(3 Hours) [Total Marks : 100]

- **N.B.** 1. All questions are compulsory.
 - 2. Figures to the right indicate marks for respective parts
- Q.1 Choose correct alternative in each of the following:

(20)

- The set $S = \{(x, y) \in \mathbb{R}^2 / 1 < x^2 + y^2 < 2\}$ is
 - (a) A closed set

i.

(b) Neither Open nor closed set

(c) An open set

(d) None of these

ii. Let
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{otherwise} \end{cases}$$
 and let

$$l_1 = \lim_{x \to 0} \lim_{y \to 0} f(x, y)$$
 and $l_2 = \lim_{y \to 0} \lim_{x \to 0} f(x, y)$. Then

(a) $l_1 = l_2$

- (b) $l_1 \neq l_2$
- (c) f is continuous at (0,0)
- (d) None of these
- iii. Let $x_n: \mathbb{N} \to \mathbb{R}^3$ be defined by $x_n = \left(\frac{1}{n}, 2n, \frac{1}{2n^2}\right)$ then x_n is _____
 - (a) Convergent

(b) Divergent

(c) Bounded

- (d) None of these
- iv. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are bounded. Then
 - (a) f may or may not be continuous (b) f is continuous at all points at all points
 - (c) f is differentiable at all points.
- (d) None of these
- V. If $f: \mathbb{R}^3 \to \mathbb{R}$ is a differentiable function such that $\frac{\partial f}{\partial y} = 0$. Then
 - (a) f is independent of x and z
- (b) f depends on x and z only

(c) f is constant

- (d) None of these.
- vi. Which of the following is the level set of $f(x, y, z) = x^2 + y^2 + z^2$ for k = 9?
 - (a) Sphere of radius 3 centered at origin
- (b) Circle of radius 3 centered at origin
- (c) Sphere of radius 4 centered at origin
- (d) Sphere of radius 2 centered at (2,0,0)

vii. Let A: Every partial derivative is the directional derivative in the direction of unit coordinate vector.

B: Every continuous scalar field is differentiable.

Then which of the following is true?

- (a) A is true, B is false.
- (b) A is false, B is true.
- (c) Both A & B are true.
- (d) Both A & B are false.

viii. The linear approximation of $f(x, y) = x \sqrt{y}$ at (1, 1) is

(a) $x + \frac{y}{2} - \frac{1}{2}$

(b) $x + \frac{y}{2} - 1$

(c) $x + \frac{y}{2} - \frac{3}{2}$

(d) $x + y - \frac{1}{2}$

ix. Let $A = f_{xx}(a, b)$, $B = f_{xy}(a, b)$, $C = f_{yy}(a, b)$. Then (a, b) is a saddle point of f(x, y) if

(a) $AC < B^2$

(b) $AC = B^2$

(c) $AC > B^2$

(d) None of these

x. The minimum value of $f(x, y) = x^2 + y^2$ where x + y = 1 is

(a) 0

(b) 1

(c) $\frac{1}{2}$

(d) None of these

Q.2 a) Attempt any ONE question from the following:

(08)

i. Let $f, g: \mathbb{R}^n \to \mathbb{R}$ be two real valued functions. Let $a \in \mathbb{R}^n$ such that

 $\lim_{x \to a} f(x) = l$ and $\lim_{x \to a} g(x) = m$. Then prove that

(I)
$$\lim_{x \to a} (f - g)(x) = l - m$$

$$(II) \lim_{x \to a} (\lambda f)(x) = \lambda l \quad , \ \lambda \in \mathbb{R}.$$

ii. State and prove Mean value theorem for a real valued function of *n* variables.

b) Attempt any TWO questions from the following:

(12)

i. Using $\epsilon - \delta$ definition to show that

$$\lim_{(x,y)\to(1,1)} \frac{xy-y-2x+2}{x-1} = -1$$

- ii. Define continuity of $f: \mathbb{R}^n \to \mathbb{R}$ at $a \in \mathbb{R}^n$. If f is continuous at a, then show that
 - (a) $\exists \ \delta > 0$ such that f is bounded on $B(a, \delta)$.
 - (b) |f| is continuous at a. Explain with an example that converse of this is not true.
- iii. Define directional derivative of a scalar field f at a point a in the domain in the direction of u. Calculate the directional derivative of the function $f(x, y, z) = 3x^2 3y^2 + 3z^2$ at (1,2,3) in the direction of (0,1,0) using the definition and also using the relationship between directional derivative and partial derivative.
- iv. Let $f: \mathbb{R}^n \to \mathbb{R}$ and $a \in \mathbb{R}^n$. Define $D_i f(a)$, the *i*-th partial derivative of f at $a, 1 \le i \le n$. Determine whether the partial derivatives of f exist at (0,0). For the following function. In case they exist, find them.

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & if(x,y) \neq (0,0) \\ 0 & if(x,y) = (0,0) \end{cases}$$

- Q.3 a) Attempt any ONE question from the following:
 - i. Suppose $f:U\to\mathbb{R}$, where U is an open set in \mathbb{R}^n . Show that if f is differentiable at $a\in U$ then for any direction $u\in\mathbb{R}^n$, $D_uf(a)=Df(a)(u)$

(08)

(12)

- ii. Prove that a differentiable scalar field is continuous.
- b) Attempt any TWO questions from the following:

Find total derivative as linear transformation T for the function $f(x, y, z) = e^{x+y+z}$ at point a = (0,0,0)

- ii. Find directional derivative of $f(x, y, z) = x^2 + y^2 z^2$ at (3,4,5) along the curve of intersection of two surfaces S_1 : $2x^2 + 2y^2 z^2 = 25$ and S_2 : $x^2 + y^2 = z^2$
- iii. Find the equation of the tangent plane and normal line to the surface $x^3 + 7x^2z + z^3 = 4$ at (2,1,-2).
- iv. Check whether the second order mixed partial derivatives are equal, for each of the following functions.

1.
$$f(x,y) = x^3 + xy^2 - 5xy$$

$$2. \quad f(x,y) = \sqrt{xy}$$

54577

Q.4 a) Attempt any ONE question from the following:

(08)

i. Let U be an open set in \mathbb{R}^n and $f: U \to \mathbb{R}^n$ be given by $f(x) = (f_1(x), f_2(x), ... f_m(x)), \forall x \in U$. Prove that f is differentiable at $a \in U$ if and only if each f_i is differentiable at a and for any $u \in \mathbb{R}^n$.

$$Df(a)(u) = (Df_1(a)(u), Df_2(a)(u), ..., Df_m(a)(u))$$

- ii. Let $f: S \subseteq \mathbb{R}^n$ be a scalar field where S is a non-empty open subset of \mathbb{R}^n . Let $a \in S$ and f is differentiable at a. Prove that if f has a local maximum or local minimum at a then $\nabla f(a) = 0$.
- b) Attempt any TWO questions from the following:

(12)

- i. Define Df(a), the total derivative at $a \in \mathbb{R}^n$ for a function $f: \mathbb{R}^n \to \mathbb{R}^m$ in terms of a linear transformation. Show that if f is differentiable at a then f is continuous at a.
- ii. Given u = f(x, y) has continuous second order partial derivatives w.r.t. x and y, if $x = r \cos \theta$, $y = r \sin \theta$, Show that $u_x^2 + u_y^2 = u_r^2 + \frac{1}{r^2} u_\theta^2$
- iii. Find the critical points, saddle points and local extrema ,if any, for the function $f(x, y) = x^3 + y^3 3axy$.
- iv. Divide 120 into three parts so that the sum of their product taken two at a time shall be maximum.
- Q.5 Attempt any FOUR questions from the following:

(20)

a) Show that for the following functions the limit does not exists.

(i)
$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{2x^6+y^2}$$

(ii)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{x^2+y^4+z^4}$$

b) For the following function find the real $\theta \in (0,1)$ if it exists satisfying $f(b) - f(a) = \nabla f(a + \theta(b - a)) \cdot (b - a)$

$$f(x, y, z) = xy + yz + zx$$
; $a = (0,0,0)$; $b = (1,1,1)$

- Find the maximum rate of change of the function $f(x,y,z) = \log(x+y+z)$ at (1,2,3). Also find the direction in which maximum rate of change occurs.
- d) Find the total derivative of $f(x, y) = 3x^3y + 7y \sin x + e^{xy}$ at (1,1) using gradient.

54577

Paper / Subject Code: 79447 / Mathematics Paper II

- e) Determine the second order Taylor's formula for the function $f(x,y) = e^x \cos y \text{ at } (0, \frac{\pi}{2}).$
- f) Find the Hessian matrix of $f: \mathbb{R}^3 \to \mathbb{R}$ given by $f(x, y, z) = 2x^3 + 4xyz + 3y^3 + z^3 \text{ at } (1, 1, 1).$

54577 Page 5 of 5