Q.P. Code :02535

Please check whether you have got the right question paper.

[Time: Three Hours]

- N.B: Question No. 1 is compulsory. 1)
 - 2) Attempt any four questions out of remaining six questions.
 - 3) All questions carry equal marks.

Given the set of symbols and corresponding frequency table as below, explain the steps to find [10] Q.1 A) Huffman Code

Symbol	А	В	С	D	E	F	G	Н
Frequency	45	13	12	16	9	5	2	1

- B) Define Priority Queue. Write an algorithm to
 - Insert an element in the priority queue. i)
 - ii) Delete an element from priority queue.
- Q.2 A) Define an expression tree. For the following infix expression, draw the expression tree and find [10] prefix and postfix expression. A*B/(C-D)+E*(F-G)
 - For circular linked list write algorithms to [10] B)
 - i) Insert an element in the list
 - ii) Search for an element in the list
- Q.3 A) What is sorting? Sort the following elements using Quick sort method [10] 22, 12, 32, 2, 15, 25, 10. Also give the algorithm and efficiency for the same.
 - B) What is Stack data structure? Explain it with suitable example. Write an algorithm for Push, [10] Pop, Stackempty and Stackfull functions.
- Define an AVL tree. What is the advantage of using AVL trees? Create an AVL tree using the [10] Q.4 A) following data entered as a sequential set. F, V, E, W, D, X, C, Y, B, Z, A.
 - B) Explain collision resolution and its techniques in context of hashing. [10]

[TURN OVER]

[Marks:100]

[10]

Q.P. Code :02535

Q.5 A) What is minimum spanning tree? Write Kruskal's algorithm to find minimum spanning tree and [10] determine minimum spanning tree of the following graph

	B)	Define the efficiency of an algorithm. Explain the process of analysis of an algorithm as well as the notations used (Big O, Ω , θ)	[10]		
Q.6	A)	What is heap? Write an algorithm for ReheapUp. Construct a Max heap for the following data values arriving in sequence 35, 33, 42, 10, 14, 19, 27, 44, 26, 31.	[10]		
	B)	What is a Binary Search Tree (BST)? Write an algorithm to i) Insert a node in BST ii) Find the smallest node in the BST	[10]		
Q.7 A)	Define M-way trees. Construct a B-Tree of order 3 by inserting numbers from 1 to 10.				
	B)	Write a short note on (any two)	[10]		

- i) Doubly linked list
 - ii) Dijkstra's algorithm
 - iii) General trees

-----X------