(3 HOURS)

(MAX. MARKS:80)

 Q.No. 1 is compulsory Attempt any three questions from remaining five questions. Assume any data suitably if not given and state it clearly 	
Q.No.1. (a) Classify the road as per modified Nagpur Road Plan.	[5]
(b) What are the various requirements of an ideal highway alignment.	[5]
(c) Explain Various Types of Parking.	[5]
(d) Explain various test on Bitumen. Explain any one.	[5]
Q.NO.2 (a) Calculate the safe stopping sight distance for design speed of 50 kmph for	[7]
(i) two way traffic on a two lane road (ii) two way traffic on a single lane road.	
(b) Derive the expression for extra widening of pavement on horizontal curves.	[7]
(c) Explain various types of Rotary Intersection with neat sketches.	[6]
Q.No.3. (a) The following data were obtained from spot speed studies carried out at a city during a cortain period of time. Suggest (i) I over speed limit (ii) Upper speed limit	

Q.No.3. (a) The following data were obtained from spot speed studies carried out at a city rotat during a certain period of time. Suggest (i) Lower speed limit (ii) Upper speed limit (iii) Speed to check geometric design element. [10]

								1		1		
Speed	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	.40-50	50-60	60-70	>70
Range												
kmph												
No. Of	45	230	375	500	680	525	430	290	110	25	8	2
Vehicles												

(b)Explain various types of Conflict. Draw the neat sketches of various traffic signs. [10]

Q.No.4.(a)Explain the various steps involved in design of Rigid Pavement as perIRC:58:2011 [10]

(b) A two- lane two- way carriageway carries a traffic of 2500 cvpd. The rate of growth of traffic is 7.5% per annum. The design life is 15 years. The vehicle damage factor is 3. The CBR value of soil is 5%. Design the Flexible pavement and draw the neat sketch of cross section of flexible pavement. Refer Table No.1. [10]

TURN OVER

Q.No.5. (a) Explain typical flexible pavement failure with neat sketches. [10]

(b) Design size and spacing of dowel bar at the expansion joints a C.C. Pavement thickness 25 cm with radius of relative stiffness 80 cm, for a design load of 5000 kg. Assume load capacity of the dowel system as 40% of the design wheel load. Joint width is 2.0 cm, permissible shear stress and flexural stresses in dowel bar are 1000 kg/cm² and 1400 kg/cm² respectively and permissible bearing stress in C.C. is 100 kg/cm² [10]

Q.No.6 (a) Write short notes on pavement evaluation.	[5]
(b) Explain Hill Roads.	[5]
(c) Explain various types of bearing in bridges.	[5]
(d) What are assumption for Economical span of bridge.	

Cumulative Traffic (msa)	Total Pavement	PAVEMENT COMPOSITION					
	Thickness (mm)	Bituminous Su	rfacing	Granular Base and Sub- base (mm			
	()	BC (mm)	DBM(mm)				
10	660	40	70	-			
20	680	40	100	Base= 250 mm			
30	710	40	120				
50	730	40	140	Sub Base=300			
100	750	50	150				
150	770	50	170				
