Q.P. Code :09676

[Time: 3 Hours]

[Marks:75]

Please check whether you have got the right question paper.

N.B: 1. All questions are compulsory.

2.	Use of log tables / non- programmable scientific calculator is allowed Useful constants:-			
	$c = 2.99 \times 10^8 \text{m s}^{-1}$	$h = 6.626 \times 10^{-34} Js$		
	$N_A = 6.023 \times 10^{23} \text{ mol}^{-1}$	$R = 8.314 JK^{-1} mol^{-1}$		
	$1 \text{ eV} = 1.602 \times 10^{-19} \text{J}$	$e = 1.602 \times 10^{-19} C$		
	$m_e = 9.11 \times 10^{-31} kg$	$m_p = 1.673 \times 10^{-27} kg$		
	$k = 1.381 \times 10^{-27} J K^{-1}$			

Q.1 Attempt any five of the following.

Q.2

a)	What type of information can be obtained from DTA curve?	03
b)	Explain the mechanism of production of KLL Auger electron.	03
c)	Explain the term ORD. show the nature of the ORD curve.	03
d)	Why three electrode cell is preferred in electroanalytical experiments?	03
e)	Write Sand's equation and explain the meanings of the terms involved.	03
f)	Distinguish between classical and pulse polarography.	03
g)	Give a brief account of gamma radiography.	03
h)	Why is neutron activation analysis the most sensitive method?	03
a)	Draw the schematic diagram of Atomic Force Microscope and explain its operation in contact mode. OR	05
a)	Explain the basic principle of Ultraviolet photoelectron Spectroscopy. What are its limitations?	05
b)	Explain the construction and working of Electron Microprobe. OR	05
b)	With the help of labeled diagrams, describe the different types of cells used in photo acoustic spectroscopy.	05
c)	An ESCA electron was found to have kinetic energy of 1072 eV when a source having wavelength of 0.989 nm was used. The spectrometer had a work function of 17.5 eV. Calculate the binding energy of the emitted electron.	05

Q.P. Code :09676

Q.3	a)	Describe the construction and working of membrane based ion selective electrode with the help of suitable example.	05
		OR	
	a)	Explain the use of fused salt electrolysis in electrometallurgy with the help of suitable example.	05
	b)	What are the applications of Thermo gravimetric Analysis? OR	05
	b)	Describe in brief the technique of evolved gas analysis.	05
	c)	In a Chronopotentiometric analysis, various parameters have following values	05
		n = 6, D = $1.4 \times 10^{-5} \text{ cm}^2 \text{s}^{-1}$ A = 1.61 cm^2 i = $1.51 \mu \text{A}$, Transition time = 41 sec	
		Calculate the concentration of the solution.	
Q.4	a)	Attempt any two of the following.	
	i)	Explain the difference between differential pulse polarography and square wave polarography.	05
	ii)	Explain the current sampling method in square wave polarography.	05
	iii)	Explain what is Adsorptive Stripping Voltammetry. How is it different from Anodic stripping Voltammetry?	05
	iv)	Describe TAST polarography in detail.	05
	b)	The diffusion current of Zn ²⁺ ions in an unknown solution was found to be 26.4 μ A. When 2.5 cm ³ of 1×10^{-3} M solution of Zn ²⁺ ions was added to 25.0 cm ³ of unknown solution, the diffusion current increased to 45.6 μ A. Calculate the concentration of Zn ²⁺ ions in the unknown solution.	05
Q.5	Attemp	ot any Three of the following.	
	a)	Describe the different types of Radiometric titrations.	05
	b)	Explain in brief the technique of Radio chromatography.	05
	c)	Describe the application of GC-MS technique in environmental analysis.	05
	d)	Explain the basic experimental set up used in spectroelectrochemistry.	05
	e)	A 30 mg sample of an alloy containing 0.042 % managanese was irradiated in a neutron flux of	05
		6 x 10 ¹³ n cm ⁻² s ⁻¹ for 45 minutes. Find the activity of the sample in disintegrations per second.	
		Given: Natural abundance of 56 Mn = 100% σ = 13.3 x 10 ${}^{-24}$ cm 2	
		T _{1/2} of ⁵⁶ Mn = 2.58 hr.	
