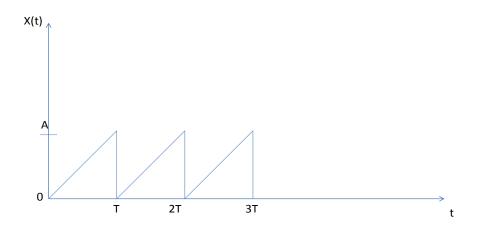
Time: 3 Hrs. Total Marks NOTE: - 1) Question number 1 is compulsory. 2) Attempt any three questions from the remaining five quest 3) Assume suitable data wherever necessary.				
	b	Prove that, Fourier transform of convolution of two signals is the product of the Fourier transform of the individual signals.	5	
	с	What is the general condition for stability of a discrete time LTI system in z-domain?	5	
	d	Find the convolution of following signals using Laplace Transform. X(t)=cos(t).u(t), y(t)=t.u(t)	5	
Q2	а	Show that for LTI discrete time system, the inverse z-transform of transfer function is the impulse response of the system	4	
	b	Determine power or energy of the following continuous time signal: (i) $x(t)=e^{-2t}.u(t)$	4	
	с	 (ii) x(t)=3 cos(5mt) Determine whether the following systems are linear/nonlinear, time variant/invariant, causal/noncausal, and stable/unstable. (i) y (t) = 3 X(t) +5 (ii) y (t) = sin(t). x(t) 	12	
Q3	a	Determine inverse Z transform for the following functions: 1) $x(z) = \frac{1}{1-15z^{-1}+0.5z^{-2}}$ 2) $x(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$	10	
	b	Determine the impulse response sequence of the discrete time LTI system defined by	10	

system defined by Y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)

Turn Over

2

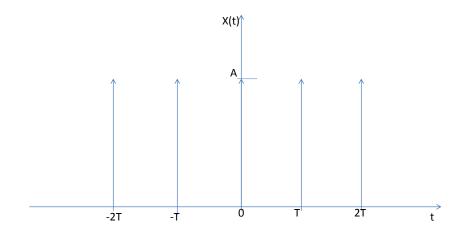
Q4	a	State the sampling theorem. Consider an analog signal	10
		$x(t) = 10 \cos 100\pi t.$	
		If the sampling frequency is 75 Hz, find the discrete time signal x	
		(n).	


Also find an alias frequency corresponding to the sampling frequency of 75 Hz.

b Determine the complete response of the system described by the 10 equation : $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 4y(t) = \frac{dx(t)}{dt};$

$$\frac{dt^2}{dt^2} + 5 \frac{dt}{dt} + 4y(t) = \frac{dt}{dt},$$

y (0) = 0 ; $\frac{dy(t)}{dt} = 1 \text{ at } t = 0$


For the input, $x(t) = e^{-2t}u(t)$

Q5 a Determine the trigonometric form of Fourier series for the ramp 10 signal shown in figure:-

Turn Over

- b Obtain inverse Laplace transform of $X(s) = \frac{2s^2+5s+5}{(s+2)(s+1)^2}$ 10 for all possible ROC conditions.
- Q6 a Perform convolution of the following signals, by graphical method 10 and sketch the resultant signal. $X1(t) = e^{-3t}u(t)$ and X2(t) = t u(t)
- Q6 b Determine the Fourier transform of the periodic impulse function 10 shown in figure:-
