(03 Hours)

[Total Marks: 80

N.B.: (1) Attempt any four questions.

- (2) Assumption made should be clearly stated.
- 1. A. Typical laminate made of UD layers is under in-plane loading as given below. 10 Material: T300/5208, fiber volume fraction = 0.7, layer thickness = 0.1 mm, N_x = 300 KN/m, N_y = 250 KN/m, and N_{xy} = 15 KN/m. Laminate considered is $[0_n/90_n]_s$. Find out the minimum value of *n* that would be necessary if the failure is not to take place in the layers. Use Tsai-Hill Failure Theory.
 - B. Explain pultrusion process used for manufacturing composite laminates, with a 10 block diagram.
- 2. A. Find out B_{11} for the laminates $[0_2/90_2]_T$ and $[0/90]_{2T}$. It can be seen that both the 10 laminates have same number of plies. Comment on the results.
 - B. Explain vacuum bagging process and various components involved in it. 10
- 3. A. Determine the curing residual stress distribution along thickness direction for 10 $[90_n/0_n]_S$ laminate made of T300 Carbon-Epoxy. $\Delta t = -80$ °C. Lamina thickness = 0.125 mm.
 - B. Explain the mechanism of formation of interlaminar stresses near the free edges 10 for a cross-ply laminate under uniaxial tensile loading.
- 4. A. Find out the effective elastic properties $(\bar{E}_x, \bar{E}_y, \bar{\gamma}_{xy}, \text{ and } \bar{G}_{xy})$ of $[0/90]_s$ laminate 10 made of UD layers of T300/5208 Carbon/Epoxy material. Lamina thickness is 0.1 mm and fiber volume fraction is 0.7.
 - B. What is shear coupling effect? Write expressions for it. What terms of stiffness / 10 compliance matrix are responsible for it? What is the consequence of shear coupling on the behavior of composite? Give an example of experiencing shear coupling.
- 5. A. Plot the failure envelops on the answer sheet with appropriate proportions, for a 10 typical UD lamina made of T300/5208 composite on stress plane using Maximum Stress and Maximum Strain Failure Theories.
 - B. What are *A*, *B*, and *D* matrices? Explain their significance in the evaluation of 10 performance of a composite laminate.
- 6. A. Derive expressions for E_2 and μ_{12} for a specially orthotropic lamina in terms of 10 fiber and matrix elastic properties and volume fractions.
 - B. How the internal and edge delaminations are repaired in a composite laminate? 10

[Turn Over

<u>Given data</u>

V_{f}	0.7	Compliance	Compliance Constants	
Specific Gravity	1.6	S_{11}	$5.525 (Pa)^{-1} \times 10^{-12}$	
E_1	181 GPa	S_{22}	97.09 (Pa) ⁻¹ × 10 ⁻¹²	
E_2	10.3 Gpa	S_{12}	-1.547 (Pa) ⁻¹ × 10 ⁻¹²	
μ_{12}	0.28	S_{66}	$139.5 (Pa)^{-1} \times 10^{-12}$	
μ_{21}	0.016	Strengths (N	MPa)	
G_{12}	7.17 GPa	X_t	1500 MPa	
Stiffness Constants		X_c	1500 MPa	
Q_{11}	181.8 GPa	Y_t	40 MPa	
Q_{22}	10.34 GPa	Y_c	246 MPa	
Q_{12}	2.897 GPa	S	68 MPa	
Q_{66}	7.17 GPa	Thermal Ex	Thermal Expansion Coefficients	
		α_1	0.02 (µm/m)/°K	
		α_2	22.5 (µm/m)/°K	

Properties of Unidirectional 'Graphite / Epoxy' (T300 / 5208) Lamina

Relations for Stiffness and Compliance Transformations

	$S_{11}(Q_{11})$	$S_{22}(Q_{22})$	$S_{12}(Q_{12})$	$S_{66} (4Q_{66})$
$\bar{S}_{11} (\bar{Q}_{11})$	m^4	n^4	$2m^2n^2$	$m^2 n^2$
$\bar{S}_{22} (\bar{Q}_{22})$	n^4	m^4	$2m^2n^2$	$m^2 n^2$
$\bar{S}_{12} (\bar{Q}_{12})$	$m^2 n^2$	$m^2 n^2$	$(m^4 + n^4)$	$-m^2n^2$
$\bar{S}_{66} (4\bar{Q}_{66})$	$4m^2n^2$	$4m^2n^2$	$-8m^2n^2$	$(m^2 - n^2)^2$
$\bar{S}_{16} (2\bar{Q}_{16})$	2 <i>m</i> ³ <i>n</i>	$-2mn^{3}$	$2(mn^3 - m^3n)$	$(mn^3 - m^3n)$
$\bar{S}_{26} (2\bar{Q}_{26})$	$2mn^3$	$-2m^{3}n$	$2(m^3n-mn^3)$	$(m^3n - mn^3)$