QP Code: 79299 | Dur | ation | $[2\frac{1}{2}\text{Hours}]$ [Marks: 60] | | |-----|-------|--|-----| | N.I | | | | | | | , , , , , , , , , , , , , , , , , , , | | | 1. | (a) | G is a (p,q) -graph with $q<\frac{kp}{2}$, where k is a positive integer. Prove that G is not e-connected. | (6) | | | (b) | Let G be a graph with p vertices, where $p \geq 2$. Then prove that G has at least two vertices which are non-cut vertices. | (6) | | | (c) | Let G be a graph on p vertices and let A denotes adjacency matrix of G . Let B be the natrix where $B = A + A^2 + A^3 + \ldots + A^{(n-1)}$. Then prove that G is connected graph if and only if for every pair of distinct indices i, j we have b_{ij} is non-zero, where b_{ij} is the i, j -th entry of the matrix B . | (6) | | 2. | (a) | Define a bond in a graph. Show that in a connected graph G , and edge cut F is a bond if and only if $G - F$ has exactly two components. | (6) | | | (b) | Show that graph G is tree if and only if every two vertices of G are connected by a unique path. | (6) | | | (c) | Explain Breadth First Search Algorithm and Depth First Search Algorithm. | (6) | | 3. | (a) | State and prove the necessary and sufficient condition for a graph to be Eulerian. | (6 | | | (b) | Let G be a simple graph vertex degree sequence $(d_1 \leq d_2 \leq \cdots \leq d_p)$, whenever $p \geq 3$. If $i < p/2$ implies that $d_i > i$ or $d_{p-i} \geq p-i$ then then show that G is Hamiltonian. | (6 | | | (c) | Define closure of a graph $C(G)$. Show that if the closure of graph G is complete then G is Hamiltonian. | (6 | | 4. | (a) | Prove that the matching M in a graph G is maximum if and only if G contains no M augmenting path. | (6 | | | (b) | Define Ramsey number $r(k,l)$. Show that $r(k,l) \leq \binom{k+l-2}{k-1}$. | (6 | | | (c) | If M be a matching and K be a covering such that $ M = K $ then prove that M is a maximum matching and K is a minimum covering. | (6 | | 5. | (a) | Show that a graph is bipartite if and only if for every subgraph H of G , H contains an independent set of at least $n(H)/2$ vertices, where $n(H)$ is the number of vertices of H . | (6 | | | (b) | Let G be a (p,q) graph with k components. Show that $p-k \leq q \leq \frac{p-k+1}{2}$. | (6 | | | (c) | If G is a graph on $ V(G) $ vertices with $deg(u) + deg(v) \ge V(G) - 1$ for every pair of non adjacent vertices u and v in G , then show that G contains a Hamiltonian path. | (6 |