Q.P. Code: 13190

Duration: 3 hrs

Marks: 80

4

4

6

4

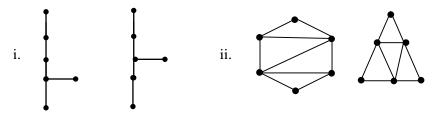
- N.B. 1) Both the sections are compulsory.
 - 2) Attempt **ANY TWO** questions from each section.

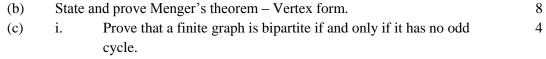
Section I

1

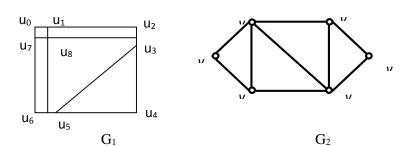
2

(a) Define isomorphic graphs and decide which of the following pairs of graphs are isomorphic. Justify your answer.



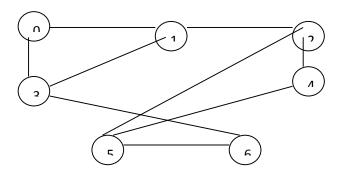


ii. Draw line graphs of the following graphs.



- (a) Prove the following results.
 i. Every tree is bipartite.
 ii. A graph is connected if and only if it has a spanning tree.
 - (b) Use Huffman coding to encode these symbols with given frequencies: *a*: 0.20, *b*: 0.10, *c*: 0.15, *d*: 0.25, *e*: 0.30, *f*: 0.12. What is the average number of bits required to encode a character?

(c) i. Draw Breadth First Search (BFS) tree for the following graph.



Decode the Prufer sequence (2, 3, 3, 4, 4, 5).and draw ii. corresponding tree.

4

3	(a).	Discuss Fleury's algorithm for the following graph. a d e f	6
	(b)	c Prove that "If a connected graph G has $n \ge 3$ vertices and for every pair u, v	6
	(c)	 of non-adjacent vertices, deg(u) + deg(v) ≥ n, then G is Hamiltonian". i. If the degree sequence of the simple graph G is (2, 2, 3, 3, 4), find degree sequence of G^C. Hence if the degree sequence of the simple 	4
		 graph G is (d₁, d₂,, d_p), find degree sequence of G^C. ii. Prove that a graph is Hamiltonian if and only if its closure is Hamiltonian. 	4
4	(a)	Prove that if G is a bipartite graph with bipartition X and Y, then G has a matching of X into Y if and only if $ N(S) \ge S $ for all $S \subseteq X$.	10
	(b)	Prove that $R(3, 4) = 9$. Where $R(s, t)$ is Ramsey number.	10
		Section II	
5.	(a)	For any graph G prove that, $\chi(G) \leq \Delta(G)+1$.	10
	(b)	Prove that every k - chromatic graph with n-vertices has a least ${}^{k}C_{2}$ edges.	10
.6.	(a)	Prove that a graph G is planar if and only if it contains no contraction of K_5 or $K_{3,3}$	10
	(b)	If G is a (connected) simple, finite planar graph with n vertices,	10
		$(n \ge 3)$, then prove that G has at most $3n - 6$ edges. Also if G contains	
		no triangles, then prove that G has at most $2n - 4$ edges.	
7	(a)	Define the following.	10
		i) Diagraph	
		ii) Weakly connected	
		iii) Strongly connected iv)Tournament	
		v) Hamiltonian Path.	
	(b)	Every tournament D contains a vertex from which every other	10
		vertex is reachable by a path of length at most two.	
8.	(a)	Define Eigen value of a graph G and prove that if G be a connected graph with k distinct eigen values and let d be the	10
		diameter of G then $k > d$.	

If G is bipartite and λ is an eigenvalue of G with multiplicity m, (b) 10 then $-\lambda$ is also an eigenvalue with multiplicity m.

__*******__

2