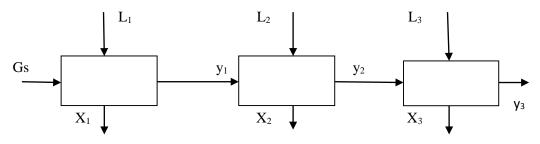
Duration 03 Hr Total Marks: 80


- N.B. 1) Question No.1 is compulsory
 - 2) Answer any three out of five question
 - 3) Assume suitable data wherever necessary and state them clearly
 - 4) Figure to the right indicate full marks

Q	1

- a) Explain in details Modular approach 05
- b) Explain methods to solve non linear eqution 05
- c) List out the various methods of optimization and explain in brief. 05
- d) What are the assumption s to be made for simulation in ideal phase 05
- A flash unit operates at 1 atm and 373 K. A liquid feed comprised of methanol, propanol 2 and acetone with an enthalpy of -264.6 kJ/mol enters the unit. No external heat is supplied. Determine the vapour fraction (V/F) based on the following data. The coefficients to determine the specific heat in J/(mol.K) are given in the table. The reference temperature is 298 K. The enthalpy of formation at standard state and the heat of vapourization at 373 K are given in kJ/mol. The vapour phase and liquid phase compositions are represented as mole fractions.

Component	Methanol	Propanol	Acetone
a	21.14	2.47	6.3
b	0.07	0.33	0.26
С	2.59×10^{-05}	-1.85x10 ⁻⁰⁴	-1.25x10 ⁻⁴
d	-2.85x10 ⁻⁸	4.29x10 ⁻⁸	2.04x10 ⁻⁰⁸
$\mathrm{H_{f}^{0}}$	-239	-303	-248
Hvap	32.39	41.47	26.16
X	0.40	0.23	0.37
у	0.39	0.05	0.56

Q.3 A proposed new method for desalting brackish water is as follows:

20

10

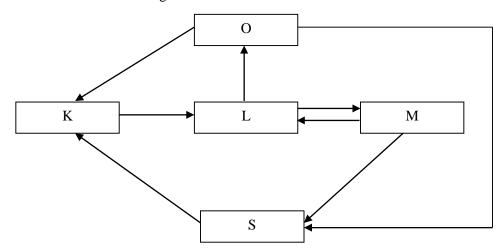
The salt is to be absorbed on to a patented solid adsorbent in a three stage process as shown above. Determine the distribution of pure adsorbent so as to minimize the total flow rate required. The equilibrium relation is given by $y = x^2/100$

Gs= 1000 kg/hr of water

X= Kg of salt per kg of adsorbent

y= Kg of salt per Kg of water

 $y_0 = 0.03$ and $y_3 = 0.0001$


Use Newtons method and show at least two iterations

Q.4(a) In a absorption column vapour consist of 10 mol/s air and 01 mol/sec acetone . Acetone 10 is to be absorbed in water(solvent) Solvent temperature is of 300K and pressure of 10 bar .Recovery of acetone r=0.95. Absorption factor 1.4.Calculate required water flow rate, No.of stages and flow rates of existing stream

Antonie Constant **Water** A= 8.07131 B= 1730.63 C= 233.426

Acetone A=4.42448 B=1312.253 C= -32.445

Q.4(b) Find the tear stream for the given flowsheet

Q.5 Feed streams with pure species A and B are mixed with a recycle stream in a CSTR,where the following reactions take place:

$$A + B \rightarrow C + D$$

$$A + C \rightarrow 2E$$

$$B + E \rightarrow F$$

F is a gaseous product, D is a solid waste, C is a by-product while E is the main product. The plant consists of a reactor, a filter and two distillation columns. 98% of high boiling E is recovered from the first column, while volatile C is separated in the

second column. Due to formation of an azeotrope, some of component C (equivalent to 10 wt% of component E) is retained in the column bottoms. 90% of this bottom product is recycled, while the rest is purged. Construct a Williams-Otto flowsheet and develop the process equations.

Q6(a)) Solve by Lagrangian Method $S=2X_1X_2+2X_2X_3+X_1X_3 \\ X_1X_2X_3=32, &X_1,X_2,X_3>0 \\ Q6(b) Solve graphically the following problem: 10 \\ Maximize Z=2x_1+3x_2 \\ subject to <math>x_1^2+x_2^2=20$,

 $x_1x_2 < 8$ and x_1 , $x_2 > 0$