		(3 Hours) [Total mark	[Total marks : 80	
Note	:-	 Question number 1 is compulsory. Attempt any three questions from the remaining five questions. Figures to the right indicate full marks. 		
Q.1	a)	Find the Laplace transform of $\cos t \cos 2t \cos 3t$.	05	
	b)	Construct an analytic function whose real part is $e^x \cos y$.	05	
	c)	Find the directional derivative of $\emptyset = x^4 + y^4 + z^4$ at point <i>A</i> (1, -2, 1) in the direction of <i>AB</i> where <i>B</i> is (2, 6, -1).	05	
	d)	Expand $f(x) = lx - x^2$, $0 < x < l$ in a half-range sine-series.	05	
Q.2	a)	Find the angle between the normals to the surface $xy = z^2$ at the points $(1, 4, 2), (-3, -3, 3)$.	06	
	b)	Find the Fourier series for $f(x) = \begin{cases} -c & -a < x < 0 \\ c, & 0 < x < a \end{cases}$	06	
	c)	Find the inverse Laplace transform of	08	
	(i)	$\frac{4s+12}{s^2+8s+12}$		
	(ii)	$\log\left(\frac{s^2 + a^2}{\sqrt{s+b}}\right)$		
Q. 3	a)	State true or false with proper justification "There does not exists an analytic function whose real part is $x^3 - 3x^2y - y^3$.	06	
	b)	Prove that $J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right).$	06	
	c)	Expand $f(x) = 4 - x^2$ in the interval (0, 2).	08	
Q. 4	a)	Use Gauss's Divergence theorem to evaluate $\iint_S \overline{N} \cdot \overline{F} dS$ where	06	

 $\overline{F} = 4x \ i + 3y \ j - 2z \ k$ and S is the surface bounded by x = 0, y = 0, z = 0 and 2x + 2y + z = 4.

TURN OVER

b) Prove that

$$\int x^3 \cdot J_0(x) \, dx = x^3 \cdot J_1(x) - 2x^2 \cdot J_2(x).$$
06

c) Solve using Laplace transform $\frac{dy}{dt} + 3y = 2 + e^{-t}$ with 08 y(0) = 1.

Q. 5 a) Find Laplace transform of
$$(1 + 2t - 3t^2 + 4t^3)H(t - 2)$$
 where 06
 $H(t - 2) = \begin{cases} 0, & t < 2\\ 1, & t \ge 2 \end{cases}$

b) Prove that
$$2 J_0''(x) = J_2(x) - J_0(x)$$
. 06

c) Obtain complex form of Fourier Series for $f(x) = e^{ax}$ in $(-\pi, \pi)$ 08 where a is not an integer. Hence deduce that when α is a constant other than an integer

$$\sin \alpha x = \frac{\sin \pi \alpha}{i\pi} \sum \frac{(-1)^n n}{(\alpha^2 - n^2)} e^{inx}$$

Q. 6 a) Using Green's theorem evaluate

$$\oint_C (e^{x^2} - xy) dx - (y^2 - ax) dy$$

where C is the circle $x^2 + y^2 = a^2$.

- b) Express the function $f(x) = \begin{cases} 1 & for |x| < 1 \\ 0 & for |x| > 1 \\ as a Fourier Integral. \end{cases}$
- c) Under the transformation w = (1 + i)z + (2 i), find the region 08 in the *w*-plane into which the rectangular region bounded by x = 0, y = 0, x = 1, y = 2 in the *z*-plane is mapped.

_____XXX____XXX_____

06

06