M.Sc. Part-II Sample Questions For Online exam

- Q. 1 (1 point) Which amongst the following is not a nilpotent group?
 - 1. p; p is prime
 - 2. $p^2.q; p$ and q are odd prime and q > p
 - 3. 42
 - 4. 120

Q. 2 (1 point) A group G is said to be solvable if there is a chain of subgroups $\{e\} = G_0 \subseteq G_1 \subseteq G_2 \subseteq \subseteq \ldots \subseteq G_n = G$ such that $G_{i-\ldots} = G_{i+1}$ and $G_{i+1} = G_i$ is _____.

- 1. Subgroup, abelian
- 2. Normal subgroup, abelian
- 3. Normal subgroup, simple
- 4. Subgroup, simple
- Q. 3 (1 point) Every degree 1 representation of G is _____.
 - 1. Reducible
 - 2. Irreducible
 - 3. May be reducible
 - 4. Can't Say
- Q. 4 (1 point) Which amongst the following is FALSE?
 - 1. Intersection of any non-empty collection of submodules of a R-module M is a submodule of M.
 - 2. b) Let $N_1 \subseteq N_2 \subseteq \dots$ be an ascending chain of submodules of an *R*-module M. Then $N = \bigcup_{i=1}^{\infty} N_i$ is a submodule of M.
 - 3. Let N_1, N_2 be submodules of an R- module M, then $N_1 + N_2 = \{a + b : a \in N_1, b \in N_2\}$ is a submodule of M.
 - 4. An increasing union of finitely generated submodules of M is finitely generated.
- Q. 5 (1 point) Number of abelian groups of order 360 are
 - 1. 4
 - 2. 3
 - 3. 6
 - 4. 2
- Q. 6 (1 point) Let \mathbb{F} be a field with 512 elements. What is the total number of proper subfields of \mathbb{F} ?

- 1. 3
- 2. 6
- 3. 8
- 4. 5

Q. 7 (1 point) The extention $\mathbb{Q}\sqrt{(2)}$ over \mathbb{Q} is:

- 1. not algebraic
- 2. not finite
- 3. algebraic
- 4. of degree four
- Q. 8 (1 point) Let $\omega \neq 1$ be a cube root of unity. Then, the degree of the extension $\mathbb{Q}(\omega)$ over \mathbb{Q} is:
 - 1. Four
 - 2. Three
 - 3. Two
 - 4. One

Q. 9 (1 point) The degree of the splitting field of X^5-2 over \mathbb{Q} is:

- 1. Twenty
- 2. Ten
- 3. Five
- 4. One
- Q. 10 (1 point) Which of these constructions is possible using ruler and compass?
 - 1. Trisecting angles
 - 2. Doubling cubes
 - 3. Equilateral triangles
 - 4. Squaring circles
- Q. 11 (2 points) Let $f, g : A \to \mathbb{R}$ be integrable. For any partition P of A and sub rectangle S, then which of following is true.
 - 1. $m_S(f) + m_S(g) \le m_S(f+g)$
 - 2. $m_S(f) + m_S(g) > m_S(f+g)$
 - 3. $M_S(f+g) > M_S(f) + M_S(g)$
 - 4. $m_S(f) + m_S(g) = 0$
- Q. 12 (2 points) If $\{A_i\}$ countable collection with $A = \bigcup_{i=1}^{\infty} A_i$ and each A_i has measure zero. Then which of following is true.

- 1. measure of A is greater than zero.
- 2. measure of A is zero.
- 3. A has content zero.
- 4. A is compact.

Q. 13 (3 points) Given $U: C[0,1] \to C[0,1]$ defined by U(f(x)) = xf(x), what is norm of U?

1. 1
 2. 2
 3. 3
 4. 4

Q. 14 (3 points) Which of the following family of functions is equicontinuous on [0, 1]?

1.
$$f_n(x) = x^n, n \in \mathbb{N}$$

2. $f_n(x) = sinnx, n \in \mathbb{N}$
3. $f_n(x) = \frac{sinnx}{n^2}, n \in \mathbb{N}$
4. $f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}; n \in \mathbb{N}$

Q. 15 (3 points) What is the closure of l_p in l_{∞} for $1 \le p < \infty$?

- 1. c_0 2. l_p 3. l_{∞} 4. \emptyset
- Q. 16 (3 points) Let V and W be normed linear spaces and $T \in L(V, W)$. Then which of the following statement is not equivalent to the others?
 - 1. T is bounded
 - 2. T is continuous everywhere in V
 - 3. T is continuous at 0 in V
 - 4. T is a vector space isomorphism
- Q. 17 (3 points) The value of t for which the vector (3, 1, t) is parallel to the plane 2x + 4y + 5z = 12 is
 - 1. -4
 - 2. -3
 - 3. -2

4. -1

Q. 18 (3 points) L_p is a Hilbert space if and only if p = ...

- 1. 1
 2. 2
 3. 3
 4. 4
- Q. 19 (3 points) The equation of hyperplane passing through points p = (1, 2, 1), q = (-2, -1, 3) and r = (2, -3, -1)
 - 1. 8x + 2y + 9z = 132. 8x + 2y - 9z = 133. 8x - 2y + 9z = 134. 8x - 2y - 9z = 13
- Q. 20 (3 points) If S with the parametrization X for open U and if $\alpha : [0,1] \to S$ a regular parametrized curve. Then the tangent surface of α is
 - 1. $x(t,v) = \alpha(t) + v\alpha'(t)$, for $(t,v) \in [0,1] \times \mathbb{R}$ 2. $x(t,v) = v\alpha(t) + \alpha'(t)$, for $(t,v) \in [0,1] \times \mathbb{R}$ 3. $x(t,v) = v\alpha(t) + v\alpha'(t)$, for $(t,v) \in [0,1] \times \mathbb{R}$ 4. $x(t,v) = v(\alpha(t) + t\alpha'(t))$, for $(t,v) \in [0,1] \times \mathbb{R}$
- Q. 21 (3 points) First fundamental form I_q of a plane $P \subset \mathbb{R}^3$ passing through q = (1, 0, 0) containing vectors (1, 1, 0) and (1, 0, 1) is
 - 1. $du^{2} + 2dudv + dv^{2}$ 2. $du^{2} + dv^{2}$ 3. $du^{2} - dv^{2}$ 4. $du^{2} - 2dudv + dv^{2}$
- Q. 22 (3 points) The arc-length of one complete turn of the circular helix $\gamma(t) = (a\cos t, a\sin t, bt)$ for $a, b \in \mathbb{R}$.
 - 1. $\pi\sqrt{a^2+b^2}$ 2. $4\pi\sqrt{a^2+b^2}$ 3. $3\pi\sqrt{a^2+b^2}$ 4. $6\pi\sqrt{a^2+b^2}$

Q. 23 (3 points) The curvature of the function $f(x) = x^2 + 2x + 1$ at x = 0 is?

1. $\frac{3}{2}$

2. 2 3. 0 4. $|\frac{2}{5^{1.5}}|$

Q. 24 (3 points) Which of following is true statement.

- 1. The set of rationals \mathbb{Q} is G_{δ} set in the reals.
- 2. If X is compact Hausdroff space then X is Baire space.
- 3. \mathbb{Z}_+ is not Baire space.
- 4. \mathbb{R} is not a Baire space.
- Q. 25 (4 points) What is the maximum number of edges in a bipartite graph having 10 vertices?
 - 24
 21
 25
 - 4. 16
- Q. 26 (4 points) Let G be a connected planar graph with 10 vertices. If the number of edges on each face is three, then the number of edges in G is $_{-}$.
 - 24
 20
 32

4. 64

- Q. 27 (4 points) The smallest n such that the complete graph Kn has at least 600 edges.
 - 1. 35
 - 2. 36
 - 3. 45
 - 4. 37
- Q. 28 (4 points) Complete graph K_p has
 - 1. Cut Vertex
 - 2. Cut edge
 - 3. Cut edge if p = 2
 - 4. D. Cut vertex if p = 2
- Q. 29 (4 points) A connected graph has Eulerian trail if it has
 - 1. at most two vertices of odd degree

- 2. exactly two vertices of odd degree
- 3. at least two vertices of odd degree
- 4. at least three vertices of odd degree
- Q. 30 (4 points) If every vertex is M saturated then M is called
 - 1. Minimum matching
 - 2. Perfect matching
 - 3. Maximum Matching
 - 4. Middle Matching
- Q. 31 (4 points) The minimum number of colors required for proper vertex coloring of a null graph on p vertices is
 - 1. p 2. p-1
 - $3.\ 1$
 - 4. 2p

Q. 32 (4 points) If G is a simple planar graph then G contains a vertex of degree

- 1. at most 4
- 2. at most 5
- 3. at least 4
- 4.5

Q. 33 (4 points) Ford-Fulkerson algorithm is used to

- 1. find the shortest path from a specified vertex to another.
- 2. find maximum flow value in a network
- 3. to scan all vertices in a graph
- 4. to scan all edges in a graph

Q. 34 (4 points) Smallest eigen value of laplacian matrix Q of graph G is $_{-}$.

- 1. 2
- 2. -1
- 3. 1
- 4. 0

Q. 35 (5 points) If $(101.01)_2 = (x)_{10}$, then what is the value of x?

- 1.505.05
- 2. 10.101

- 3. 101.01
- $4.\ 5.25$
- Q. 36 (5 points) Rate of convergence of the modified Newton-Raphson method is generally -.
 - 1. Linear
 - 2. Quadratic
 - 3. Super-linear
 - 4. Cubic
- Q. 37 (5 points) The rate of convergence of Gauss Seidel Method is _ that of Gauss Jacobi Method.
 - 1. once
 - 2. twice
 - 3. thrice
 - 4. reciprocal
- Q. 38 (5 points) If f(x) is a polynomial of degree n in x then nth difference of this polynomial is
 - 1. Constant
 - 2. Variable
 - 3. Zero
 - 4. One
- Q. 39 (5 points) In Simpson's one-third rule the curve y = f(x) is assumed to be
 - 1. Circle
 - 2. Parabola
 - 3. Hyperbola
 - 4. Line
- Q. 40 (5 points) The process of finding the equation of the curve of best fit, which may be most suitable for predicting the unknown values, is known as _.
 - 1. curve fitting
 - 2. theory of equation
 - 3. interpolation
 - 4. extrapolation
- Q. 41 (5 points) For y' = y + x with y(0) = 1 and h = 0.1 the value of K1 in Runge-Kutta fourth order method is.

0.1
 1.0
 0.01
 0.01
 0.11

Q. 42 (5 points) What is the value of λ under which Crank-Nicholson Formula?

1. 1 2. -1 3. 2 4. $\frac{-1}{2}$