20

10

Time: 3 Hours Marks: 80 Please check whether you have got the right question paper.

- N.B. 1) Q. No. 1 is compulsory.
 - 2) Attempt any three out of remaining four questions.
 - 3) Assume any suitable data wherever required but justify the same.
- 1 a Explain the Need & Effect of scaling.
 - b Find resistance Rn for nMOS if electron mobility μ_n =560cm²/V-sec, t_{ox}= 10 nm, ϵ_{0x} = 3.9 x8.85x10⁻¹⁴ F/cm, and V_G=3.3 Volts V_{THn} =0.7 Volts if W=10 μ m L=0.5 μ m
 - ^c Explain Latch-up problem in CMOS and how it can be avoided
 - ^d Draw the circuit and explain the working for bidirectional pad
- a Design CMOS inverter such that the switching threshold is V_{th} = 1.2 10
 V, with the following device parameters:

NMOS: $V_{T0,n}= 0.6 V$ $\mu_n C_{ox}=60 \ \mu A/V^2$ PMOS: $V_{T0,p}=-0.8 V$ $\mu_p C_{ox}=20 \ \mu A/V^2$

Assume V_{DD}= 2.4 V and λ =0

- ^b Derive expression for current in saturation region from that of the linear ¹⁰ region current equation also explain the effect of substrate potential (Body Effect) on current and also discuss the effect on overall performance of the device.
- a Explain the effect of scaling on interconnects and comment on 10 performance of VLSI circuit.
 - b Draw the schematic of carry look-ahead adder Explain how speed can 10 be improved?
- 4

а

$F = a \cdot b + c \cdot d \cdot e$

Consider the logical function as given above

- i) Design the CMOS logic gate that provides the function.
- ii) Is it possible to find an Euler graph for the circuit? If so, construct the graph and also it to perform stick level layout. If not find a Layout strategy for the GATE.

1

b	C	For the function $Z = \overline{(A + B)(E + F)(H + I)}$	10
		(i) Domino CMOS circuit (ii) Draw an equivalent circuit for	
		domino circuit by using equivalent transistor sizes with W/L=30/2	
		(both for NMOS and PMOS)	
a	a	Explain the Latch-up problem in CMOS with neat diagram also give	5
		the different methods to overcome the latch-up.	
b	C	Compare various loads used in Inverter circuit. Draw proper diagram	10
		and compare different parameters which characterize each type of	
		Inverters	
С	2	Draw the Schematic of 6-transistor SRAM cell also the draw layout for	5
		the same	
a	a	Explain the clock generation and different types of clocking schemes	10
		for VLSI circuit Explain various issues of clock distribution? Explain	
		how they are addressed?	
Ł	D	How the cross-talk in multilayer system is modeled?	5

5

6

c Explain Charge sharing problem and give the solution 5
