Q.P. Code: 75257

(3 Hours) [Total Marks: 100

- N.B.: (1) All questions are compulsory.
 - (2) Figures to the right indicate full marks.
 - (3) Use of log table/non programmable calculator is allowed.
 - (4) Answer to the two sections must be written in separate answer books.
- 1. Physical constants:-

$$N_A = 6.023 \times 10^{23} \text{ mol}^{-1}$$

$$F = 96500 C$$

$$R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$$

h =
$$6.626 \times 10^{-34} \text{ Js}$$

$$c = 3 \times 10^{8} \text{ ms}^{-1}$$

$$1 \text{ a.m.u.} = 1.66 \times 10^{-27} \text{ kg}$$

$$\frac{2.303 \text{ RT}}{\text{E}} = 0.0592 \text{ at } 298 \text{ K}$$

SECTION - I

1. (a) Define the term molal depression constant. A solution containing 0.50 g of urea in 22.5g of water gave a boiling point elevation of 0.17K. Calculate the molal elevation constant of water. (Given: Mol.wt.of urea = 60).

OR

(a) Adsorption of certain gas forms a complete monolayer on nickel adsorbent. The volume of gas adsorbed reduced to S.T.P. conditions was found to be 130 cm³ per gram of adsorbent nickel. Calculate the surface area of nickel if the area occupied by each gas molecule is 14.50 × 10⁻²⁰ m².

Attempt any three of the following:-

- (b) Explain the term osmotic pressure. Derive the van't Hoff equation, $\Pi = CRT$ 5
- (c) Describe the application of the phase rule to water system with a neat labelled phase diagram.
- (d) Explain in brief the origin of charge on colloidal particles.
- (e) State the postulates of Langmuir adsorption isotherm.
- 2. (a) Calculate the ionic strength of the solution containingly 0.01M ZnCl₂ and 0.2M FeCl₃

OR

[TURN OVER

5

5

5

5

Q.P. Code: **75257**

2

	(a)	The frequency separation of successive lines in the rotational spectrum of HCl is	5
		2 ×10 ³ m ⁻¹ . Calculate the rotational constant and bond length.	
		[Atomic weight: $H = 1$ a.m.u., $CI = 35$ a.m.u.]	
Αı	ttemp	ot any three of the following:-	
	(b)	Describe the method of determination of the solubility product of a sparingly soluble salt by using a chemical cell.	5
	(c)	What is isotopic shift? How will you determine isotopic shift for the vibration-roation spectrum.	5
	(d)	Derive an expression for e.m.f. of an electrolyte concentration cell without transference reversible to cations.	5
	(e)	Explain the rule of mutual exclusion of IR and Raman spectra using a suitable example.	5
3.	(a)	Explain Dorn effect.	3
		OR	
	(a)	What is catalyst support? Explain with suitable examples.	3
	(b)	Calculate the degree of freedom of three component system having number of phases equal to one and two respectively.	. 2
	(c)	Give the representation of a glass electrode. Why is it called ion-selective electrode.	3
	(d)	Explain the term force constant.	2
		OR	
	(d)	Give an example of electrode concentration cell without transference reversible to anions.	2
		SECTION - II	
4.	Ans	wer the following:-	
	(a)	Explain with a suitable diagram formation of tetrahedral voids.	3
		OR	3
	(a)	Explain P-type of semiconductor on the basis of band theory.	3
	(b)	Explain the term Identity.	3
	(c)	Give any two applications of Uranium.	2
	(d)	What are inner transition elements?	2
		OR	
	(d)	Explain any one method of producing plutonium in nuclear reactors.	2
			_

[TURN OVER

Q.P. Code: 75257

3

5.	(a)	Show that the Atomic Packing Factor (A.P.F) for the face centered cubic	5
		structure is $\frac{\sqrt{2\pi}}{6}$ or 74%.	
٠		6 OR	
	(a)	Explain the terms :-	
	(u)	(i) Crystal lattice	2
		(ii) Centre of symmetry with a suitable examples.	3
Δτ	1511/01	any three of the following:—	
<i>2</i> 11	(b)	Explain the point group along with symmetry element for BCl, molecule.	5
	(c)	Draw a neat labelled molecule orbital diagram for methane molecule showing	<i>5</i>
	(0)	distribution of electrons in various energy levels predicting its magnetic	J
		behaviour.	
	(d)	Discuss the structure of sodium chloride with a suitable diagram.	5
	(e)	What are superconductors? Give any three applications of superconductors.	. 5
	(0)	what are superconductors: Give any times applications of superconductors.	. 3
6.	(a)	Discuss the principle involved in ion-exchange method for separation of	5
		lanthanides.	
		OR	
*	(a)	How are monoatomic anions classified on the basis of their basicity? Draw predominance diagrams for nonbasic anions and moderately basic anions.	5
Ατ	iswei	any three of the following:—	
	(b)	On the basis of electronic configuration of lanthanides, explain their variable	5
	(0)	oxidation states.	J
	(c)	With reference to dinitrogen tetroxide as non-aqueous solvent explain:	5
	(-)	(i) Acid - base reactions	
		(ii) Redox reactions.	
	(d)	(i) Explain why yttrium has properties similar to lanthanides.	2
	(4)	(ii) What are acidic, basic and amphiprotic solvents? Give suitable examples.	3
	(e)	Discuss Drago-Wayland concept to measure reactivity of acids and bases.	<i>5</i>
	(5)	Discuss Diago mayland concept to incasure reactivity of acids and bases.	3
