Paper 1 solution CBGS | Q1a | Cell diagram-1 Description-2 Action potential graph -1 Labeling-1 | | | | | | |-----|---|--|--|--|--|--| | Q1b | 1 mark per each of the design criteria, some are enlisted here: Battery operated, light weight Use of dry biochemistry Simple to use Safe to handle, non biohazardous Patient comfort Easy to interprete the results by operator Accurate Easy to calibrate locally | | | | | | | Q1c | Comparative statement about Noise (2 marks) Signal strength (2 marks) Electrode surface area (1 marks) Signal phase (2 marks) Area of study (1 marks) | | | | | | | Q1d | Noise type and explanation of source 2 marks ♠ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ | | | | | | | Q1e | 2 mark for each significance Biofeedback Energy delivery in defib Lie detector | | | | | | | Q2a | Skin electrode interface diagram-1 Labeling-1 Co relation with motion artefacts-3 | | | | | | | Q2b | Role of potassium in action potential-2 marks Effect of increase in potassium level-3 marks | | | | | | | | _ | - | |---|-----|-----| | | (8) | つ) | | 1 | | | | Q2c | Drawbacks of biopotential recording with single ended amplifier types-2 marks
Advantages of biopotential recording with differential amplifier types-3 marks | | | | | |---------|---|------|--|--|--| | Q2d | 2 marks for each explanation of each method Use shield Use battery Use notch filter Use high CMRR amplifier Use shielded cable Use shield drive circuit | | | | | | Q3a | Einthoven triangle diagram with correct polarity – 3 marks Significance – 4 marks | 100 | | | | | Q3b | List of ECG leads- 1 mark Placement of leads- I II III and AvR, AvL, AvF- 3 marks Placement of leads v1 to v6- 3 marks | | | | | | Q3c | Electrode placemnt 4 marks Significance of montages 3 marks | | | | | | Q4a | Block diagram 4 marks Explanation 6 marks | | | | | | Q4b | Block diagram 5 marks Explanation 5 marks | | | | | | Q5a
 | Block diagram 3 marks Waveforms 3 marks Explanation 4 marks | (40) | | | | | Q5b | Block diagram 3 marks Waveforms 3 marks Explanation 4 marks | | | | | | Q6a | Microshock and macroshock 2 mark for each point • Amplitude and current levels, • Effect on body • Current path • Control methds | | | | | | Q6b | ERG measurement 2 mark for each point | | | | | • | 5. | SourceElectrodes usedWaveformSignificance | | | | |-----|--|-----|--|--| | Q6c | EMG Biofeedback 2 mark for each point | | | | | Q6d | Baby incubator 2 mark for each point Necessity Construction Working | | | | | Q6e | Phonocardiogram 2 mark for each point | ii. | | | * 2.40 *