X tede: aq €0

Q1

Prototyping doesn't contribute to development goals

Prototyping delays time to market

Schedule is too tight to enable integrating results from prototype
Excessive cost

It is a slow process.

Too much involvement of client, is not always preferred by the developer.
Too many changes can disturb the rhythm of the development team.

e o o6 o B —

* Consider the effect of a risk on the total project rather than on just part of it.

» Consider the combined effect of related risks. The likelihood that your schedule
will slip is greater if three activities on the same critical path have a significant
risk of delay rather than just one

* Decision trees: These diagrams illustrate different situations that may occur as
your project unfolds, the likelihood of each situation’s occurrence, and the
consequences of that occurrence to your project.

» Risk-assessment questionnaires: These formal data-collection instruments elicit
expert opinion about the likelihood of different situations occurring and their
associated effects.

e Automated impact assessments: These computerized spreadsheets consider — in
combination — the likelihood that different situations will occur and the
consequences if they do.

3.

Cohesion of a module represents how tightly bound the internal elements of the module
are to one another. Coupling between modules is the strength of interconnection
between modules or a measure of independence among modules.

Two modules are considered independent if one can function completely without the
presence of other. Obviously, if two modules are independent, they are solvable and
modifiable separately. However, all the modules in a system cannot be independent of
each other, as they must interact so that together they produce the desired external
behavior of the system.

Benefits of low coupling are

e maintainability — changes are confined in a single module
 testability — modules involved in unit testing can be limited to a minimum
» readability — classes that need to be analyzed are kept at a minimum

The benefits of high cohesion are

 Readability — (closely) related functions are contained in a single module

» Maintainability — debugging tends to be contained in a single module

* Reusability — classes that have concentrated functionalities are not polluted with
useless functions

4.

Verification Validation

Are we building the system r rlght” Are we hm!dmg the right system‘?

Verification is the process of evaluatmg Validation is the process of evaluating

products of a development phase to find outsoftware at the end of the development

whether they meet the specified process to determine whether software

requirements. meets the customer expectations and
requirements. _

The objective of Verification is to make ~ The objective of Validation is to make sure

sure that the product being develop is as perthat the product actually meet up the user’s

the requirements and design specifications. [requirements, and check whether the
specifications were correct in the first place.

'Following activities are involved in Following activities are involved in
Verification: Reviews, Meetings and Validation: Testing like black box testing,
Inspections. white box testing, gray box testing etc.

Verification is carried out by QA team to Valldatlon is carried out by testing team.
check whether implementation software is
as per specification document or not.

Execution of code is not comes under Execution of code is comes under
Verification. Validation. N
Verification process explains whether the Validation process describes whether the
outputs are according to inputs or not. software is accepted by the user or not. |
Verification is carried out before the Validation activity is carried out just after
Validation. the Verification.)
Following items are evaluated during Following item is evaluated during
Verification: Plans, Requirement Validation: Actual product or Software
Specifications, Design Specifications, under test.

Code, Test Cases etc,

Cost of errors caught in Verification is less Cost of errors caught in Validation is more |

than errors found in Validation. - ___than errors found in Verification.)
Itis basically manually checkmg the of It is basically checking of developed
documents and files like requirement program based on the requirement
specifications etc. specifications documents & files.
Q2. Requirements Gathering Requirements Elicitation
1. Brainstorming Elicitation techniques
2. Document Analysis « Stakeholder analysis
* Analysis of existing systems or
3. Focus Group . documentation,
5. Interview « Discourse analysis
6. Observation » Task observation, ethnography
7. Prototyping * Questionnaires
8. Requirements Worksh sInterviewing
quirements Workshop * Brainstorming
9. Reverse Engineering - Joint Application Design (JAD)
10. Survey « Prototyping
* Pilot system

* Use cases and scenarios

* Risk analysis

It may also involve a different kinds of
stockholders; end-users, managers, system
engineers, test engineers, maintenance
engineers, etc.

b) Planning Phase: Requirements are gathered during the planning phase. Requirements
like ‘BRS’ that is ‘Bussiness Requirement Specifications’ and ‘SRS’ that is ‘System
Requirement specifications’.

Risk Analysis: In the risk analysis phase, a process is undertaken to identify risk and
alternate solutions. A prototype is produced at the end of the risk analysis phase. If any
risk is found during the risk analysis then alternate solutions are suggested and
implemented.

Engineering Phase: In this phase software is developed, along with testing at the end of
the phase. Hence in this phase the development and testing is done.

Evaluation phase: This phase allows the customer to evaluate the output of the project
to date before the project continues to the next spiral.

Fexrieygy sk Aralysis

Epatuaticn Engnesnng

Q3

Some of the main Characteristics of Agile development Methodology are as follows :

Early identification and resolution of issues

Frequent Delivery

Quality

Visibility

Iterative releases, Communication, continuous integration
Quick & Good Return on your investments

Frequent Testing

Collaborative approach

There are 2 popular Agile methods available — Scrum and Extreme programming

b) Resource Risks

Organization

Is there sufficient commitment to this project (including management, testers, QA, and
other external but involved parties)?

Is this the largest project this organization has ever attempted?

Is there a well-defined process for software engineering? Requirements capture and
management?

Funding

Is the funding in place to complete project?

Has funding been allocated for training and mentoring?

Are there budget limitations such that the system must be delivered at a fixed cost or
be subject to cancellation?

Are cost estimates accurate?

Are enough peopie availabie?

Do they have appropriate skills and experience?
Have they worked together before?

Do they believe the project can succeed?

Are user representatives available for reviews?
Are domain experts available?

Is the schedule realistic?

Can functionality be scope-managed to meet schedules?
How critical is the delivery date?

Is there time to "do it right"?

Business Risks

What if project funding is jeopardized (the other way to look at this is to ask
"what can assure adequate funding")?

Is the projected value of the system greater than the projected cost? (be sure to
account for the time-value of money and the cost of capital).

What if contracts cannot be made with key suppliers?

Technical Risks

Scope risks

Can success be measured?

Is there agreement on how to measure success?

Are the requirements fairly stable and well understood?

Is the project scope firm or does the scope keep expanding?
Are the project development time scales short and inflexible?

Technological risks

Has the technology been proven?
Are reuse objectives reasonable?

o An artifact must be used once before it can be re-used.

o It may take several releases of a component before it is stable enough to reuse

without significant changes.

Are the transaction volumes in the requirements reasonable?
Are the transaction rate estimates credible? Are they too optimistic?
Are the data volumes reasonable? Can they be held on currently available mainframes,
or, if the requirements lead you to believe a workstation or departmental system will
be part of the design, can the data reasonably be held there?
Are there unusual or challenging technical requirements that require the project team
to tackle problems with which they are unfamiliar?
Is success dependent on new or untried products, services or technologies, new or
unproven hardware, software, or techniques?
Are there external dependencies on interfaces to other systems, including those outside
the enterprise? Do the required interfaces exist or must they be created?
Are there availability and security requirements which are extremely inflexible (for
example, "the system must never fail")?
Are the users of the system inexperienced with the type of system being developed?
Is there increased risk due to the size or complexity of the application or the newness of

the technology?

Is there a requirement for national language support?
Is it possible to design, implement, and run this system? Some systems are just too
huge or complex to ever work properly.

External dependency risk

Does the project depend on other (parallel) development projects?

Is success dependent on off the shelf products or externally-developed components? Is
success dependent on the successful integration of development tools (design tools,
compilers, and so on), implementation technologies (operating systems, databases,
inter-process communication mechanisms, and so on). Do you have a back-up plan for
delivering the project without these technologies?

Schedule Risks

85% of the risks have a direct or indirect impact on the schedule, and therefore implicitly

on cost. Maybe 5% have only a cost impact. The rest have no direct impact on cost or
schedule, but on quality for example. If a deadline is the enemy, approach it smoothly
with incremental deliveries. Avoid having one massive delivery in an attempt to make
the schedule.

Delays mostly affect cost. In general, make your schedule commitment equal to your
best estimate, plus some reasonable contingency. Where schedule is not negoatiable, try
to reduce the number of requirements, by moving some low-priority requirements to
evolution, to meet the project schedule.

Q4 * Key concepts in discussing reliability:
— Fault
— Failure
— Time
— Three kinds of time intervals: MTTR, MTTF, MTBF
McCall’s Software Quality Factors
» Correctness:
o defects per KLOC
o maintainability
o mean time to change (MTTC) the time it takes to analyze the change request,
design an appropriate modification, implement the change, test it, and
distribute the change to all users
o spoilage = (cost of change / total cost of system)
P integrity
o threat = probability of attack (that causes failure)
° security = probability attack is repelled
Integrity = Z [1 - threat * (1 - security)]
Q5 | Configuration Management

e Software changes are inevitable
* One goal of software engineering is to improve how easy it is to change software
* Configuration management is about change control.
* Every software engineer has to be concerned with how changes made to work products
are tracked and propagated throughout a project.
* To ensure quality is maintained the change process must be audited.
Software Configuration Iltems
* Computer programs
— source
— executable
* Documentation
— technical
— user
* Data
— contained within the program
— external data (e.g. files and databases)

Change Control
« Submission of Change Request (CR)

« Technical and business evaluation and impact analysis
= Approval by Change Control Board (CCB)
+ Engineering Change Order (ECO) is generated stating
o changes to be made
o criteria for reviewing the changed CI
o CI's checked out
e Changes made and reviewed
e (Clscheckedin
b) Test Cases and the Class Hierarchy
Scenario-Based Test Design
Testing Surface Structure and Deep Structure
Random Testing for OO Classes
Partition Testing at the Class Level

Multiple Class Testing
Tests Derived from Behavior Models

B -
S
=
-,:. R
|. ’1
'I ‘,'
. !
! 4

