ND	[Time : 3 hours]	[Marks : 80]
 N.B.: (1) Question number 1 is compulsor (2) Attempt any three questions from (3) Figures to the right indicate full (4) Assume suitable data, wherever 	n the remaining five questions. marks.	
 Q.1 Solve any four questions out of a. State and Prove De-Morgan's the b. Explain reflective codes with exa c. Explain hazards in combinational d. Explain with respect to flip-flop: Level Triggering Educed e. Compare CMOS and TTL logic for 	orem. mple. circuits. ge Triggering	[05] [05] [05] [05]
Q2. a. Reduce the following using F $f(A,B,C,D) = \pi M (0, Q2. b. Design Gray (G_3G_2G_1G_0) to T$		[10] [10]
Q3. a. Design a two bit multiplier, (Q3. b. Implement f (A,B,C,D) = π M i. 16:1 MUX ii. 8:1 MUX (one only) and a	A (1,2,3,5,6,7,8,12,13) using:	[10] [10]
Q4. a. Explain the operation of S-R condition.Q4. b. Explain bidirectional shift regQ4. c. Convert JK flipflop to T flipf		ind [10] [05] [05]
Q5. a. Design a synchronous MOD4 Q5. b. Explain full subtractor circuit Q5. c. Explain master-slave flipflop		[10] [05] [05]
 Q.6. Write short notes on any four of a. Steps in Quine McClusky's method b. Counter ICs c. Hamming Code d. Five and Six variable K-maps e. Design of 3 bit odd parity generation 	od	[20]