Q.P. Code : 02745

					(2½ Hours)	(Total Marks	: 75
	N.	В:	(1) (2) (3)	Figures to t	ns are compulsory he right indicate ful ulator is allowed	l marks	
1.	(a)	paramet (i) Obt (ii) Obt	ters (0, tain the tain cor	$0, 1, 1, \rho$) the marginal dist	en stribution of Y tribution of X given	rmal distribution with the $Y = y$. Hence state the	6
	(b)	Define	Fisher's	s Z transform	nation and explain it	s use in testing e normal populations.	6
	(c)	f(x, y) =	= C ex), $-\infty < x, y < \infty, c$ bivariate normal dist OR		3
1.	(p)	linear tr coeffici $\rho = 0. H$	ansforr ent r, fo Ience o	nation obtain or a sample fi	n the distribution of t rom a bivariate norm t statistic for testing	Ising the orthogonal the sample correlation hal distribution, with the significance of the	10
	(q)	State th distribu	e joint 1 Ition wi	noment gen	erating function for a rs $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Prov		5
2.	(a)	dom van (i) Y (ii) P(riable ≯ = aX + (x = 2n	K, find the p	g.f. of b are constants 0, 1, 2	p.g.f) of a discrete ran-	7
	(b)	bution i	is an n-	fold convolu		hat the binomial distri- istribution. Hence use as mean.	8
2.	(p)	variable	eX.		erating function (p.	g.f) of a discrete random	10
					ncated Poisson distr and variance.	ribuiton, truncated at Turn Ov	er

4

Turn Over

2

- (q) A uniform die is rolled n times. Let $X_i =$ Number on uppermost face of 5 the ith die, i = 1,2,...,n.
 - (i) Obtain the probability generating function (p.g.f) of X_{i}
 - (ii) Obtain p.g.f. of $Y = X_1 + X_2 + ... + X_n$ Hence obtain P(Y = n)
- 3. Stating the postulates of the Pure Birth process with initially 'a' members in the system, at time t = 0:
 - (i) Derive the difference-differential equations.
 - (ii) State the difference differential equations for Yule's process and obtain the expression for $P_n(t)$, the probability of n members in the system at any time t.
 - (iii) For Yule's process obtain the mean number of members in the system at any time t.

OR

- 3. (a) What are stochastic processes? What are transient probabilities?
 - (b) Stating clearly the postulates for the Pure death process, with initially 11 'a' members in the system, at time t = 0:-
 - (i) Derive the difference differential equations

effective arrival rate?

(ii) State the difference differential equations for the Poisson death process with $\mu_n = \mu$, and obtain the expression for $P_n(t)$, the probability of n units in the system at any time t. Also state the expression for $P_n(t)$, the probability of ultimate extinction.

7 Write a short note on: 4. (a) Queue discipline (i) (ii) Customer behaviour in a queuing system. (b) For the (M/M/1): $(GD/\infty/\infty)$ queuing model, 8 (i) obtain the steady state probabilities P_n (ii) obtain the probability distribution of w = waiting time for a customer in the queue. OR Explain the following terms used in queuing theory: 4. (p) 4 Calling source (i) (ii) Capacity of the system (q) For the (M/M/C): $(GD/N/\infty)$, $N \ge C$ queuing model, obtain the steady 11 state probabilities P_n , for n customers in the system. What is the

3

5.	(a)	If (X, Y) have a bivariate normal distribution with parameters $(0, 0, 1, 1, \rho)$ show that $U = X + Y$ and $V = X - Y$ are in dependently distributed. State the probability distribution functions (p.d.f.s) of U and V.								
	(b)	(b) For the Birth and Death process:								
		(i) State the postulates								
		(ii) Obtain the difference- differential equations for $P_n(t)$,								
		(iii) Obtain the expressions for the steady state probabilities P_n .								
	OR									
5.	(p)	Let X be a discrete random variable with $p_k = P(X = k)$ and	6							
	$q_k = P(X > k)$ If $P_x(s)$ and $Q_x(s)$ denote the generating functions of									
		$\{\hat{\mathbf{p}}_k\}$ and $\{\mathbf{q}_k\}$, obtain the relationship between $Q_x(s)$ and $P_x(s)$								
	(q)	For the $(M/M/1)$: $(GD/N/\infty)$ queuing model:-								
		(i) State the steady state equations and derive the steady state								
		probabilities P_{n} , for n customers in the system.								
		(ii) Find expected number of customers in the system, Ls,								
		when $\rho \neq 1$, where $\rho = \frac{\lambda}{\mu}$.								