Mathematics. : Algebra (R-2016)(Only for IDOL Students)

M.SC. {MATHEMATIC} (PART-I) ALGEBRA (R-2016)

PAPER - I (JAN- 2020)

External] (3 Hours) [Total Marks:80

Instructions:

- Attempt any two questions from each section
- All questions carry equal marks.
- Answer to section I and II should be written on the same answer book

SECTION I (Attempt any two questions)

- 1. (a) State and prove Rank-Nullity theorem.
 - (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the Linear Transformation defined by T(x, y, z) = (x + 2y - z, y + z, x + y - 2z). Find ImT and KerT.
- 2. (a) If A and B are two $n \times n$ matrices. Prove the following.

(i)
$$|AB| = |A||B|$$

(ii)
$$|A^t| = |A|$$

- (b) (i) Find the Rank of the matrix $\begin{pmatrix} 1 & 1 & -1 & 2 \\ 2 & -2 & 0 & 2 \\ 2 & -8 & 3 & 1 \end{pmatrix}$ (ii) Find eigenvalues of a matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
- 3. (a) State and prove Cayley-Hamilton Theorem
 - (b) Find the Minimal Polynomial of the matrix $A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix}$
- 4. (a) Define Invariant Subspace of a Vector Space V. Let V be a finite dimensional inner product space and let T be any linear transformation on V. Suppose W is a subspace of V which is invariant under T. Then prove that the orthogonal complement of W is invariant under T
 - (b) Let A be the following matrix. Show that the bilinear map $\mathbb{R}^3 \to \mathbb{R}^3 \to \mathbb{R}$ defined by

$$\langle x, y \rangle = x^T A y$$
 is a scalar product. $A = \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

SECTION II (Attempt any two questions)

- 5. (a) State and prove fundamental theorem of Homomorphism of groups.
 - (b) Let G be a group and $a \in G$. If o(a) = n. Prove that $o(a^r) = \frac{n}{\gcd(o(a), r)}$

- 6. (a) Let G be a group and A be a non-empty subset of G. Define Centralizer $C_G(A)$ and Normalizer $N_G(A)$. Prove that both are subgroups of G. If G is an abelian group what can we say about its centralizer? Justify your answer
 - (b) Prove that a group of order p^n where p is prime and $n \ge 1$ has a non-trivial centre.
- 7. (a) Show that an ideal P in a commutative ring R is a prime ideal if and only if the quotient ring $R \setminus P$ is an integral domain
 - (b) Let R be a commutative ring with prime characteristic p and $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(a) = a^p$ for $a \in \mathbb{R}$. Show that f is a ring Homomorphism
- 8. (a) Prove that in UFD irreducibles are primes
 - (b) Prove or disprove $\mathbb{Z}[x]$ is a PID

Analysis & Topology (R-2016)(Only for IDOL Students)

M.SC. {MATHEMATIC} (PART-I) ANALYSIS & TOPOLOGY (R-2016)

PAPER - II (JAN- 2020)

(3 Hours)

[Total Marks:80]

Instructions:

- Attempt any two questions from each section.
- All questions carry equal marks.
- Answer to section I and II should be written on the same answer book.

SECTION I (Attempt any two questions)

- 1. (a) Define a metric space. Let d_1 and d_2 be two metrics on X. Then show that;
 - $(i)d(x,y) = \sqrt{d_1^2(x,y) + d_2^2(x,y)}$ is also metric space on X.
 - $ii)d(x,y) = min\{1, d_1(x,y)\}$ is bounded metric on X.
 - (b) i) Let (X,d) be a metric space and A, B are any two subsets of X. Then show that $cl(A \cup B) = cl(A) \cup cl(B)$ and $cl(A \cap B) \subseteq cl(A) \cap cl(B)$. Also give an example to show that inclution can be proper,
 - ii) Show that if $A \subseteq B$, then $diam(A) \leq diam(B)$.
- 2. (a) Let (X, d) be a metric space, A and B are subsets of X with $A \subseteq B \subseteq \bar{A}$, and A is connected then B is also connected. Also give an example of sets A, B, C such that $A \subseteq B \subseteq C, A, C$ are connected but B is not connected.
 - (b) Show that continuous image of compact set is compact.
- 3. (a) If $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, then show that it's total derivative is unique.
 - (b) State and prove Chain Rule.
- 4. (a) i) Find the Taylor expansion of function, $f(x,y) = \sin(2x+3y)at(a,b) = (0,0)$. ii) Find the extreme value of, $f(x,y) = x^2 + y^3 + 3xy^2 2x$.
 - (b) State and prove Inverse function theorem.

SECTION II (Attempt any two questions)

- 5. (a) Define a Topological Space and Base of a Topological Space. Let X be any infinite set and τ_1 consist of ϕ , X and all subsets A of X such that $X \setminus A$ is finite. Let τ_2 consist of ϕ , X and all subsets A of X such that $X \setminus A$ is countable. Show that τ_1 and τ_2 are topologies on X.
 - (b) Let $f:(X,\tau)\to (Y,\tau')$ be any map. Show that the following conditions are equivalent:
 - i) f is continuous on X.
 - ii) If $H \in \tau'$, then $f^{-1}(H) \in \tau$.
 - iii) If C is a closed subset of (Y, τ') , then $f^{-1}(C)$ is a closed subset of (X, τ) .

[TURN OVER]

- iv) For any subset A of X, f(c(A)) is a subset of c(f(A)), where c(A) denotes the closure of A and c(f(A)) denotes the closure of f(A).
- 6. (a) Define T_0 , T_1 and T_2 space. Show that a topological space being T_0 is a topological and hereditary property.
 - (b) Let (X, τ) be a topological space. When is X said to be separable? Show that a topological space being separable is a topological property. Is being separable a hereditary property? Justify your answer.
- 7. (a) Show that closed subsets of a compact space is compact. Also prove that compact subset of a Hausdorff space is closed.
 - (b) Define local compactness and one point compactification. Show that the one point compactification of $(0, 2\pi)$ is homeomorphic with S^1 , where S^1 denotes the unit circle.
- 8. (a) Define limit point compact and sequentially compact space. Show that if a topological space X is limit point compact then X is sequentially compact.
 - (b) Prove that every closed and bounded interval in \mathbb{R} is compact.

73200 Page 2 of 2

M.SC. {MATHEMATIC} (PART-I) <u>COMPLEX ANALÝSIS (R-2016)</u>

PAPER - III (JAN- 2020)

O.P. Code: 37371

(10)

(3 Hours)

[Total marks: 80]

Instructions:

- 1) Attempt any two questions from each section.
- All questions carry equal marks.
- 3) Answer to Section I and section II should be written in the same answer book.

SECTION-I (Attempt any two questions)

- 1) (a) Suppose $z_n = x_n + iy_n$ and $z_0 = x_0 + iy_0$ then prove that $\lim_{n \to \infty} z_n = z_0$ if and only if $\lim_{n \to \infty} x_n = x_0$ and $\lim_{n\to\infty} y_n = y_0$. (10)
- (b) Given a series $\sum_{i=1}^{\infty} z^{n} (1-z)$. Prove that
 - (i) The series converges for |z| < 1 and find its sum.
 - (ii) The series uniformly converges to the sum z for $|z| \le \frac{1}{2}$.
 - (iii) Does the series converge uniformly for $|z| \le 1$? Explain. (10)
- (a) Prove that a Mobius Transformation is a composition of translation, rotation, inversion, and magnification. (10)
 - (b) Prove that the circle |z-2|=3 is mapped onto a circle $|w+\frac{2}{5}|=\frac{9}{25}$ under the transformation $w = \frac{1}{2}$.

3) (a) Define logarithmic function of a complex variable. Hence or otherwise prove that log z is not continuous on negative real axis. (10)

- (b) Determine whether the following functions are analytic. (i) $\cos z$ (ii) $z^2 \overline{z}$ (iii) $x^2 - y^2 + 2ixy$. (10)
- 4) (a) Let γ be such that γ (t) be a smooth curve defined on [a,b] and suppose that f is a continuous function on an open set containing $\gamma[a,b]$. Then, prove that

 - $\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz$ $\left| \int_{z} f(z)dz \right| \le \int_{z} |f(z)||dz|$

Q.P. Code: 37371

(iii) If
$$M = Max |f(\gamma(t))|$$
 and $L = L(\gamma)$ (length of γ) then, $\left| \int_{\gamma} f(z) dz \right| \le ML$. (10)

(b) Evaluate $\int_{0}^{1+i} x^2 + iy dz$, along

(i) The line y = x.

(ii) Along the parabola $y = x^2$. Is the integral independent of path? (10)

SECTION-II (Attempt any two questions)

5) (a) State and prove Morera's theorem.

(10)

- (b) Evaluate $\int_C \frac{z+1}{z^3-2z^2} dz$ where C is
 - (i) The circle |z| = 1.
 - (ii) The circle |z-2-i|=2.

(iii) The circle
$$|z-1-2i| = 2$$
. (10)

6) (a) State and prove Liouville's Theorem.

(10)

(b) Evaluate $\int_{\gamma} \frac{f'(z)}{f(z)} dz$, where

i)
$$f(z) = \frac{z(z-1)^2}{z^3+5}$$
, where is γ circle $|z| = 1.2$

ii)
$$f(z) = \frac{z^2 + (z+3)(z-1)}{z^3 + 2}$$
, where γ is circle $|z| = 1.2$ (10)

7) (a) Prove that if f has an isolated singular point at z_0 , then $z = z_0$ is a removable singularity of f if and only if $\lim_{z \to z_0} (z - z_0) f(z) = 0$. (10)

(b) Find all the possible Laurent Series expansions of
$$f(z) = \frac{2-z^2}{z(1-z)(2-z)}$$
. (10)

8) (a) State and prove Argument theorem. (10)

(b) Using contour integration evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{25 - 16\cos^{2}\theta}.$$
 (10)

M.SC. {MATHEMATIC} (PART-I) DISCRETE MATHEMATICS & DIFFERENTIAL EQUATIONS (R-2016)

3 Hours)

[Total marks: 80]

PAPER - IV (JAN- 2020)

- 1) Attempt any two questions from each section.
- 2) All questions carry equal marks.
- 3) Answer to Section I and section II should be written in the same answer book.

SECTION-I (Attempt any two questions)

Q.1] A] If
$$ca \equiv cb \pmod{n}$$
 then show that $a \equiv b \pmod{\frac{n}{d}}$, where $d = \gcd(c, n)$. [10]

- B] If x is an odd integer, not divisible by 3, prove that $x^2 \equiv 1 \pmod{24}$. [10]
- Q.2] A] In a survey of 60 people, It was found that 25 read magazine. 26 read Times of India and 26 read DNA. Also 9 read both magazine and DNA, 11 read both magazine and times of India, 8 read times of India and DNA and 8 are not reading anything. [10]
 - i). Determine the number of people who read at least one of them.
 - ii). Determine the number of people who read magazine and times of India only.
 - iii). Determine the number of people who read exactly one magazine.
- B] i) Find the integer solution of x + y + z = 12, where $0 \le x, y, z$. [05]
 - ii) S is a set of mn objects. Prove that S can be split up into n sets of m elements in

$$\frac{(mn)!}{(m!)^n n!}$$
 different ways. [05]

- Q.3] A] During a month with 30 days a baseball team plays at least a game a day but no more than 45 games. Show that there must be a period of some number of consecutive days during which the team must play exactly 14 games. [10]
- B] State and prove Erdos-Szekers theorem on monotonic subsequence by using pigeon-hole principle. [10]
- Q.4] A] Let G(v, e) be a graph then show that G is a tree if and only if it is connected and e = v 1.

72917 Page 1 of 2

- B] i) Let L be a bounded distributive lattice then prove that compliments are unique if they exits.
- ii) State and prove De-Morgan's law for Boolean expressions in two variables. [05]

SECTION-II (Attempt any two questions)

Q.5] A] Show that k^{th} successive approximation \emptyset_k to the solution \emptyset of the IVP satisfies

$$|\emptyset(x) - \emptyset_k(x)| \le \frac{M}{k} \frac{(k\alpha)^{k+1}}{(k+1)!} e^{k\alpha}.$$
 [10]

- B] Find the fundamental matrix of the system y' = Ay, where $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$. Hence find the unique solution of y' = Ay with y(0) = (2,4).
- Q.6] A] Consider the n^{th} order linear differential equation

$$L(y) = y^n + a_1(x)y^{n-1} + a_2(x)y^{n-2} + \dots + a_n(x)y = 0$$

where $a_1(x), a_2(x), \dots, a_n(x)$ are continuous functions on an interval I.

If $\emptyset_1, \emptyset_2, \dots, \emptyset_n$ are n solutions of L(y) on an interval I then show that

$$W(\emptyset_1, \emptyset_2, \dots, \emptyset_n) = \exp\left[-\int_{x_0}^x a_1(t)dt\right] W(\emptyset_1, \emptyset_2, \dots, \emptyset_n), \ x, x_0 \in I.$$
 [10]

- B] Verify that $\emptyset_1(x) = x^3$, (x > 0) is a solution of $x^2y'' 7xy' + 15y = 0$, hence find other Linearly independent solution. [10]
- Q.7] A] Find the normal form of the Strum-Liouville equation $\frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) + \lambda q(x) y = 0$. [10]
- B] Let u(x) be any non-trivial solution of u'' + q(x)u = 0 where q(x) > 0, $\forall x > 0$ if $\int_1^\infty q(x)dx = \infty$ then show that u(x) has infinitely many zeros on the positive x-axis. [10]
- Q.8] A] Find the integral surface generated by the partial differential equation

$$x(y^2 + z)z_x - y(x^2 + z)z_y = (x^2 - y^2)z$$

[10]

Which contains the straight line x + y = 0, z = 1.

B] Solve the Cauchy problem $(x^2 + 1)u_x + \frac{2xy}{x^2 + 1}u_y = 2xu$, y > 0, $u(0, y) = \log y$. [10]

M.SC. {MATHEMATIC} (PART-I)
SET THEORY, LOGIC & ELEMENTARY
PROBABILITY THEORY (R-2016)

PAPER - V (JAN- 2020)

Duration: 3 Hours Marks: 80

- N.B. 1) Attempt any two questions from section I and any two questions from section II.
 - 2) All questions carry equal marks.

SECTION-I (Attempt any two questions)

1.	a)	For sets A and B, Prove or Disprove:	10
		a) $A \subseteq B$ if and only if $P(A) \subseteq P(B)$	
		b) $P(A) \cup P(B) = P(A \cup B)$ c) $P(A) \cap P(B) = P(A \cap B)$	
	b)	Let p and q be propositions :	6
		i) Determine whether p v q and	
		¬ p→ q are logically equivalent. ii) Determine whether	
		$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a tautology.	
	c)	Let n denote an integer. Prove the implication "If n ³ + 5 is odd then n is even "using contrapostive method.	4
2.	a)	Show that the product $\mathbb{Z}_+ \times \mathbb{Z}_+$ is countably infinite.	10
	b)	Show that countable union of countable sets is countable.	6
	c)	Show that if a set A is finite then there is no bijection of A with a proper subset of itself.	4
3.	a)	Using mathematical induction prove the following:	10
	,	i) Let S_n denote the sum of first n natural numbers then derive the formula $S_n = \frac{n(n+1)}{2}$	
		ii) If n≥ 3 then prove that 2n-1 > 1.	
	b)	Define the terms partially ordered set, totally ordered set and give the statement of Zorn's lemma.	6
	c)(Explain Russell's paradox.	4
_	200		
4.	J. 477 V	For $n > 1$, show that A_n has order $n!/2$.	10
07.0		If $\beta = (1\ 2\ 5\ 7\ 3\ 6)$ then compute β^{122} . If A and B are two sets and $ A = B = n$ then show that there are exactly n!	5 5
000	O V	bijections from A to B.	
SECTION-II (Attempt any two questions)			
5.	a)	Let $\{F_i: i \in I\}$ be a collection of sigma-fields of subsets of Ω . Prove or disprove	6
	N. C.	i) $\bigcap_{i=1}^{\infty} F_i$ is a sigma-field.	
	997	ii) $\bigcup_{i=1}^{\infty} F_i$ is a sigma-field.	
	b)	A class C of subsets of Σ , such that either A or \overline{A} are countable. Is C a sigma field?	4
STATE	c)	A boy is throwing stones at a target, if the probability of hitting the target is 3/5.	6
	ALY.	(i) Write the probability distribution of X = no. of attempts required before	
	7.7.7.6. VP, VP,	hitting the target.	
1 6 6 V		(ii) What is the probability that target it hit on the 5th attempt?	

73381 Page 1 of 2

- (iii) Find the mean and variance of X.
- d) Let F be a field. If $A, B \in F$ then show that A B and $A \Delta B$ are also events of A + B = A
- 6. a) Let $(\mathbb{R}, \mathcal{B}, m)$ be a measure space and $P(A) = \int_A f \, dm \, f$ is a density function. Show that P is a probability measure on Borel subset A of \mathbb{R} .
 - b) Let $\Omega = \{1,2,3,4\}$ with uniform probability and $A = \{1,2\}$. List all $B \subset \Omega$ such that A,B are independent.
 - c) State and prove Borel Cantelli lemma.
 - d) Define conditional probability of A given B, where A and B are events in a probability space. Also show that: $P(A \cup B/C) = P(A/C) + P(B/C) P(A \cap B/C)$
- 7. a) Let X and Y be two independent random variables with binomial distribution 6 B(m, p) and B(n, p) respectively. What is the distribution of X + Y.
 - b) Let X be a simple random variable and E(X) be the expectation of X. Show that if $X \ge 0$ and E(X) = 0 then P(X = 0) = 1.
 - c) Let X and Y be independent discrete random variables show that E(XY) = E(X)E(Y) and V(X + Y) = V(X) + V(Y).

4

6

6

- d) The joint p.d.f of X, Y is f(x, y) = 8xy for 0 < x < y < 1; find conditional p.d.f of X given y.</p>
- 8. a) Define the characteristic function of a random variable. If X is a random variable such that, $P(X \in \mathbb{Z}) = 1$ then show that characteristic function of X is a periodic function with period X.
 - b) State the Chebyshev inequality. A fair coin is tossed independently n times. Let S_n be the number of heads obtained. Find a lower bound of the probability that $\frac{S_n}{n}$ differs from ½ by less than 0.1 when n = 1000.
 - c) Find the characteristic function of X such that $P({X = k}) = 2^{-k}, k = 1,2,...$ 3
 - d) State the Strong law of large numbers and Examine whether the Strong law of large numbers holds for sequence of independent r.v.'s

$$\{X_k\}: X_k = \begin{cases} \pm k & \text{with probability } \frac{1}{2\sqrt{k}} \\ 0 & \text{with probability } 1 - \frac{1}{\sqrt{k}} \end{cases}$$