Time: 3 hours Max. Marks: 80

- 1) Attempt any Four questions
- 2) Assume additional data **if necessary** and state the same
- 3) Use of Statistical Tables and Certified Data Sheets is permitted
- 1. a) In a survival test conducted on 100 cardboard boxes for their strength under impact loading, the following results were obtained:

No. of Impacts	20	22	24	26	29	32	35	37	40
No. of boxes failed	7	10	15	14	15	13	13	8	5

Determine Failure density, failure rate and reliability

b) For the data given below two class frequencies are missing.

[10]

[10]

Class Interval	100-110	110-120	120-130	130-140	140-150
Frequency	4	7	15	?	40
Class Interval	150-160	160-170	170-180	180-190	190-200
Frequency	?	16	10	6	3

The total number of frequencies are 150 and the median is 146.25. Find the missing frequencies.

- 2. a) The monthly worldwide average number of air plane crashes of commercial airlines [10] is 3.5:
 - a) Identify the distribution of number of air plane crashes.
 - b) What is the probability that;
 - i. There will be at least 2 such accidents in the next month.
 - ii. There will be exactly 4 such accidents in the next month.
 - iii. There will be atmost 3 such accidents in the next month.
 - b) Distinguish between reliability and quality

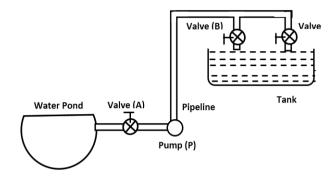
[05]

c) Draw and describe five basic symbols in Fault Tree Analysis.

[05]

3. a) A sample of 100 dry battery cells tested to find the length of life produced the following results :

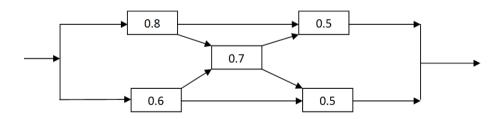
[10]

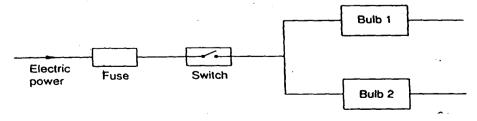

$$\bar{x} = 12 \ hours, \sigma = 3 \ hours$$

Assuming that the data are normally distributed, what percentage of battery cells are expected to have life

- i) more than 15 hours
- ii) less than 6 hours
- iii) between 10 and 14 hours
- b) The time to repair a power generator is best described by its probability density function $m(t) = \frac{t^2}{333}$, $1 \le t \le 10$ hours:
 - (a) Find the probability that a repair will be completed in 6 hours.
 - (b) What is the MTTR
 - (c) Find the repair rate

Turn Over


4. a) Consider a system shown in the figure consisting of three valves, a pump, a pipeline [12] and a tank to collect water pumped from the pond. Construct a Fault Tree corresponding to the top event "No Flow of Water into the Tank".


- b) If 20 percent of the bolts produced by a machine are defective, determine the **[08]** probability that out of 4 bolts chosen at random,
 - i) One bolt will be defective
 - ii) At most two bolts will be defective

Use binomial distribution

- 5. a) Determine the reliability of the system as shown in the figure by the following methods: [14]
 - a. Cut-Set Method
 - b. Decomposition
 - c. Enumeration Method

- b) Describe the Failure Mode Effect and Criticality Analysis (FMECA) procedure [06]
- 6. a) A room consists of two light bulbs operated by a single switch as shown in the figure below. Considering the initial event as the 'room without electric light', develop the event tree of the system

- b) Explain the redundancy method to improve Reliability of system.
- c) Explain the Bath tub curve in Reliability Engineering.

[05] [05]