Duration: $[2\frac{1}{2}$ Hours]

- N.B. 1) All questions are compulsory.
 - 2) Attempt any **TWO** subquestions from First Four questions .
 - 3) Attempt any FOUR subquestions from Fifth question .
 - 4) Figures to the right indicate full marks.

1.	(a) Prove that any $n \times n$ real matrix A is orthogonal if and only if multiplication by A preserves the inner product of column vectors.	(6)
	(b) i. Show that every isometry is a composition of an orthogonal linear operator and a translation.	(3)
	ii. Find eigenvalues of a 3×3 orthogonal matrix A with $ A = 1$.	(3)
	(c) i. Is orthogonal linear operator an isometry? Justify.	(3)
	ii. Find the vector parallel to the line of intersection of the planes $3x - 6y - 2z = 7$ and $2x + y - 2z = 5$.	(3)
2.	(a) Prove that a space curve lies in some plane in \mathbb{R}^3 if and only if its torsion is zero.	(6)
	(b) i. Prove that any reparametrization of a regular curve is regular.	(3)
	ii. Compute the signed curvature of the curve $\gamma(t) = (t, \cosh t)$	(3)
	(c) i. Show that the tangent line to the regular parametrized curve $\gamma(t) = (3t, 3t^2, 2t^3)$ makes constant angle with the lines $z = x$ and $y = 0$.	(3)
	ii. Let γ be the helix in \mathbb{R}^3 defined by $\gamma(t) = (3\cos t, 3\sin t, 4t)$. Find the arc length function of γ starting at origin and parametrize γ by arc length.	(3)
3.	(a) Let S be a regular surface and $p \in S$. Prove that there exists a neighborhood V of p in S such that V is the graph of a differentiable function which has the form $z = f(x, y)$ or $y = g(x, z)$ or $x = h(y, z)$.	(6)
	(b) i. Show that the vector subspace of dimension two coincides with the set of tangent vectors.	(3)
	ii. Is the set $S = \{(x, y, z) \in \mathbb{R}^3 : z^2 = x^2 + y^2\}$ a regular surface? Justify.	(3)
	(c) Decsribe Mobius Band as a non-orientable surface.	(6)

[TURN OVER

Q. P. CODE: 26811

(3)

(3)

- 4. (a) Show that a diffeomorphism $f: S_1 \to S_2$ is an isometry if and only if for any surface patch (6) σ_1 of S_1 , the patches σ_1 and $fo\sigma_1$ of S_1 and S_2 respectively have the same first fundamental form.
 - (b) Calculate the Gaussian curvature, Mean curvature and Principal curvature of $\sigma(u, v) = ((3 + 2\cos u)\cos v, (3 + 2\cos u)\sin v, 2\sin u), 0 < u < 2\pi, 0 < v < 2\pi.$ (6)
 - (c) i. Using geodesic equations find the geodesics on the circular cylinder $\sigma(u, v) = (\cos u, \sin u, v)$. (3) ii. Prove or disprove: A geodesic has constant speed. (3)
- 5. (a) Prove that a linear operator on \mathbb{R}^2 is a reflection if its eigenvalues are 1 and -1 and the (3) eigenvectors with these eigenvalues are orthogonal.
 - (b) Define an isometry of \mathbb{R}^n . Prove that composition of two isometries is an isometry.
 - (c) Find the curvature of the curve $\gamma(t) = (\cos t, \sin t, 2t)$.
 - (d) Prove that $T = \{(x, y, z) \in \mathbb{R}^3 : z^2 = r^2 (\sqrt{x^2 + y^2} a)^2, 0, r < a\}$ is a regular surface. (3)
 - (e) Find the Second Fundamental Form of the helicoid $\sigma(u, v) = (v \cos u, v \sin u, \lambda u)$, where λ (3) is a constant.
 - (f) For the hyperbolic paraboloid $S = \{(x, y, z) \in \mathbb{R}^3 : z = y^2 x^2\}$, find the differential (3) DN(p) at point p = (0, 0, 0).
