N.B.: (1) All questions are compulsory

- Figures to the right indicate full marks.
- (3) Use of non-programmable calculators allowed.

Useful constants

c=2.998x108 ms-1 $h=6.626x10^{-34}$ J.s R=8.314 JK-1 mol-1 $m_e = 9.110 \times 10^{-31} \text{ kg}$

 $N_A = 6.022 \times 10^{23} \text{mol}^{-1}$ $e=1.602x10^{-19}C$ $k=1.3811x10^{-23}JK^{-1}$ 1J=6.24x10¹⁸eV $1eV=8.06x10^{3}cm^{-1}$

1. Attempt any five of the following

15

- (a) Prove that the Joule Thomson effect is isoenthalpic.
- (b) What is partition function? Give its physical significance.
- (c) State BET adsorption isotherm equation. Explain the terms involved
- (d) Explain Wein effect in the case of conductivity measurements of strong electrolytes.
- (e) What are the characteristics of well behaved function? Indicate which of the following wave functions are acceptable
- (ii) $\psi = \tan x$
- (f) If $\psi = e^{-x}$ and $\varphi = \sin x$ then show that the operator $\frac{d^2}{dx^2}$ is Hermitian
- (g) Explain:
 - (i) oscillating reactions
 - (ii) explosion reactions
- (h) Predict the effect of ionic strength on the rates of the following reactions:-Justify your answer

 - (i) $S_2O_8^{2-}+2I^- \rightarrow Products$ (ii) $[Cr(urea)_6]^{3+} + H_2O \rightarrow Products$ (iii) $Fe^{2+}+Co (C_2O_4)^{3-} \rightarrow Products$
- 2. (a) Explain the concept of residual entropy with suitable examples. How can you determine absolute entropies of solids at different temperatures?

OR

SC-Con. 1166-17.

[TURN OVER]

6

8249BC3DB426BA1554D464856A09B9F5

- (a) Derive mathematical relationship between partition function and internal energy.
- (b) Calculate the entropy of ideal mixing when 2 moles of N₂, 3 moles of H₂ and 2 moles of NH₃ are mixed at constant temperature, assuming no chemical reaction is occurring
 [Atomic mass of N=14, H=1]
- (c) State the fundamental equation for Boltzman distribution and explain the terms involved in it.

OR

- (c) Starting with the concept of fugacity, obtain the relation between activity and activity coefficient in terms of chemical potential.
- 3. (a) What is polarised electrode? Explain Lippman's experiment related to electrocapillary phenomenon.

OR

- (a) Derive an expression for the Debye-Huckel limiting law. How is it extended to be applicable to higher concentrations?
- (b) Calculate the mean ionic activity coefficient of aluminium sulphate solution whose ionic strength is same as that of 0.03 m sodium chloride solution. at 298K.

(Given A = 0.509 for water at 298 K)

(c) Distinguish between first order and second order phase transitions. Give one example of each transition.

OR

- (c) Explain the phase diagram of three component system exhibiting formation of one pair of partially miscible liquids.
- 4 (a) Obtain the Hermite's differential equation for linear Harmonic oscillator from the following equation.

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}y^2} + \left(\frac{\alpha}{\beta} - y^2\right) \psi = 0$$

OR

- (a) Set up and solve Huckel determinants equation for ethylene. Show the Huckel molecular orbital energy levels. Indicate HOMO and LUMO in ethylene.
- (b) For a particle of mass 'm' moving in a cubical box of side 'a', calculate the degeneracy of the level corresponding to the energy.

(i)
$$E = \frac{18h^2}{8ma^2}$$
 (ii) $E = \frac{21h^2}{8ma^2}$

[TURN OVER]

QP Code: 75460

3

	(c)	State and prove any one theorem of Hermitian operator.	4
		OR	
	(c)	The internuclear distance in HI molecule is 163 pm. Calculate the energy of the first rotational level.	4
		[Atomic mass of H=1, I= 127]	
5	(a)	Derive an expression for the rate constant of a bimolecular reaction on the basis of the collision theory of reaction rate.	.6
		OR	
	(a)	Explain the shock tube and flash photolysis techniques used to study fast reaction.	6
	(b)	The rate constants for a second order reaction are 3.45x10 ⁻⁵ dm ³ mol ⁻¹ s ⁻¹ at 25°C and 1.35x10 ⁻⁶ dm ³ mol ⁻¹ s ⁻¹ at 35°C. Calculate the activation energy and the pre-exponential factor.	5
	(c)	Derive an expression to show the influence of ionic strength on the rates of reaction between ions.	4
		OR	
	(c)	State the expression for the rate law on the basis of Michaelis-Menten's mechanism. What is Michaelis constant? Discuss the effect of concentration of the substrate on the rate of enzyme catalysed reaction.	4