(3 Hours) Total Marks: 80

- N. B. 1) Question No. 1 is compulsory.
 - 2) Answer any **3** questions from the remaining **5** questions.
 - 3) Assume suitable data wherever necessary.

Q1 (a) Determine if the following functions are linear or nonlinear

- i) $f(x_1, x_2, x_3) = \sum_{j=1}^{3} C_j x_j$
- ii) $f(x_1, x_2, x_3) = x_1^2 + 3x_2^2 x_1x_3$
- iii) $f(x_1, x_2, x_3) = \ln(\beta)x_1 + 9^{\alpha}x_3$

iv)
$$f(x_1, x_2, x_3) = \sqrt{x_1^2 + x_2^2}$$

v)
$$f(x_1, x_2, x_3) = 2x_1 + x_2 - 5x_3$$

- (b) Write short note on unimodal and multimodal function.
- (c) What is the need of modeling?
- (d) Determine whether the given direction at the point is direction of descent for the following function:

 $f(X) = 3x_1^2 + 2x_1 + 2x_2^2 + 7; d = (-1,1) \text{ at } X = (2,1)$

Q2 (a) Solve by Simplex method

Minimize
$$Z = x_1 - 3x_2 + 3x_3$$

subject to $3x_1 - x_2 + 2x_3 \le 7$
 $2x_1 + 4x_2 \ge -12$
 $-4x_1 + 3x_2 + 8x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$

Maximize $Z = 4x_1 - x_1^2 + 8x_2 - x_2^2$ (b) *subject to* $x_1 + x_2 = 2$, $x_1, x_2 \ge 0$

Q3 (a) Find the minimum of the function $f(\alpha) = 7\alpha^2 - 20\alpha + 22$. Using golden **20** section method within an accuracy of 0.01.

(b) Write component continuity equation for a perfectly mixed batch reactor with simultaneous reactions (first – order, isothermal) $A \xrightarrow{k_1} B A \xrightarrow{k_2} C$

TURN OVER

20

20

Q4 (a) State and prove the properties of Gradient vector.

(b) Fit a quadratic model $y = \beta_0 + \beta_1 x + \beta_2 x^2$ to the following data where, $\beta_0, \beta_1, \beta_2$ are constants and x is variable and y is the output.

-	
Х	Y
20	73
20	78
30	85
40	90
40	91
50	87
50	86
50	91
60	75
70	65

(a) The profit per acre of a farm is given by Q5 $f(x_1, x_2) = 20x_1 + 26x_2 + 4x_1x_2 - 4x_1^2 - 3x_2^2$ where $x_1 \& x_2$ denote, respectively, the labor cost and the fertilizer cost. Find the values of x_1 & x_2 to maximize the profit.

(b) Solve by Two phase method

Maximize $Z = x_1 + 2x_2$ $3x_1 + 2x_2 \le 12$ subject to $2x_1 + 3x_2 \ge 6$ $x_1 \ge 0, x_2$ is unrestricted in sign

- (a) Minimize $f(x_1, x_2) = 25x_1^2 + 20x_2^2 2x_1 x_2$ using Steepest Descent Q6 20 Method starting at point (3,1).
 - (b) A company that operates 10 hrs a day manufactures each of two products on three sequential processes. The following table summarizes the data of the problem:

	Minutes per unit			Unit Profit
Product	Process 1	Process 2	Process 3	(\$)
1	10	6	8	2
2	5	20	10	3

Determine the optimal mix of the two products graphically.

20

20