule. This
rule in known as Gramers rule.

Example :

x y z

n

y z

3 + 2 + 4 =1

2 - y + z = 0

x + 2 + 3 =1

By Gramer’s rule
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1 2 4

0 -1 1

1 2 3
x =

3 2 4

2 -1 1

1 2 3

3 1 4

2 0 1

1 1 3
y =

3 2 4

2 -1 4

1 2 3

3 2 1

2 -1 0

1 2 1
z =

3 2 4

2 -1 1

1 2 3

1 2
x = - , y = 0 , z =

5 5

Exercise 4.3

1. Solne the following equation by Gramer’s rule.

z

n z

y x y

i)x + y + z = 6 ii)x + y - 2 = -10

x - y + z = 2 2 - y + 3 = -1

x + 2 - z = 2 4 + 6 + z = 2

x z x z

x y y z

x z x y z

iii)- 2 - y - 3 = 3 iv)4 - y + 3 = 2

z - 3 + z = -13 x + 5 - 2 = 3

2 - 3 = -11 3 + 2 + 4 = 6
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Answer

Exercise 4.1

1. (i) -42 (ii) -114 (iii) 14 (iv) -9

2. (i) -18 (ii) -45 (iii) 4 (iv) 192

Exercise 4.2

1. (i) 3 (ii) 2 (iii) 4 (iv) 2

2. (i) -204 (ii) 72 (iii) -6 (iv) 23

3. (i) unique (ii) unique (iii) unique (iv) unique.

Exercise 4.3

1. (i) (1,2,3) (ii) (5,3,4)
(iii) (-4, 2, 1) (iv) (0,1,1)







Chapter 6

Characteristic Polynomial

Chapter Structure
6.1 Introduction
6.2 Objectives
6.3 Diagonaizable Linear Transformations
6.4 Triangulable Linear Transformations
6.5 Nilpotent Linear Transformations
6.6 Chapter End Exercises

6.1 Introduction

In the following chapter we will attempt to understand the concept
of characteristic polynomial. In earlier two units of this course we have
seen that studying matrices and studying linear transformations on a fi-
nite dimensional vector space is one and the same thing. Although this
a case it is important to note that we get different matrices if we change
the basis of a underlying vector space. We also saw that although we
get different matrices for different bases, corresponding matrices are
similar. Being similar is an equivalence relation on the space of n × n
matrices, it is interesting to seek bases of underlying vector space in
which for a given linear transformation corresponding matrix is sim-
plest in appearance and because of similarity being equivalence relation
we do not loose anything important as far as linear transformation is
concerned. Studying so called eigenvalues of a linear transformation
addresses the issue of such bases in which given linear transformation
has a matrix in simplest form. During the quest of finding such bases
mentioned above we come to know various beautiful properties of linear
transformation and its relation to linear structure on the vector space.
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6.2 Objectives

After going through this chapter you will be able to:
• find eigenvalues of a given linear transformation
• find basis of a vector space in which matrix of a linear transformation
has diagonal or at least triangular form
• Properties of eigenvalues that characterize properties of linear trans-
formation

Let V be a finite dimensional vector space over a field of scalars F .
Let T be a linear transformation on V .

Definition 16. Eigenvalue (also known as characteristic value) of a lin-
ear transformation T is a scalar α in F such that there exist a nonzero
vector v ∈ V with T (v) = αv. any such v is known as eigenvector corre-
sponding to eigenvalue α. Collection of all such v ∈ V for a particular
eigenvalue is a subspace of V known as eigen space or characteristic
space associated with α.

Theorem 6.2.1. Let T be a linear transformation on a finite dimen-
sional space V . Then α is characteristic value of T if and only if the
operator T − αI is singular.

Proof. this is the proof of the theorem.

Remark 6.2.1. A linear transformation is singular if determinant of
its matrix is zero.
Thus α is eigenvalue of T if and only if determinant of matrix of T −αI
is zero. We see this determinant is a polynomial in α and hence roots
of the polynomial det(T − xI) are eigenvalues of T .

Definition 17. det(T−xI) is known as characteristic polynomial of T .

Example 7. Find eigenvalues and eigenvectors of the following matrix

A =

 1 0 1
2 3 1
1 1 1


Solution:

Step 1: Consider det(A− λI) = 0
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detA = det

 1− λ 0 1
2 3− λ 1
1 1 1− λ

 = 0

This gives characteristic polynomial of A and its roots are eigen-
values of A. Eigenvector is a solution vector of homogeneous
system of linear equations (A−λI)x = 0 where λ is an eigenvalue
of A.
Thus characteristic polynomial of A is obtained by finding deter-
minant in above equation and it is found to be the following p(λ)

p(λ) = λ3 − 5λ2 + 5λ− 1

Step 2: Roots of p(λ) are 2 +
√

(3), 1 and 2−
√

3. These are eigenvalues
of A.

Step 3: Solve following system of linear equations and we consider first
eigenvalue 2 +

√
3

(A− (2 +
√

3)I)x = 0

Solving we get X1 =
(
−3

2
+ 1

2
(2 +

√
3),−1

2
+ 1

2
(2 +

√
3, 1

)
Step 4: similarly for other two eigenvalues we get following eigenvectors

X3 =
(

1
2

+ 1
2
(2 +

√
3),−1

2
+ 1

2
(2 +

√
3, 1

)
X2 =

(
−1, 1, 0

)
Remark 6.2.2. Roots of characteristic polynomial may repeat and be-
havior of a linear transformation (or its corresponding matrix) depends
crucially on multiplicity of eigenvalues and dimension of corresponding
eigen spaces. One simple example of matrix with repeated eigenvalues
is the following matrix

 1 0 1
0 1 1
0 0 3


Definition 18. Algebraic multiplicity of an eigenvalue Multiplic-
ity of an eigenvalue as a root of characteristic polynomial is known as
algebraic multiplicity of corresponding eigenvalue.

Definition 19. Geometric multiplicity of an eigenvalue Dimen-
sion of the eigenspace or characteristic space of an eigenvalue is known
as the geometric multiplicity of a that eigenvalue.
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Theorem 6.2.2. Let α be an eigenvalue of a linear transformation T .
If f(x) is a polynomial in indeterminate x. Then f(T )v = f(α)v

Proof. First consider the case of f(x) being a monomial. Let f(x) = xk.
Let us apply induction on k.
Let k = 1. In this case f(x) = x. i.e. f(T ) = T . Here it follows that
f(T )v = f(α)v.
Let us assume the lemma for k = r. Thus we assume that T r(v) =
(αr)v. Consider k = r + 1
. T r+1(v) = T rTv = (T r)αv = α(T r)v.
Using induction hypothesis we get that
T r+1(v) = αr+1v
. Thus the lemma is established for all monomials.
Let f(x) = a0+a1x+ ...+akx

k. Thus f(T )v = a0v+a1Tv+ ...+akT
kv.

Using the lemma for monomials we get that f(T )v = a0 + a1αv + ...+
akα

kv = f(α)v. And the result is established for all polynomials.

Remark 6.2.3. This is very important lemma and in future we will
use it at various occasions.

Theorem 6.2.3. Let α1 and α2 be two distinct eigenvalues of a linear
transformation T on a finite dimensional vector space V . Let v1 and
v2 be respective eigenvectors. Then v1 and v2 are linearly independent.

Proof. Suppose otherwise that v1 and v2 are linearly dependent. Then
there exist a nonzero constant c such that v2 = cv1.Therefore T (v2) =
cT (v1). Thus we get that α2v2 = α1cv1. Which is same as v2 = α1c

α2
v1.

This leads to the conclusion that α1c
α2

= c. Since v1 and v2 are distinct
(as α1 and α2 are distinct) we have c 6= 1 leading to α1

α2
= 1. This is

same as α1 = α2. This is a contradiction to α1 and α2 being distinct.
Therefore v1 and v2 are linearly independent.

Now recall that geometric multiplicity of an eigenvalue is a number
of linearly independent eigenvectors corresponding to that eigenvalue.
In other words geometric multiplicity is nothing but dimension of eigen
space (ie.characteristic space) of an eigenvalue. Note however that di-
rect sum of all eigenspaces of a linear operator need not exhaust entire
vector space on which linear transformation is defined and now onwards
our attempt will be to see what best next can be done in case we fail to
recover vector space V from direct sum of eigen spaces corresponding to
a particularly given linear transformation. Question we want to address
is that in which circumstances does direct sum of eigen spaces exhaust
entire vector space. We will see that these linear transformations are
precisely the one which are diagonalizable. In the following section we
will make these ideas precise.

Theorem 6.2.4. Let T be a linear transformation on a finite dimen-
sional vector space V . Let α1, α2, ..., αk be the distinct eigenvalues of
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T and let Wi be the eigenspace corresponding to the eigenvalue αi. Bi

be an ordered basis for Wi. Let W = W1 + W2 + ... + Wk. Then
dimW = dimW1 + dimW2 + ...+ dimWk. Also B = (B1, B2, ...Bn) is a
ordered basis for W .

proof Vectors in Bi for 1 ≤ i ≤ k are linearly independent eigenvec-
tors of T corresponding to eigenvalue αi. Also vectors in Bi are linearly
independent to those in Bj for i 6= j.Because they are eigenvectors cor-
responding to different eigenvalues. Thus vectors in B are all linearly
independent. Note that vectors in B span W . This is because that is
how W is defined.

Theorem 6.2.5. Set of all linear transformations on a finite dimen-
sional vector space forms a vector space over the field F. Here naturally
the binary operation is composition of functions. This new vector space
is isomorphic to space of n× n matrices and hence has dimension n2.
Let us denote this space by L(V, V ).

Let T be a linear transformation on finite dimensional vector space
V .Thus T ∈ L(V, V ). Consider the first (n2+1) powers of T in L(V, V ).:

I, T, T 2, ..., T n
2

Since dimension of L(V, V ) is n2 and above we have n2 + 1 elements,
these must be linearly dependent.ie. there exist n2 + 1 scalars, not all
zero, such that we have:

c0 + c1T + c2T
2 + ...+ cn2T n

2

= 0 (6.1)

Or which is same thing as saying that T satisfies polynomial of degree
n2. We have now definition:
Definition Any polynomial f(x) such that f(T ) = 0 is known as an-
nihilating polynomial of a linear transformation T .
Polynomial given in 1 is one such polynomial. Thus set of annihilating
polynomials is nonempty and we can think of annihilating polynomial
of least degree which is monic.

Definition Annihilating polynomial of least degree which is monic
is known as minimal polynomial of a linear transformation T .

Example 8. Find minimal polynomial of the following matrix

A =


2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 5


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Solution:

Step 1: Find characteristic polynomial of A.
Characteristic polynomial of A is the following:

p(λ) = (λ− 2)3(λ− 5)

Step 2: By definition of minimal polynomial, minimal polynomial m(λ)
must divide characteristic polynomial hence it must be one of the
following:

(λ− 2)3(λ− 5)
(λ− 2)2(λ− 5)
(λ− 2)(λ− 5)

Step 3: Note that minimal polynomial is a polynomial of least degree
which is satisfied by the matrix A. Only polynomial amongst
above polynomial is the second one hence minimal polynomial is
(λ− 2)2(λ− 5)

Remark 6.2.4. 1. Set of all annihilating polynomials of a linear
transformation T is an ideal in F [x]. Since F is a field, this ideal
is a principal ideal and monic generator of this ideal is nothing
but minimal polynomial of T .

2. Since minimal polynomial is monic it is unique.

Theorem 6.2.6. Let T be a linear transformation on a n-dimensional
vector space V . The characteristic and minimal polynomial of T have
the same roots except for multiplicities.

Proof. Let p be the minimal polynomial for T . Let α be a scalar. We
want to show that p(α) = 0 if and only if α is an eiegnvalue of T .
First suppose that p(α) = 0. Then by remainder theorem of polynomi-
als,

p = (x− α)q (6.2)

where q is a polynomial. Since dedq < degp, the definition of mini-
mal polynomial p tells us that q(T ) 6= 0. Choose a vector v such that
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q(T )v 6= 0. Let q(T )v = w. Then

0 = p(T )v

= (T − αI)q(T )v

= (T − αI)w

and thus α is an eigenvalue.
Conversely, let α be an eigenvalue of T , say T (w) = αw with w 6= 0.
Since p is a polynomial we have seen that

p(T )w = p(α)w

Since p(T ) = 0 and w 6= 0, we have that p(α) = 0. Thus eigenvalue α
is a root of minimal polynomial p.

Remark 6.2.5. 1. Since every root of the minimal polynomial is
also a root of characteristic polynomial we see that minimal poly-
nomial divides characteristic polynomial. This is famous Caley
Hamilton theorem and it states that linear transformation T sat-
isfies characteristic polynomial in the sense that if f(x) is a char-
acteristic polynomial then f(T ) = 0.

2. Similar matrices have the same minimal polynomial

Check Your Progress

1. Let A :=

 4 4 4
−2 −3 −6
1 3 6

 Compute (a)the characteristic poly-

nomial (b) the eigenvalues (c) All eigenvectors (d) Identify alge-
braic and geometric multiplicities of each of the eigenvalue.

2. Let A be the real 3× 3 matrix. Find minimal polynomial of A

 3 1 −1
2 2 −1
2 2 0



6.3 Digonalizable Linear

Transformations
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Definition 20. Let V be a vector space of dimension n,and T be a
linear transformation on V . Let W be a subspace of V . We say that
W is invariant under T if for each vector v ∈ W the vector T (v) is in
W . i.e. if T (W ) ⊆ W .

Definition 21. Let T be a linear transformation on a finite dimen-
sional vector space V . We say that T is diagonalizable if there exist a
basis of V consisting of all eigenvectors of T .

Remark 6.3.1. Matrix of digonalizable T in the basis of V consisting
of eigenvectors of T is diagonal matrix with eigenvalues along the di-
agonal of the matrix.

Example 9. Find the basis in which following matrix is in diagonal
form

A =

 1 0 1
2 3 1
3 3 3


Solution: Since characteristic polynomial of the matrix is p(λ) =
λ3 − 7λ2 + 9λ− 3 we get following eigenvalues for A

3 +
√

(6), 1 and 3−
√

6.

Since all eigenvalues are distinct given matrix is and in the basis formed
by three independent eigenvectors matrix becomes diagonal.

X1 =
(
−5

2
+ 1

2
(3 +

√
6), 3

2
− 1

6
(3 +

√
6, 1

)
X2 =

(
−1, 1, 0

)
X3 =

(
−5

2
+ 1

2
(3−

√
6), 3

2
− 1

6
3−
√

6, 1
)

Required diagonal matrix is the matrix whose diagonal is formed by
three eigenvalues respectively.
Check Your Progress

Let A be a matrix over any field F . Let χA be the characteristic
polynomial of A and p(t) = t4 + 1 ∈ F [t]. State with reason whether
the following are true or false

1. Let χA = p, thenA is invertible

2. If χA = p, then A is diagonalizable over F

3. If p(B) = 0 for some matrix B be 8 × 8 matrix, then p is the
characteristic polynomial of B.
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4. There is unique monic polynomial q ∈ F [t] of degree 4 such that
q(A) = 0

Theorem 6.3.1. Let T be a diagonalizable linear transformation on
a n dimensional space V . Let α1, α2, ..., αk be the distinct eigenvalues
of T . Let d1, d2, ..., dk be the respective multiplicities with which these
eigenvalues are repeated. Then characteristic polynomial for T is

f = (x− α1)
d1 + (x− α2)

d2 + ...+ (x− αk)dk

d1 + d2 + ...+ dk = n

Proof. If T is diagonalizable then in the basis consisting of eigenvectors
matrix of T is a diagonal matrix with all eigenvalues lying along the
diagonal. We know that characteristic polynomial of a diagonal matrix
is a product of linear factors of the form-

f = (x− α1)
d1 + (x− α2)

d2 + ...+ (x− αk)dk

Check Your Progress

1. Let T be the linear operator in R4 which is represented in the
standard ordered basis by the following matrix

0 0 0 0
a 0 0 0
0 b 0 0
0 0 c 0


Under what conditions on a, b, andc is T diagonalizable.

2. Let N be 2 × 2 complex matrix such that N2 = 0¿ Prove that
either N = 0 or N is similar over C to

(
0 0
1 0

)
Lemma 6.3.1. Let W be an invariant subspace for T . The characteris-
tic polynomial for the restriction operator Tw divides the characteristic
polynomial for T . The minimal polynomial for Tw divides the minimal
polynomial for T .
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Proof. We have

A =

[
B C
0 D

]
(6.3)

where A = [T ]B andB = [Tw]′B. Because of the block form of the matrix

det(A− xI) = det(B − xI)det(xI −D) (6.4)

That proves statement of characteristic polynomials. Note that we have
used notation I for identity matrices of three different sizes.
Note that kth power of the matrix A has the block form

Ak =

[
Bk Ck
0 Dk

]
(6.5)

where Ck is some r× (n− r) matrix. Therefore, any polynomial which
annihilates A also annihilates B (and D too). So the minimal polyno-
mial for B divides the minimal polynomial for A

6.4 Triangulable Linear Transformations

Definition 22. Triangulable Linear Transformation The linear
transformation T is called triangulable if there is an ordered basis of V
in which T is represented by a triangular matrix.

Lemma 6.4.1. Let V be a finite dimensional vector space and let T be
a linear transformation on V such that minimal polynomial for T is a
product of linear factors

p = (x− α1)
r
1 + ...+ (x− αk)rk (6.6)

where αi ∈ F .
Let W be a proper subspace of V which is invariant under T . Then
there exist a vector v ∈ V such that

1. v is not in W ;

2. (T − αI)v is in W , for some characteristic value α of the trans-
formation T .

Proof. Let u be any vector in V which is not in W Then there exist
a polynomial g such that g(T )u ∈ W . Then g divides the minimal
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polynomial p for T . Since u is not in W , the polynomial g is not
constant. Therefore,

g = (x− α1)
l1 + (x− α2)

l2 + ...+ (x− αk)lk

where at least one of the integers li is positive. We choose j such that
lj > 0 then (x− αj) divides g. Hence

g = (x− αj)h (6.7)

By the definiion of g, the vector v = h(T )u can not be in W . But,

(T − αjI)v = (T − αjI)h(T )u = g(T )u (6.8)

is in W . .
We obtain triangular matrix representation of a linear transforma-

tion by applying following procedure:

1. Apply above lemma to trivial subspace W = 0 to get vector v1.

2. Once v1, v2, v3, ...vl−1 are determined form a subspace W spanned
by these vectors and apply above lemma to this W to obtain vl
in the following way-
Note that the subspace W spanned by v1, v2, ..., vl−1 is invariant
under T . Therefore by above lemma there exist a vector vl in
V which is not in W such that (T − αlI)vl is in W for certain
eigenvalue αl of T . This can be done because minimal polynomial
of T is factored into linear factors and above lemma is applicable.
We will illustrate this procedure with the help of example.

Theorem 6.4.1. In the basis obtained by above procedure the matrix
of T is triangular

Proof. By above procedure we get ordered basis {v1, v2, ...vn} This basis
is such that T (vj) lies in the space spanned by v1, v2, ...vj and we have
following form-

T (vj) = a1jv1 + a2jv2 + ...+ ajjvj, 1 ≤ j ≤ n (6.9)

In this type of representation we get that the matrix of T is triangular.
.

Check Your Progress
Let  0 1 0

2 −2 2
2 −3 2


Check whether above matrix is similar over a field of real numbers to
a triangular matrix? If so find such a triangular matrix.
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Theorem 6.4.2. Primary Decomposition Theorem
Let T be a linear transformation on a finite dimensional vector space
V over the field F . Let p be a minimal polynomial for T ,

p = pr11 ...p
rk
k (6.10)

where each pi are distinct irreducible monic polynomials over F and the
ri are positive integers. Let Wi be the null space of pi(T )ri , i = 1, 2, ..., k.
Then

1. V = W1 ⊕ ...⊕Wk;

2. each Wi is invariant under T ;

3. if Ti is the transformation induced on Wi by T , then the minimal
polynomial for Ti is prii .

.

Proof. Before proceeding to a proof of above theorem we note that real
point is in obtaining so called primary decomposition stated in the the-
orem explicitly for a given linear transformation. Thus we present a
proof in the form of algorithm which for given T will produce primary
decomposition of a given linear transformation T . Following steps de-
scribe the method to obtain primary decomposition theorem

1. For given T , obtain minimal polynomial for T . Let it be in the
following form

p = pr11 ...p
rk
k (6.11)

2. For each i, let

fi =
p

prii
= Πj 6=ip

rj
j (6.12)

Note that all fi are distinct and are relatively prime.

3. Find polynomials gi such that

k∑
i=1

figi = 1 (6.13)

4. Let Ei = hi(T ) = fi(T )gi(T )
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5. For i 6= j we have

E1 + ...+ Ek = I (6.14)

EiEj = 0, i 6= j (6.15)

6. These Ei serve the purpose of obtaining invariant subspaces Wi

which decompose V into direct sum, and each Ei is a projection
operator.

7. It can be verified that minimal polynomial of Ti which is a re-
striction of T to Wi is prii .

6.5 Nilpotent Linear Transformations

Definition 23. Nilpotent Transformation Let N be a linear trans-
formation on the vector space V . N is said to be nilpotent if there exist
some positive integer r such that N r = 0.

Theorem 6.5.1. Let T be a linear transformation on the finite dimen-
sional vector space V over the field F . Suppose that minimal polynomial
for T decomposes over F into linear a product of linear polynomials.
Then there is a diagonalizable transformation D on V and nilpotent
operator N on V such that

T = D +N ; (6.16)

DN = ND. (6.17)

The transformation D and N are uniquely determined and each of them
is a polynomial in T .

We will now see the process to find D and N for a given linear
transformation T .

1. Calculate minimal polynomial of T and factor into linear polyno-
mials pi = x− αi.

2. In the notation of above theorem, we calculate Ei and note that
range of Ei is null space Wi of (T − αiI)ri .

3. Let D = α1E1 + ...+αkEk and observe that D is a diagonalizable
transformation. We call D diagonalizable part of T .

4. Let N = T −D. We prove below that N so defined is nilpotent
transformation.
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Proof that N defined as above is a nilpotent transformation.
Note that the range space of Ei is the null space Wi of (T − αi)ri .

I = E1 + E2 + ...+ Ek (6.18)

⇒ T = TE1 + ...+ TEk (6.19)

D = α1E1 + ...+ αkEk (6.20)

Therefore N = T −D becomes

N = (T − α1I)E1 + ...+ (T − αkI)Ek (6.21)

N2 = (T − α1I)2E1 + ...+ (T − αkI)2Ek (6.22)

N r = (T − α1I)rE1 + ...+ (T − αkI)rEk (6.23)

When r ≥ ri for every i, then N r = 0, because the transformation
(T − αkI)i will be a null transformation on the range of Ei. Therefore
N is nilpotent transformation.

Example 10. Find the basis in which following matrix has triangular
form and find that triangular form.

A =

 0 1 0
2 −2 2
2 −3 2


Solution: Process to find triangular form of a matrix is as follows-

Step 1: Find at least one eigenvalue and corresponding eigenvector of
A. For above matrix characteristic polynomial is f(λ) = λ3.
Hence 0 is an eigenvalue which is repeated thrice. Eigenvectors
are

(
−1, 0, 1

)
,
(

0, 0, 0
)

and
(

0, 0, 0
)

Step 2: Now Note that u1 =
(
−1, 0, 1

)
∈ kerA and kerA ⊂ kerA2 ⊂

kerA3. If u2 ∈ kerA2 − kerA then Au2 ∈ kerA =< u1 >
Au2 = αu1 for some scalar α.

A =

 2 −2 2
0 0 0
−2 2 −2


and kerA2 =<

(
1, 1, 0

)
,
(

0, 1, 1
)
> Taking u2 =

(
1, 1, 0

)
and u3 =

(
1, 0, 0

)
>.

Step 3: In the basis u1, u2 and u3, given matrix A has triangular form-

A =

 0 1 0
0 0 2
0 0 −2


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6.6 Chapter End Exercise

1. Let A be an invertible matrix. If v is an eigenvector of A, show
it is also an eigenvector of both A2 and A−2. What are the cor-
responding eigenvalues?

2. Let C be a 2× 2 matrix of real numbers. Give a proof or counter
example to the assertion that if C has two distinct eigenvalues
then so does C2.

3. Let A be n × n have an eigenvalue λ with corresponding eigen-
vector v, then state with reason whether following is true or false

(a) −λ is an eigenvalue of −A
(b) If v is an also an eigenvector of B with eigenvalue µ, then

λµ is an eigenvalue of AB.

(c) Let κ ∈ F . Then κλ is an eigenvalues of κA.

4. Let

A =

 6 −3 −2
4 −1 −2
10 −5 −3


Is A similar over the firld R to a diagonal matrix? Is A is similar
over the field C to a diagonal matrix?

5. Let A and B be an n× n matrices over the field F . Prove that if
(I − AB is invertible, then (I −BA) is invertible and

(I −BA)−1 = I +B(I − AB)−1A

6. Use above result to prove that A and B are n×n matrices over the
field F , then AB and BA have precisely the same characteristic
values in F .

7. Let a, bandc be elements of a field F , and let A be the following
matrix over F ;

A =

 0 0 c
1 0 b
0 1 a


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Prove that the characteristic polynomial of A is x3− ax2− bx− c
and that this is also the minimal polynomial for A.

8. Find a 3× 3 matrix for which the minimal polynomial is x2.

9. Is it true that every matrix A such that A2 = A is similar to a
diagonal matrix. If true, prove your assertion otherwise give a
counter example.

10. Let T be a linear operator on V . if every subspace of V is invariant
under T , then prove that T is a scalar multiple of the identity
operator.

11. Let T be a linear operator on a finte dimensional vector space
over an algebraically closed field F . Let f be a polynomial over
F . Prove that α is a characteristic value of f(T ) if and only if
α = f(κ), where κ is a characteristic value of T .
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Chapter 5

Inner Product Spaces

Chapter Structure
5.1 Introduction
5.2 Objectives
5.3 Inner Product
5.4 Orthogonalization
5.5 Adjoint of a Linear Transformation
5.5.1 Unitary Operators
5.5.2 Normal Operators
5.6 Chapter End Exercises

5.1 Introduction

Vector space structure on a set is purely an algebraic structure. We
simply mention the way, by means of this structure, how to add and
subtract two vectors. In general we also talk about geometrical proper-
ties of vectors. Then question arise which concepts in general describe
geometric properties of vectors. Once such concepts are there with us
then we can discuss terms like orthogonality in case of vector spaces
where apparently elements do not look like Euclidean vectors. Inner
product is that concept. Inner product in case of Euclidean vectors is
simply a dot product of two vectors. We have seen that at elementary
level dot products to a quite larger extent describe geometry of Eu-
clidean spaces. In other words all propositions of geometry, in one or
other way, are consequence of the fact that dot product is defined on
Euclidean spaces. Thus we define a real valued function known as inner
product on a vector space and try to see what impressions this function
makes on vector space structure and linear transformations defined on
these vector spaces.
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5.2 Objectives

After going through this chapter you will be able to:
• decide whether given real valued function is an inner product on a
vector space
• decide whether given pair of vectors is orthogonal
• decide how vivid vector space structure becomes and different look
linear transformations get because of defining inner product on vector
spaces.

5.3 Inner Product

Definition 1. Let F be a field of real numbers or field of complex
numbers and V is a vector space over F . An inner product on V is a
function which assigns to each ordered pair of vectors u, v ∈ V a scalar
< u, v >∈ F in such a way that for all u, v, w ∈ V and all scalars α

1. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

2. 〈αu, v〉 = α〈u, v〉

3. 〈u, v〉 = 〈v, u〉

4. 〈u, u〉 6= 0 if u 6= 0

Observation 5.3.1. Without complex conjugation in the definition,
we would have the contradiction:

〈u, u〉 > 0 and 〈ıu, ıu〉 = −1〈u, u〉 > 0 for u 6= 0

Example 1. On Rn there is an inner product which is known as Stan-
dard Inner Product. It is defined as the dot product of two coordi-
nate vectors.

Example 2. For u = (x, y), v = (x1, y1) in R2, let

〈u, v〉 = xx1 − yx1 − xy1 + 4yy1

Then 〈u, v〉 defines an inner product on the vectors of R2.

Example 3. Let V be F n×n, the space of all n × n matrices over F .
Here F is either field of real numbers or field of complex numbers. Then
the following defined is an inner product on V .

〈A,B〉 =
∑
j,k

AjkBjk
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• Verify that above inner product can be expressed in the following
way-

〈A,B〉 = tr(AB∗) = tr(B∗A)

• Let V and W be vector spaces over a field F . Where F is either
a field of real numbers or field of complex numbers. Let T be
a non-singular linear transformation from V into W . If 〈., .〉 is
an inner product on V . Then prove that 〈Tu, Tv〉 is an inner
product on W .

• Let v be the vector space of all continuous complex valued func-
tions on the unit interval, 0 ≤ t ≤ 1. Let

〈f, g〉 =

∫ 1

0

f(t)g(t)dt

Prove that 〈., .〉 so defined is an inner product.

• Let V be a vector space on the field of complex numbers. Let 〈., .〉
be an inner product defined on V . Then prove that the following
holds.

〈u, v〉 = Re〈u, v〉+ ıRe〈u, ıv〉

Definition 2. An inner product space is a real or complex vector space,
together with a specified inner product on that space. A finite dimen-
sional real inner product space is called Euclidean space and a finite
dimensional complex inner product space is called a unitary space.

Definition 3. The quadratic form determined by the inner product is
the function that assigns to each vector u the scalar ||u||2 defined as

||u||2 = 〈u, u〉

Note that ||u|| satisfies the following identity

||u± v||2 = ||u||2 ± 2Re〈u, v〉+ ||v||2∀u, v ∈ V

• For a real inner product prove the following:

〈u, v〉 =
1

4
||u+ v||2 − 1

4
||u− v||2

• For a complex inner product prove the following

〈u, v〉 =
1

4
||u+ v||2 − 1

4
||u− v||2 +

ı

4
||u+ iv||2 − ı

4
||u− iv||2

Above identities are known as polarization identities
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Theorem 5.3.1. Let V be an inner product space, then for any vectors
u, v in V and scalar α

1. ||αu|| = |α|||u||;

2. ||u|| ≥ 0 for u 6= 0;

3. |〈u, v〉| ≤ ||u||||v||;

4. ||u+ v|| ≤ ||u||+ ||v||.

Proof. 1. First follows easily in the following way

||αu||2 = 〈αu, αu〉
= αα〈u, u〉
= αα||u||2

Therefore it follows that

||αu|| = |α|||u||

2. This follows immediately from definition of inner product.

3. This inequality is true if u = 0. Suppose u 6= 0 Let

w = v − 〈v, u〉
||u||2

u

then 〈w, u〉 = 0 and 0 ≤ ||w||2

||w||2 = (〈w − 〈w, u〉
||u||2

u,w − 〈w, u〉
||u||2

u〉)

= 〈w,w〉 − 〈w, u〉〈u,w〉
||u||2

= ||w||2 − |〈u, v〉|
2

||u||2

Hence third inequality.

4. Using third inequality in the following way we get the fourth
inequality–

||u+ v||2 = ||u||2 + 〈u, v〉+ 〈v, u〉+ ||v||2

= ||u||2 + 2Re〈u, v〉+ ||v||2

≤ ||u||2 + 2||u||||v||+ ||v||2

= (||u||+ ||v||)2

Therefore
||u+ v|| ≤ ||u||+ ||v||
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The third inequality above is called Cauchy-Schwarz inequality.
Equality occurs in the third if and only if u and v are linearly dependent.

5.4 Orthogonalization

Definition 4. Let u and v be vectors in an inner product space V .
Then u is orthogonal to v if 〈u, v〉 = 0. If S is a set of vectors in V then
S is said to be orthogonal set if for each pair of distinct vectors u, v ∈ S
we have 〈u, v〉 = 0. Such an orthogonal set is said to be orthonormal if
for every u ∈ S we have that ||u|| = 1.

Example 4. Find unit vector orthogonal to v1 =
(

1, 1, 2
)
, v2 =(

0, 1, 3
)

Solution: If w is a vector which is orthogonal to v1 and v2 then it
satisfies that 〈w, v1〉 = 0 and 〈w, v2〉 = 0 This leads to homogeneous
system of linear equation-

x+ y + 2z = 0

y + 3z = 0

where w =
(
x, y, z

)
Upon solving this system of equation we get

x = 1, y = −3, z = 1. Normalizing this vector we get unit vector
orthogonal to v1 and v2 which is thus v1 =

(
1/
√

11,−3/
√

11, 1/
√

11
)
.

Theorem 5.4.1. An orthogonal set of non-zero vectors is linearly in-
dependent.

Proof. Let S be an finite or infinite orthogonal set of nonzero vectors in
a given inner product space. Suppose u1, u2, ..., un are distinct vectors
in S and that

v = α1u1 + α2u2 + ...+ αnun

then

〈v, uk〉 = 〈
∑
j

αjuj, uk〉

=
∑
j

αj〈uj, uk〉

= αk〈uk, uk〉

Since 〈uk, uk〈6= 0 it follows that

αk =
〈v, uk〉
||uk||2

Thus when v = 0 we get that each αk = 0; therefore S is an independent
set.
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Corollary 5.4.1. If a vector v is a linear combination of an orthogonal
sequence of non zero vectors u1, u2, ..., un, then v is the particular linear
combination

v =
m∑
k=1

〈v, uk〉
||uk||2

uk

Theorem 5.4.2. Let V be an inner product space and let u1, u2, ..., un
be any independent vectors in V . Then one may construct orthogonal
vectors v1, v2, ...vn in V such that for each k = 1, 2, ...n the set

v1, v2, ..., vn

is a basis for the subspace generated by u1, u2, ..., un.

Proof. We will achieve claim of made in the theorem by explicitly deter-
mining v1, v2, ...vn when u1, u2, ..., un are given. This process is known
as Gram-Schmidt orthogonalization process
Let

v1 = u1

Suppose v1, v2, ..., vm vectors of sought n vectors are constructed such
that these vectors span the subspace spanned by u1, u2, ..., um. Then
vm+1 is defined as follows

vm+1 = um+1 −
m∑
k=1

〈um+1, vk〉
||vk||2

vk

Then vm+1 6= 0 otherwise uk+1 is a linear combination of v1, v2, ..., vm
and hence linear combination of u1, u2, ..., um. Furthermore, if 1 ≤ j ≤
m then

〈vm+1, vj〉 = 〈um+1, vj〉 −
m∑
k=1

〈um+1, vk〉
||vk||2

〈vk, vj〉

= 〈um+1, vj〉 − 〈um+1, vj〉
= 0

Therefore v1, v2, ..., vm+1 is an orthogonal set consisting ofm = 1 nonzero
vectors in the subspace spanned by u1, u2, ..., um+1. This set therefore
is a basis for this subspace. This completes the construction and proof
of the theorem.

Corollary 5.4.2. Every finite dimensional inner product space has an
orthonormal basis.

Proof. Let V be a finite dimensional inner product space and u1, u2, ..., un
be a basis for V . We apply the Gram-Schmidt process to construct or-
thogonal basis v1, v2, ..., vn. Then we obtain orthonormal basis simply
by replacing vk by vk

||vk||
.
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Example 5. Consider the following basis of Euclidean space R3.

v1 = (1, 1, 1) v2(0, 1, 1) and v3 = (0, 0, 1)

Transform this basis to orthonormal basis using Gram-Schmidt orthog-
onalization process.

Solution:

u1 = v1
||v1|| = (1,1,1)√

3

Now we find w2 as follows-

w2 = v2 − 〈v2, u1〉u1 = (0, 1, 1, )− 2
3
( (1,1,1)√

3
) = (−2

3
, 1
3
, 1
3
)

Normalizing w2 we get

u2 = w2

||w2|| = (− 2√
6
, 1√

6
, 1√

6
)

Now we write

w3 = v3 − 〈v3, u1〉u1 − 〈v3, u2〉u2 = (0,−1
2
, 1
2
)

Normalizing we get u3 = (0,− 1√
2
, 1√

2
)

u1, u2 and u3 together form the required orthogonal basis.

Example 6. Find real orthogonal matrix P such that P tAP is diagonal
for the following matrix A.

A =

 2 1 1
1 2 1
1 1 2


Solution: First find characteristic polynomial for A which is (λ −
1)2(λ − 4). Thus eigenvalues of A are 1 (with multiplicity two) and
4 (with multiplicity one) Solve (A − λI)X = 0 for λ = 1 and we get
following homogeneous system of equations:

−x− y − z = 0

−x− y − z = 0

−x− y − z = 0

That is x+ y+ z = 0 This system has two independent solutions. One
such solution is v1 = (1,−1, 0).We seek a second solution v2 = (a, b, c)
which is orthogonal to v1 that is such that

a+ b+ c = 0 and a− b = 0

One of the solution to these equations is v2 = (1, 1,−2) Next we nor-
malize v1 and v2 to obtain the unit orthogonal solutions

u1 = (1/
√

2,−1/
√

2, 0), u2 = (1/
√

6, 1/
√

6,−2/
√

6)
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Similarly solution of (A − λI)X = 0 for λ = 4 is v3 = (1, 1, 1)
and normalize it to obtain u3 = (1/

√
3, 1/
√

3, 1/
√

3) Matrix P whose
columns are vectors u1, u2 and u3 form an orthogonal matrix such that
P tAP is diagonal matrix and corresponding diagonal matrix is the
following-

P =

 1/
√

2 1/
√

6 1/
√

3

−1/
√

2 1/
√

6 1/
√

3

0 −2/
√

6 1/
√

3


P tAP =

 1 0 0
0 1 0
0 0 4


Definition 5. If W is a finite dimensional subspace of a inner product
space V and u1, u2, ..., un is any orthonormal basis for W , then the
vector u defined as follows is known as orthogonal projection of
v ∈ V .

u =
∑
k

〈v, uk〉
||uk||2

uk

The mapping that assigns to each vector in V its orthogonal projection
is called orthogonal projection of V on W

Definition 6. Let V be an inner product space and S be any set of
vectors in V . The orthogonal complement of S is the set S⊥ of all
vectors in V which are orthogonal to every vector in S.

Theorem 5.4.3. Let W be a finite dimensional subspace of an inner
product space V and let E be orthogonal projection of V on W . Then
E is idempotent linear transformation of V onto W , W⊥ is the null
space of E and

V = W
⊕

W⊥

In this case, I − Eis the orthogonal projection of V on W⊥. It is an
idempotent linear transformation of V onto W⊥ with null space W .
Bessel’s Inequality
Let v1, v2, ...vn be an orthonormal set of nonzero vectors in an inner
product space V . If u is any vector in V , then-∑

k

|〈u, vk〉|2

||vk||2
≤ ||u||2

Theorem 5.4.4. Let V be a finite dimensional vector space and f be a
linear functional on V . Then there exists a unique vector v in V such
that f(u) = 〈u, v〉 for all u in V .

Note that v lies in the orthogonal complement of the null space of
f .
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Theorem 5.4.5. For any linear transformation/operator T on a finite
dimensional inner product space V , there exists a unique linear operator
T ∗ on V such that

〈Tu, v〉 = 〈u, T ∗v〉
for all u and v in V .

Proof. Let v be any vector in V . Then u 7→ 〈Tu, v〉 is a linear functional
on V . As we have stated above there exist unique vector v′ in V such
that 〈Tu, v〉 = 〈u, v′〉 for every u in V . Let T ∗ denote the mapping
v 7→ v′

v′ = T ∗v

For any u, v, w in V consider the following for any scalar α

〈u, T ∗(αv + w)〉 = 〈Tu, αv + w〉
= 〈Tu, αv〉+ 〈Tu,w〉
= α〈Tu, v〉+ 〈Tu,w〉
= α〈u, T ∗v〉+ 〈u, T ∗w〉
= 〈u, αT ∗v〉+ 〈u, T ∗w〉
= 〈u, cT ∗v + T ∗w〉

Thus
〈u, T ∗(αv + w)〉 = 〈u, cT ∗v + T ∗w〉

hence T ∗ is linear. Now we prove uniqueness. Note that for any v in
V , the vector T ∗v is uniquely determined as the vector v′ such that
〈Tu, v〉 = 〈u, v′〉 for every u.

Theorem 5.4.6. Let V be a finite dimensional inner product space and
let B = u1, u2, .., un be an ordered orthonormal basis for V . Let T be a
linear operator on V and let A be the matrix of T in the basis B. Then
Akj = 〈Tuj, uk〉.

Proof. Since B is an orthonormal basis, we have

u =
n∑
k=1

〈u, uk〉uk

The matrix A is defined by

Tuj =
n∑
k=1

Akjuk

and since

Tuj =
n∑
k=1

〈Tuj, uk〉uk

we have that Akj = 〈Tuj, uk〉.
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Corollary 5.4.3. Let V be a finite dimensional inner product space,
and let T be a linear operator on V . In any orthonormal basis for V ,
the matrix of T ∗ is the conjugate transpose of the matrix of T .

Proof. Let B = u1, u2, .., un be an orthonormal basis for V , let A = [T ]B
and B = [T ∗]B. From above theorem we have

Akj = 〈Tuj, uk〉
Bkj = 〈T ∗uj, uk〉

By the definition of T ∗ we have

Bkj = 〈T ∗uj, uk〉
= 〈uk, T ∗uj〉
= Tuk, uj

= Ajk

5.5 Adjoint of a Linear Transformation

Definition 7. Let T be a linear operator on an inner product space V .
Then we say that T has an adjoint on V if there exists a linear operator
T ∗ on V such that 〈Tu, v〉 = 〈u, T ∗v〉 for all u and v in V .

Note that for a linear operator on finite dimensional inner product
space there always exist an adjoint but there exist infinite diemnsional
inner product spaces and linear operators on them for which there is
no corresponding adjoint operator.

Theorem 5.5.1. Let V be a finite dimensional inner product space. If
T and U are linear operators on V and α is scalar,

1.

(T + U)∗ = T ∗ + U∗

2.

(αT )∗ = αT ∗

3.

(TU)∗ = U∗T ∗

4.

(T ∗)∗ = T
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Proof. 1. Let u and v be in V . Then

〈(T + U)u, v〉 = 〈Tu+ Uu, v〉
= 〈Tu, v〉+ 〈Uu, v〉
= 〈u, T ∗v〉+ 〈u, U∗v〉
= 〈u, T ∗v + U∗v〉
= 〈u, (T ∗ + U∗)v〉

From the uniqueness of adjoints we have that (T +U)∗ = T ∗+U∗

2. Consider

〈αTu, v〉 = 〈Tu, αv〉
= 〈u, T ∗αv〉
= 〈u, αT ∗v〉

From the uniqueness of adjoints we get (αT )∗ = αT ∗.

3. Note the following

〈TUu, v〉 = 〈Uu, T ∗v〉 = 〈u, U∗T ∗v〉

Uniqueness of adjoint of a linear operator proves the third iden-
tity.

4. Note the following

〈T ∗u, v〉 = 〈v, T ∗u〉 = 〈Tv, u〉 = 〈u, TV 〉

and the fourth identity follows.

Note that if T is a linear operator on finite dimensional
complex inner product space, then

T = U1 + iU2

where U1 = U∗1 and U2 = U∗2 .This expression for T is unique and

U1 =
1

2
(T + T ∗)

U2 =
1

2i
(T − T ∗)

Definition 8. A linear operator T such that T = T ∗ is called self
adjoint or Hermitian.
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5.5.1 Unitary Operators

Definition 9. Let V and W be inner product spaces over the same
field and let T be a linear transformation from V into W . We say that
T preserves inner product if 〈Tu, Tv〉 = 〈u, v〉 for all u, v in V .An iso-
morphism of V onto W is a vector space isomorphism which preserves
inner products.

Definition 10. A unitary operator on an inner product space is an
isomorphism onto itself.

Theorem 5.5.2. Let V and W be inner product spaces over the same
field and let T be a linear transformation from V into W . Then T
preserves inner product if and only if ||Tu|| = ||u|| for every u in V .

Proof. If T preserves inner product then it follows that ||Tu|| = ||u||.
For converse part, we prove the result for real inner product spaces. For
complex inner product spaces result follows on similar lines except that
we have to consider polarization identity for complex inner product
spaces. So, let our inner product spaces are real and let ||Tu|| = ||u||.
Consider polarization identity-

〈u, v〉 =
1

4
||u+ v||2 − 1

4
||u− v||2

〈Tu, Tv〉 =
1

4
||Tu+ Tv||2 − 1

4
||Tu− Tv||2

=
1

4
||T (u+ v)||2 − 1

4
||T (u− v)||2

=
1

4
||u+ v||2 − 1

4
||u− v||2

= 〈u, v〉

Theorem 5.5.3. Let U be a linear operator on an inner product space
V . Then U is unitary if and only if the adjoint U∗ of U exists and
UU∗ = U∗U = I.

Proof. Suppose U is unitary. Then U is invertible and

〈Uu, v〉 = 〈Uu, UU−1v〉 = 〈u, U−1v〉

for all u and v from V . From definition of adjoint of an operator then
it follows that U−1 satisfies properties of adjoint and hence U−1 is the
adjoint of U . It is trivial now to see UU∗ = U∗U = I Conversely let
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adjoint exists and it is U−1. We need to show that U preserves inner
product.

〈Uu, Uv〉 = 〈u, U∗Uv〉
= 〈u, Iv〉
= 〈u, v〉

for all u and v.

Definition 11. A complex n×n matrix A is called unitary, if A∗A = I.

Definition 12. A real or complex n×n matrix A is said to be orthog-
onal, if AtA = I.

Definition 13. Let A and B be complex n× n matrices. We say that
B is unitarily equivalent to A if there is an n × n unitary matrix P
such that B = P−1AP . We say that B is orthogonally equivalent to A
if there is an n× n orthogonal matrix P such that B = P−1AP .

5.5.2 Normal Operators

Definition 14. Let V be a finite dimensional inner product space and
T a linear operator on V . We say that T is normal if it commutes with
its adjoint.i.e., TT ∗ = T ∗T .

Observation 5.5.1. Any self-adjoint operator is normal. Any unitary
operator is normal. Any scalar multiple of normal operator is normal.
Note however that sums and products of normal operators are not, in
general, normal.

Theorem 5.5.4. Let V be an inner product space and T be a self
adjoint linear operator on V . Then each characteristic value of T is
real, and characteristics vectors associated of T associated with distinct
characteristic values are orthogonal.

Proof. Let α be a characteristic value of T . Thus Tu = αu for some
nonzero vector u.Then

α〈u, u〉 = 〈αu, u〉
= 〈Tu, u〉
= 〈u, Tu〉
= 〈u, αu〉
= α〈u, u〉
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Since u 6= 0, we must have α = α.i.e., α is real. Suppose we also have
Tv = βv with v 6= 0. Then

α〈u, v〉 = 〈Tu, v〉
= 〈u, Tv〉
= 〈u, βv〉
= β〈u, v〉
= β〈u, v〉

If α 6= β, then it follows that 〈u, v〉 = 0. Proving orthogonality of u
and v.

Theorem 5.5.5. On a finite dimensional inner product space of pos-
itive dimension, every self adjoint operator has a (nonzero) character-
istic vector.

Proof. Let V be a finite dimnsional inner product space of dimension
n, where n > 0. Let T be a self adjoint operator on V . Choose an
orthonormal basis B for V and let A = [T ]B Since T = T ∗, we have
A = A∗. LetW be the space of n×1 matrices over C, with inner product
〈X, Y 〉 = Y ∗X. Then U(X) = AX defines a self adjoint operator U
on W . The characteristic polynomial, det(xI − A), is a polynomial of
degree n over the field of complex numbers. Every polynomial over C
has a root. Thus there exists a complex number α such that det(αI −
A) = 0.This means that A − αI is singular, or that there exist a non
zero X such that AX = αX. Since multiplication by A is self adjoint
it follows that α is real. If V is real then one may choose X with real
entries. For then A and A − αI have real entries, and since A − αI is
singular, the system (A− αI)X = 0 has a nonzero real solution X. In
this way we have that Tu = αu. .

Theorem 5.5.6. Let V be a finite dimensional inner product space
and let T be any linear operator on V . Suppose W is a subspace of V
which is invariant under T . Then the orthogonal complement of W is
invariant under T ∗.

Proof. : W is invariant under T means if u is in W then Tu is in W .Let
v be in W⊥. Let u ∈ W . Then Tu ∈ W . Now

0 = 〈Tu, v〉
= 〈u, T ∗v〉

This shows that u ⊥ T ∗v. This proves that T ∗v is in W⊥. Therefore if
v be in W⊥ then T ∗v is in W⊥. Hence the proof.

Theorem 5.5.7. If T is a normal operator on finite dimensional inner
product space V then the operator Udefined for any scalar α by U =
T − αI is normal.
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Proof. Note that (T − αI)∗ = T ∗ − αI.

UU∗ = (T − αI)(T − αI)∗

= (T − αI)(T ∗ − αI)

= (T ∗ − αI)(T − αI)

= U∗U

Thus U as defined above is normal.

Theorem 5.5.8. Let V be a finite dimensional inner product space and
T a normal operator on V . Suppose u is a vector in V . Then u is a
characteristic vector of T with characteristic value α if and only if u is
a characteristic vector of T ∗ with characteristic value α

Proof. Suppose U is any normal operator on V . Then

||Uu||2 = 〈Uu, Uu〉 = 〈u, U∗Uu〉 = 〈u, UU∗u〉 = 〈U∗u, U∗u〉 = ||U∗u||2

Which implies that ||Uu|| = ||U∗u||. If α is any scalar then we saw in
above theorem that the operator U = T − αI is normal. Thus

||(T − αI)u|| = ||(T ∗ − αI)u||

and (T − αI)u = 0 if and only if(T ∗ − αI)u = 0.

Definition 15. A complex n×n matrix is called normal if AA∗ = A∗A

Theorem 5.5.9. write theorem statement here.

Proof. this is the proof of the theorem. If there is some corollary
to this theorem then you may write like this:

Corollary 5.5.1. corollary to above theorem.

If you want give some problems for practice then write this:
Check Your Progress Prove or give counter example for the
following assertions where v, w, z are vectors in a real inner product
space H.

1. If 〈v, w〉 = 0 and 〈v, z〉 = 0 then 〈w, z〉 = 0

2. If 〈v, z〉 = 〈w, z〉 for all z ∈ H, then v = w

3. If A is an n× n symmetric matrix then A is invertible.

5.6 Chapter End Exercise

1. Prove that an angle inscribed in a semicircle is a right angle.
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2. Let v, w be vectors in the plane R2 with lengths 3, 5 respectively.
What is the maxima and minima of the length of v + w?

3. Let A be the following matrix. Show that the bilinear map R3 ×
R3 → R defined by 〈x, y〉 = xTAy is a scalar product.

A =

 1 1/2 0
1/2 1 0
0 0 1


4. Let S ⊂ R4 be the vectors that satisfy X = (x1, x2, x3, x4) that

satisfy x1 + x2 − x3 + x4 = 0. What is dimension of S. Find
orthogonal complement of S.

5. Let L : R3 → R3 be a linear map with the property that Lv ⊥ v
for every v ∈ R3 Prove that L can not be invertible.
Is a similar assertion is true for linear map L : R2 → R2 ?

6. In a complex vector space with hermitian inner product on it, if
a matrix A satisfies < x,Ax >= 0 for all vectors x, show that
A = 0.

7. Let A be a square matrix of real numbers whose columns are
(non zero) orthogonal vectors. Then show that ATA is a diagonal
matrix.
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Chapter 7

Bilinear Forms

Chapter Structure 7.1 Introduction
7.2 Objectives
7.3 Bilinear Form and its Types
7.4 Chapter End Exercises

7.1 Introduction

Linear transformation is a linear function of one variable. Then
question arises of defining a linear function of two variables, concept
of bilinear form arose out of this need. But again what does it mean
by linearity in two variables? Natural answer to this question is that
what defines a bilinear form. Theory of bilinear forms (and multilinear
forms) has developed by generalizing concepts from one variable in
a most natural way. Here natural means we take for generalization
obvious choices and establish that they are unambiguous. We have
taken most of the text from book by Hoffman and Kunz and care has
been taken that reader will have to go to original text, the least number
of times.

7.2 Objectives

After going through this chapter you will be able to:
• Check whether given expression is bilinear form and classify whether
it is degenerate, non-degenerate, symmetric, skewsymmetric bilniear
form
• Find matrix of a bilinear form in the given basis and switching from
one basis to the other
• Diagonalization of a bilinear form and find its signature
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7.3 Bilinear Form and its types

Definition 24. Bilinear Form Bilinear form on a vector space V is
a function of two variables on V , with values in the field F satisfying
the bilinear axioms which are-

f(v1 + v2, w) = f(v1, w) + f(v2, w)

f(αv, w) = αf(v, w)

f(v, w1 + w2) = f(v, w1) + f(v, w2)

f(v, αw) = αf(v, w)

for all v, w, v1, w1, v2, w2 ∈ V and α ∈ F

Bilinear form will be denoted by 〈v, w〉.

Definition 25. A bilinear form is said to be symmetric if

〈v, w〉 = 〈w, v〉

and skew symmetric if
〈v, w〉 = −〈w, v〉

Definition 26. Two vectors u, v are called orthogonal with respect to
symmetric form if 〈u, v〉 = 0

Definition 27. A basis B of V is called orthonormal basis with respect
to the form if,

〈vi, vj〉 = 0 for all i 6= j and 〈vi, vi〉 = 1 for all i.

Remark 7.3.1. If the form is either symmetric or skew symmetric,
then the linearity in the first variable follows from linearity in the second
variable.

Example Let A be an n× n matrix in F and define

〈v, w〉 = X tAY

where X and Y are co ordinates of v and w respectively in some basis
of V .
Then we see that this defines a bilinear form on V . This coincides with
usual inner product on V if A = I.

Definition 28. A matrix A is called symmetric if At = A.
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Theorem 7.3.1. Bilinear form given in above example is symmetric if
and only if matrix A is symmetric.

Proof. Assume that A is symmetric. Since Y tAX is a 1×1 matrix, it is
equal to its transpose:Y tAX = (Y tAX)t = X tAtY = X tAY and hence
〈Y,X〉 = 〈X, Y 〉 and it follows that form is symmetric. Conversely
let the form is symmetric. Set X = ei and Y = ej where ei and ej
are elements of fixed basis. We find that 〈ei, ej〉 = etiAej = aij while
〈ej, ei〉 = etjAei = aji and as the form is symmetric we get that aij = aji
and the matrix A is symmetric.

Computation of the value of bilinear form Let v, w ∈ V and
let X and Y be their coordinates in the basis B so that v = BX and
w = BY Then

〈v, w〉 = 〈
∑
i

vixi,
∑
j

vjyj〉

This expands using bilinearity to
∑

i,j xiyj〈vi, vj〉 =
∑
i, jxiaijyj =

X tAY
〈v, w〉 = X tAY

Thus if we identify V with F n using basis B then bilinear form <,>
corresponds to X tAY

Corollary 7.3.1. Let A be a matrix of a bilinear form with respect to a
basis. The matrices A′ which represents the same form with respect to
different bases are the matrices A′ = QAQt where Q is arbitrary matrix
in GLn(F ).

Proof. The change of basis is effected by B = B′P for some matrix P .
ThenX ′ = PX, Y ′ = PY . IfA′ is the matrix of the form with respect to
a new basisB′, then by definition of A′, 〈v, w〉 = X ′tA′Y ′ = X tP tA′PY
but we also have 〈v, w〉 = X tAY . Therefore

P tA′P = A

Theorem 7.3.2. The following properties of a real n×n are equivalent

1. A represents dot product, with respect to some basis of Rn

2. There is an invertible matrix P ∈ GLn(R) such that A = P tP

3. A is symmetric and positive definite.

Proof. 1 implies 2: The matrix of the dot product with respect to
the standard basis is the identity matrix:X.Y = X tIY . If we
change basis, the matrix of the form changes to

A = (P (−1)t)I(P−1) = (P (−1)t)(P−1)
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where P is the matrix of change of basis. Thus A is of the form
P tP and assertion in (2) follows.

2 implies 3: P tP is always a symmetric and positive definite hence
this implication in (2) to (3) follows.

3 implies 1: If A is symmetric and positive definite then for 〈X, Y 〉 =
X tAY is also symmetric and positive definite.

Definition 29. A bilinear form which takes on both positive as well
as negative values is called indefinite form

For example the Lorentz form defined bellow is an indefinite bilinear
form.

X tAY = x1y1 + x2y2 + x3y3 − c2x4y4

The coefficient c representing speed of light can be normalized to 1,
and then the matrix of the form with respect to given basis is given by


1

1
1
−1


Theorem 7.3.3. Suppose the symmetric form 〈, 〉 > is not identically
zero, then there exist a vector v ∈ V which is not self orthogonal:
〈v, v〉 6= 0.

Proof. Since the form is not identically zero, we have two vectors u, v ∈
V such that 〈u, v〉 6= 0. If 〈v, v〉 6= 0 or 〈u, u〉 6= 0 then we have the
theorem proved. Otherwise suppose 〈v, v〉 = 0 and 〈u, u〉 = 0. Define
w = u+ v and expand 〈w,w〉 using bilinearity. We get,

〈w,w〉 = 〈u+ v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= 0 + 〈u, v〉+ 〈v, u〉+ 0

= 2〈u, v〉

since 〈u, v〉 6= 0 it follows that 〈w,w〉 6= 0.

Definition 30. Let W be a subspace of V then following defined set
is a subspace of V known as orthogonal complement of W .

W⊥ = v ∈ V |〈v,W 〉 = 0
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Theorem 7.3.4. Let w ∈ V be a vector such that 〈w,w〉 6= 0. Let
W = αw be the span of w. Then V is the direct sum of W and its
orthogonal complement:

V = W
⊕

W⊥

Proof. We prove this theorem in two main steps.

1. W
⋂
W⊥ = 0

2. W and W⊥ span V

First assertion follows as w is not self orthogonal and therefore 〈αw,w〉 =
0 ⇔ α = 0. For second step we need to show every vector v ∈ V can
be expressed as v = αw + v′ for some unique α and v′ ∈ W⊥. If we
take α = 〈v,w〉

〈w,w〉 and set v′ = v − αw then the claim follows.

Definition 31. A vector v ∈ V is called null vector for the given form
if < v,w >= 0 for all w ∈ V .

Definition 32. The null space of the form is the set of all null vectors
of V

N = v|〈v, V 〉 = 0 = V ⊥

Definition 33. A symmetric form is said to be nondegenerate if the
null space is 0.

Definition 34. An orthogonal basis B = (v1, v2, ..., vn) for V , with
respect to a symmetric form 〈, 〉 is a basis of V such that vi ⊥ vj for all
i 6= j

Remark 7.3.2. The matrix A of a form is defined by aij = 〈vi, vj〉,
the basis B is orthogonal if and only if A is diagonal matrix. If the
symmetric form 〈, 〉 is nondegenerate and basis B = (v1, v2, ..., vn) is
orthogonal, then 〈vi, vi〉 6= 0 for all i, the diagonal entries of A are
nonzero.

Theorem 7.3.5. Let 〈, 〉 be a symmetric form on a real vector space
V .

Vector space form There is an orthogonal basis for V . More pre-
cisely, there exist a basis B = (v1, v2, ..., vn) such that 〈vi, vj〉 = 0
for i 6= j and such that for each i,〈vi, vi〉 is either 1,−1, or 0.

Matrix form Let A be a real symmetric n × n matrix. There is a
matrix Q ∈ GLn(R) such that QAQt is a diagonal matrix each of
whose diagonal entries is 1, -1, or 0.

Remark 7.3.3. Matrix form of the above theorem follows from its
vector space form by noting that symmetric matrix A is a matrix of
symmetric form on a vector space.
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Proof. We apply induction on dimension n of vector space V . Assume
the result to be true for all vector spaces of dimension less than or equal
to n− 1. Let V be a vector space of dimension n. Let the form be not
identically zero. Then we know that there is a vector v = v1 which is
not self orthogonal i.e. 〈v1, v1〉 6= 0. Let W be the span of v1. Then
by earlier theorem we have that V = W ⊕ W⊥. and so a basis for
V can be obtained by combining v1 with any basis (v2, ..., vn) of W⊥.
using induction hypothesis, since dimension of W⊥ i n−1, we can take
(v2, ..., vn) to be orthogonal. Then (v1, v2, ..., vn) is orthogonal basis of
V . For, 〈v1, vi〉 = 0 if i > 1 because vi ∈ W⊥, and 〈vi, vj〉 = 0 if i, j > 1
and i 6= j, because (v2, ..., vn) is an orthogonal basis. We normalize the
basis so constructed by solving c−2 = ±〈vi, vi〉 and replacing vi by cvi.
Then 〈vi, vi〉 is changed to ±1.

Remark 7.3.4. We can permute an orthogonal basis obtained in above
theorem so that indices with 〈vi, vi〉 = 1 are the first ones, and indices
with 〈vi, vi〉 = −1 will appear afterwards and those with 〈vi, vi〉 = 0
will appear in the last. Then the matrix A of the form will be

 Ip
−Im

0z


Theorem 7.3.6. Sylvester’s Law The numbers p,m, z appearing in
above matrix are uniquely determined by the form. In other words they
do not depend on the choice of orthogonal basis B such that 〈vi, vi〉 =
±1 or 0.

Theorem 7.3.7. Let T be a normal operator on a finite dimensional
complex inner product space V or a self adjoint operator on a finite
dimensional real inner product space V . Let α1, α2, ...αk be the distinct
characteristic values of T . Let Wj be the characteristic space associated
with αj and Ej the orthogonal projection of V on Wj. Then Wj is
orthogonal to Wi when i 6= j, V is the direct sum of W1, ...,WK, and

T = α1E1 + ...+ αkEk

Proof. Let u be a vector in Wj and v be a vector in Wi, and suppose
that i 6= j. Then αj〈u, v〉 = 〈Tu, v〉 = 〈u, T ∗v〉 = 〈u, αiv〉. Hence
(αj − αi)〈u, v〉 = 0 and since αj − αi 6= 0 it follows that 〈u, v〉 = 0.
Thus Wj is orthogonal to Wi when i 6= j. From the fact that V has
an orthonormal basis consisting of characteristic vectors it follows that
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V = W1 + ...+Wk. If uj ∈ Wj(j = 1, ...k) and u1 + ....+ uk = 0, then

0 = 〈ui,
∑
j

uj〉

=
∑
j

〈ui, uj〉

= ||ui||2

for every i, so that V is a direct sum of W1, ...Wk. Therefore E1+...Ek =
I and

T = TE1 + ...+ TEk

= α1E1 + ...+ αkEK

Such a decomposition of T is known as the spectral resolution of
T .
Because E1, ...Ek are canonically associated with T and I = E1 + ...+
Ek the family of projections E1, ...Ek is called the resolution of the
identity defined by T .

7.3.1 Solved Problems

If you want give some problems for practice then write this:

Example 11. Let 〈., .〉 be a bilinear form on R2 defined by

〈(x1, x2), (y1, y2)〉 = 2x1y1 − 3x1y2 + x2y2

1. Find the matrixA of this bilinear form in the basis {u1 = (1, 0) and u2 =
(1, 1)}

2. Find the matrix B of given bilinear form in the basis {v1 =
(2, 1) and v2 = (1,−1)}

3. Find the transition matrix P from the basis {ui} to {vi} and
verify that B = P tAP

Solution:

1. Set A = (aij) where aij = 〈ui, uj〉

a11 = 〈u1, u1〉 = 〈(1, 0), (0, 1)〉 = 2− 0 + 0 = 2
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Rest of the entries in the matrix are calculated using following
formulae

a12 = 〈u1, u2〉
a21 = 〈u2, u1〉
a22 = 〈u2, u2〉

Thus the matrix A is as follows

A =

(
2 −1
2 0

)
2. Similarly matrix B is

B =

(
3 9
0 6

)
3. Now we write V − 1 and v2 in terms of u1 and u2.

(2, 1) = u1 + u2

(1,−1) = 2u1 − u2

Thus P =

(
1 2
1 −1

)
and so P t =

(
1 1
2 −1

)
Thus P tAP =

P =

(
3 9
0 6

)
= B

Example 12. For the following real symmetric matrix A, find a non-
singular matrix P such that P tAP is diagonal and also find its signature
.

A =

 1 −3 2
−3 7 −5
2 −5 8


Solution:

First form the block matrix (A, I)

(A, I) =

 1 −3 2 1 0 0
−3 7 −5 0 1 0
2 −5 8 0 0 1


Apply the row operations R2 → 3R1 + R2 and R3 → 2R1 + R3 to
(A, I) and then corresponding column operations C2 → 3C1 + C2 and
C3 → −2C1 + C3 to A to obtain

1All solved problems are taken from Scaum’s Outline Series-Theory and Prob-
lems of Linear Algebra by Lipschutz
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 1 −3 2 1 0 0
0 −2 1 3 1 0
0 1 4 −2 0 1

 and then

 1 0 0 1 0 0
0 −2 0 3 1 0
0 1 4 −2 0 1


Next apply the row operation R3 → R2 + 2R3 and then corresponding
column operation C3 → C2 + 2C3 to obtain 1 0 0 1 0 0

0 −2 1 3 1 0
0 0 9 −1 1 2

 and then

 1 0 0 1 0 0
0 −2 0 3 1 0
0 0 18 −1 1 2



Now A has been diagonalized. Set P =

 1 −3 −1
0 1 1
0 0 2

; then

P tAP =

 1 0 0
0 −2 0
0 0 18


The signature S of A is S = 2− 1 = 1.

Check Your Progress

1. Determine which of the following bilinear forms are symmet-
ric/skewsymmetric/nondegenerate/ degenerate:

A =

 −1 0 1
0 0 −1
−1 1 2



A =

 −1 2 −1
2 0 −1
−1 −1 2



A =

 −1 0 1
0 0 −1
−1 1 2



A =


1 1 0 1
1 −1 0 2
0 0 0 1
1 2 1 5



7.4 Chapter End Exercise
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1. Determine canonical form of the following real nondegenerate
symmetric bilinear form

A =


1 1 0 1
1 2 3 4
0 3 4 1
1 4 1 5


2. Let 〈., .〉 be a bilinear form on R2 defined by

〈(x1, x2), (y1, y2)〉 = 3x1y1 − 2x1y2 + 4x2y1 − x2y2

(a) Find the matrix A of this bilinear form in the basis {u1 =
(1, 1) and u2 = (1, 2)}

(b) Find the matrix B of given bilinear form in the basis {v1 =
(1,−1) and v2 = (3, 1)}

(c) Find the transition matrix P from the basis {ui} to {vi} and
verify that B = P tAP

3. Let V be a finite dimensional vector space over a field F and 〈., .〉
is a symmetric bilinear form on V . For each subspace W of V , let
W⊥ be the set of all vectors u ∈ V such that 〈u, v〉 = 0for every
v ∈ W . Show that

(a) W⊥ is a subspace of V .

(b) V = 0⊥

(c) V ⊥ = 0 if and only if 〈〉 is non degenerate

(d) The restriction of 〈., .〉 to W is nondegenerate if and only if
W ∩W⊥ = {0}
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