[Time: 3 Hours]

[Marks: 80]

Please check whether you have got the right question paper.

N.B: 1. All questions are compulsory.

1.	 a) b) c) d) e) f) g) h) i) j) 	Classify different types of intermolecular forces of attraction. State Joule Thompson effect. Give the expression for molar refraction. Draw phase diagram of a two component system with lower consolute temperature. State Henry's Law of solubility of gasses in liquids. Acetic acid is a weak electrolyte. Comment. Calculate the pH value of a solution whose hydrogen ion concentration is 0.006 mol/L. Name any two methods for determination of surface tension. What are wetting agents? Give examples. Explain the terms relative viscosity and viscoelasticity.	02 02 02 02 02 02 02 02 02 02 02 02
2.	a) b) c)	What is critical phenomena? Explain critical phenomena with respect to carbondioxide isotherms. What is isotonicity? Explain any one class II method for adjusting isotonicity. Explain upper and lower consolute temperatures with respect to nicotine-water system.	04 04 04
3.	a) b) c)	Define refractive index. Explain the working of Abbe's refractometer. Define pH. Explain buffers in biological systems. Write a note on HLB. Calculate HLB of a surfactant having saponification value of 90 and acid value of 145.	04 04 04
4.	a)	Explain in detail azeotropic mixtures. Calculate the vapour pressure lowering caused by the addition of 50 g of sucrose (Mol.wt = 342) to 1000g of water. The vapour pressure of pure water at 25° C is 23.8mm of Hg. OR State deviations from Raoult's Law & calculate the vapour pressure lowering on addition of 53.94g of a substance of molecular mass 182 to 1000g of water at 20° C. At this temperature, vapour pressure of pure water is 17.5mm Hg.	04
	b) c)	State distribution Law. Explain any 2 applications in Pharmacy. Derive buffer equation for basic buffers.	04 04
5.	a) b) c)	What is polymorphism? Give the pharmaceutical significance of polymorphs. Define adsorption isotherm. Explain different types of adsorption isotherms. What are non-newtonian systems? Explain pseudoplastic flow in detail. OR Classify non-newtonian systems and differentiate between pseudoplastic and dilatant	04 04 04
6.	a) b) c)	systems. Write a note on supercritical fluid state. Describe capillary rise method OR drop number method to determine surface tension. Explain any one method for measurement of flow of non-newtonian systems.	04 04 04
