R P codopo, 7q94¢4

Q.1 a) 1. Atomicity: This property states that a transaction must be treated as an atomic unit, that
1s, either all its operations are executed or none. There must be no state in a database where a
transaction is left partially completed. States should be defined either before the execution of the
transaction or after the execution/abortion/failure of the transaction.

2. Consistency: The database must remain in a consistent state after any transaction. No
transaction should have any adverse effect on the data residing in the database. If the database
was in a consistent state before the execution of a transaction, it must remain consistent after the
execution of the transaction as well.

3. Durability:The database should be durable enough to hold all its latest updates even if the
system fails or restarts. If a transaction updates a chunk of data in a database and commits, then
the database will hold the modified data. If a transaction commits but the system fails before the
data could be written on to the disk, then that data will be updated once the system springs back
into action.

4. Isolation:In a database system where more than one transaction is being executed
simultaneously and in parallel, the property of isolation states that all the transactions will be
carried out and executed as if it is the only transaction in the system. No transaction will affect
the existence of any other transaction.

b) Entities are represented by means of their properties, called attributes. All attributes have
values. For example, a student entity may have name, class, and age as attributes.

There exists a domain or range of values that can be assigned to attributes. For example, a
student's name cannot be a numeric value. It has to be alphabetic. A student's age cannot be
negative, etc.

Types of Attributes

(a) Simple attribute — Simple attributes are atomic values, which cannot be divided further.
For example, a student's phone number is an atomic value of 10 digits.

(b) Composite attribute — Composite attributes are made of more than one simple attribute.
For example, a student's complete name may have first name and last_name.

(c) Derived attribute — Derived attributes are the attributes that do not exist in the physical
database, but their values are derived from other attributes present in the database. For
example, average salary in a department should not be saved directly in the database,
instead it can be derived. For another example, age can be derived from data of birth.

(d) Single-value attribute — Single-value attributes contain single value. For example —
Social Security Number.

(¢) Multi-value attribute — Multi-value attributes may contain more than one values. For
example, a person can have more than one phone number, email address, etc.

¢) An entity set that does not have a primary key is referred to as a weak entity set.
The existence of a weak entity set depends on the existence of a identifying entity set:

e It must relate to the identifying entity set via a total, one-to-many relationship set from
the identifying to the weak entity set.

¢ Identifying relationship depicted using a double diamond.

The discriminator (or partial key) of a weak entity set is the set of attributes that distinguishes
among all the entities of a weak entity set.

The primary key of a weak entity set is formed by the primary key of the strong entity set on
which the weak entity set is existence dependent, plus the weak entity set’s discriminator.

We depict a weak entity set by double rectangles. We underline the discriminator of a weak
entity set with a dashed line.
Example:

o payment-number — discriminator of the payment entity set

o Primary key for payment — (loan-number, payment-number).
The primary key of the strong entity set is not explicitly stored with the weak entity set, since it
is implicit in the identifying relationship.
If loan-number were explicitly stored, payment could be made a strong entity, but then the
relationship between payment and loan would be duplicated by an implicit relationship defined
by the attribute loan-number common to payment and loan.
Example of weak entity set:

—
-
—— ; .
P . ~ . 4 Fayment-date)
- — w ke S~ — =3
2 T T ¢ Sz |
H loan-rumbar) ! (S J |
M - - 1
. e ; . mumbee Y & g— —
e / e S & Pavmem-amount P
N ——— = o
I
e llr
e T . A !
-~ b e . \
A I]
- T e
A Loan b 8
ioan * s P payment

d) Example :

Given Student Report Database, in which student marks assessment is recorded. In such schema,
create a trigger so that the total and average of specified marks is automatically inserted
whenever a record is insert.

create trigger stud_marks

before INSERT

on

Student

for each row

set new.total = new.subj1 + new.subj2 + new.subj3, new.per = new.total * 100/300;

e) AVG, COUNT, MIN MAX, SUM

Q.5a) E-R Diagram

1 1
- =33 <
¥ 1_-
N
SEVEE ~|
Salary)
- —-'-'-__:
—_— |
- .
sl e f N
- —— — S ' - -
Date_of_sr@dmnaton) T Quatficauon f Dog-ig
—— " \ - — e .I —— g
—— e —

Converting the E-R Diagram into Tables
Converting entity to table and attribute to columns
Hospital

[Hosp—id Primary Key [
IHCity]
HAddress \
Hos-Name]| |
Pat-id J\Foreign key references to Pat-id of Patient table l
Doc-id Foreign key references to Doc-id of Doctor table‘

b)

(a) selectname
frommemberm,book b, borrowed br
where
m.member_no = br.member_noand br..isbn = b.isbnandb.publisher="McGrawHill”;

(b) select distinct m.name
from

member m

where not exists

«

Selectisbn

frombooks

where
publisher="McGrawHill")
except

(selectisbn

from borrowed b
Whereb.member_no = m.member_no));

(c) selectpublisher, name

from

(selectpublisher,name,count(isbn)

from

member m,books b, borrowed br
where

m.member_no = br.member_no andbr.isbn = b.isbn
group bypublisher, name)

as

emppub(publisher, name, count books)
where

count books>5

Q.6a)

(a) selectcustomer name from depositor
wherecustomer namenot in
(selectcustomer name from borrower);

(b) select distinctbranch_name
fromaccountnatural joindepositornatural joincustomer
wherecustomercity= "Harrison’;

(c) delete from account
where balance < (select avg(balance)
from account;

(d)select sum(amount)
from loan;

(e) selectbranch-name,avg(balance)
fromaccount

group by

branch-name

having avg(balance) >$1200;

