3:

QP Code: 75457

(3 Hours)

[Total Marks: 75

		(a) An questions are compulsory.	•
		(2) Figures to the right indicate maximum marks.	
	· .	(3) Answers to the two sections must be written in same answer-books.	
. '		anower-books.	
		Section I (Mathematical Methods)	
	•		
	а	Obtain the Fourier series for	
		f(x) = -1, -l < x < 0	06
		= 1, 0 < x < l	
		And show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$	
	-	32 7 57	
	. b	Find the eigenvalues and eigenvectors	
	_	and eigenvectors	06
		/-2 2 -3	
		$A = \begin{pmatrix} -2 & 2 & & -3 \\ 2 & 1 & & -6 \\ -1 & 0 & & 1 \end{pmatrix}$	
		$\begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$	
		OR	
	а	State and prove Parseval's theorem	0.4
٠.	b	i) Find the Laplace transform of $f(t) = t sinwt$	04
		ii) Find the inverse Laplace transform of $F(s) = \frac{1}{s(s^2 + w^2)}$	04
		$\frac{1}{s(s^2+w^2)}$.04
	a	State and prove County the	
	b	State and prove Cauchy's theorem	07
		Write the Cauchy Riemann conditions and show that	06
		$u = xe^x cosy - ye^x siny$ is harmonic and find the conjugate v .	
		On	
	а	OR Prove the Residue theorem and find the	
•	٠.	Prove the Residue theorem and find the residues of	07
		$f(z) = \frac{z}{(2z+1)(5-z)}$	
	b	Evaluate $I = \int_0^{2\pi} \frac{d\theta}{5-4\sin\theta}$	
		$J_0 = 5-4\sin\theta$	06
	а	Solve the differential equation using Frobenius method	•
	-	x(x-1)y'' + (3x-1)y' + y = 0	07
	b .	Solve the one dimensional wave equation	
		$\frac{\partial^2 u}{\partial u} = \frac{\partial^2 u}{\partial u}$	06
•		$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	
		with conditions $u(x,0) = 0$, $u(0,t) = 0$, $u(x,0) = f(x)$, $\frac{\partial u(x,0)}{\partial t} = g(x)$	
		$\frac{\partial}{\partial t} = g(x)$	
-		OR	
	a	Solve the differential equation	
		$y'' + y' - 6y = 6x^3 - 3x^2 + 12x$	07
	b	Obtain the series solution	0.0
	_	$2x^2y'' + 3xy' + y \models 0$	06
•		SECTION II	
	•	CLASSICAL MECHANICS	
	а	What are generalized coordinates? Using transformation equations derive an	6
:	:	expression for the kinetic energy of a system	U
	b ·	Derive Lagrange's equations of motion from Hamilton's principle.	6
			_

QP Code: 75457

8	a	Taking freely falling particle as an example, obtain Lagrangian, Lagrange's equations of motion and solve them	_
	h	equations of motion and solve them.	О
	b	A hoop is rolling without slipping down an inclined plane which is at an angle ϕ to the ground. Find the equation of motion.	6
9	а	Prove Virial theorem.	
· .	b	What are Kepler's three laws of planetary motion? Derive third law.	6
40		AP .	6
10	a	Discuss small oscillations about the minima of the potential function.	
	b	Obtain an expression for differential scattering cross section.	6 6
11 .	а	Show that Poisson bracket remain inverse.	
	b .	Show that Poisson bracket remain invariant under canonical transformation. A Hamiltonian of the system is given by:	7
		Show that $F = q_1q_2$ is constant of motion.	6
12	-	∩ D	
	b ·	What are Poisson bracket? What are elementary Poisson brackets?	5
		Prove Jacobi's identity for Poisson bracket.	8