Type:MCQ
Q1 was first discovered as a constituent of lemon. (1)
 Lactic acid **Citric acid Sulfuric acid Hydrochloric acid
Q2 is an intermediate of kreb cycle. (1)
 ** Citric acid Starch Cellulose RUBISCO
Q3. Today about 99% of the world citric acid comes from (1)
 osmosis **microbial fermentation fragmentation condensation
Q4. In pharmaceutical industry Trisodium citrate is used as (1)
 cosmetic emulsifier sweetener **blood preservative
Q5. lorn citrate is serves as a good source of(1)
 **lorn copper calcium sulphur
Q6. The fungus is most commonly used for industrial production of

1.	**Aspergillus niger
2.	Escherichia coli
3.	Gluconobactor suboxidance
4.	Lactobacillus pentosus
Q7	is the predominant carbon source for citric acid production. (1)
1.	Lactose
2.	Yeast
3.	**Glucose
4.	Saccharin
	uring the synthesis of citric acid there is a 10 fold increase in the activity of the
enz	
1.	**citrate synthase
2.	
3.	
4.	Deaminase
Q9	that converts the pyruvate to oxaloacetate,it is also a key enzyme in
citri	c acid production. (1)
1.	Lactate dehydrogenase
2.	Glucose oxidase
3.	**Pyruvate carboxylase
4.	Glucose dehydrogenase
Q10. 1	The yield of citric acid production substantially increases when the dissolved O2
ter	ntion is(1)
1.	** higher
2.	medium
3.	lower
4.	zero

citric acid. (1)

QTT. I	nere are two processes by which citric acid can be industrially produced, the
	process and theprocess. (1)
1.	**surface, submerged
2.	solid, liquid
3.	mechanical, physical
4.	physical, thawing
Q12. <i>A</i>	Around 80% world's supply of citric acid is produced byprocess. (1)
1.	mechanical process
	**submerged process
	surface process
4.	physical process
Q13. I	n citric acid production by submerged process , the vessels of bioreactor are
ma	de up of high quality(1)
1.	aluminum
2.	glass
3.	**stainless steel
4.	copper
Q14. <i>A</i>	Actinorhodine is a member of antibiotic family called (1)
1.	**Isochromanequinone
2.	Pyrroloquinoline quinone (PQQ)
3.	Aminoglycosides
4.	Penicillin
Q15	makes up a class of polymers that are fully biodegradable. (1)
1.	Plastic
2.	Glass
3.	Thermacol
4.	**Polyhydroxy alkanoates (PHA)

Q16	is a medicinal and bacteriologic category of traditional Gram-
	negative antibacterial medications that inhibit protein synthesis and contain
	as a portion of the molecule an amino-modified glycoside. (1)
1.	Amino acid
2.	Protein
3.	Nucleic acid
4.	**Aminoglycosides
Q17. P	PHA is naturally produced from numerous genera ofand amplified to
b	acterial (1)
1.	**bacteria, fermentation
2.	virus, amplification
3.	eukaryotes, replication
4.	mammals, complementation
	The absence of solid support is a characteristic feature of Immobilization of nzymes by(2)
1.	encapsulation
2.	**cross linking
3.	lattice entrapment
4.	covalent coupling
Q19	involves the physical binding of the enzymes on the surface on an inert
sup	port. (2)
1.	**Adsorption
2.	Cross linking
3.	Encapsulation
4.	Lattice entrapment

Q20. Which forces involved in an adsorption of enzyme molecules? (2)		
 Covalent bonding **Hydrogen bonding and Van der Waals forces Centrifugal force Covalent bonding and centrifugal force 		
Q21. In which Immobilization system, the enzyme molecules are attached to the		
carrier matrix by formation of covalent bonds? (2)		
 ** Covalent coupling Adsorption Cross linking Absorption 		
Q22. In covalent coupling, immobilization of the enzymes can be achieved by		
creation of covalent bonds between the chemical groups ofand the		
chemical groups of support.(2)		
 vitamins silica ** enzymes cholesterol 		
Q23. Inthe enzyme molecules are entrapped within the suitable gels or		
fibres and there may or may not be covalent bond formation between enzyme		
molecules and matrix. (2)		
 **Lattice entrapment Cross linking Adsorption Absorption 		
Q24 is method of enzyme immobilization. (2)		
Transmission Transcription		

- 3. **Encapsulation
- 4. Fermentation

Q25.are the three types of carrageenan. (1)

- 1. **kappa , Lota , Lambda Carrageenan
- 2. alpha, beta, lambda carrageenan
- 3. kappa, Lota, lambda dextran
- 4. alpha, beta, theta Carrageenan