(3 Hours)

Q. P. Code: 50188 [Total Marks: 100

SECTION-I (max marks: 40)

N.B.	1. Attempt All questions						
	 There are 40 questions in this section and each carries one mark There is only one correct answer to each question and no negative marking Please write question no. and your answer (alphabet only) next to it (eg. 5-d) Scientific calculator is allowed. Symbols have usual meaning unless stated otherwise. 						
Quest	ion: I						
Quest	IO(1). 1						
1.	A Frenkle defect is an example of						
	a) Point defect	c)	Dislocations				
	b) Line defect	d)	None of the above				
2.	Effect related with the heating/cooling at the junctions of two dissimilar metals is						
	a) Peltier effect	c)	Joules effect of cooling				
	b) Seebeak effect	d)	Joules-Thompson effect				
3.	Quantum mechanical term for lattice vibra	tion is					
	a) Photon	c)	Electron Phonon Coupling				
	b) Phonon	d)	Atom-Atom coupling				
4.	If an electron is accelerated to energy of 10	00 eV then the	wavelength associated is				
	a) 12.3 nm	c)	1.23 pm				
	b) 12.3 pm	d)	1.23 nm				
· 5.	Crompton scattering is an example of						
	a) Elastic scattering						
	b) Inelastic scattering						
	c) Conservative scattering						
	d) Non-conservative scattering						
6	Which of these consumer products is alrea	dy being made	using nanotechnology methods				

- 7. Which one of these statements is NOT true?
 - a) Gold at the nanoscale is red
 - b) Copper at the nanoscale is transparent
 - c) Silicon at the nanoscale is an insulator
 - d) Aluminum at the nanoscale is highly combustible

PE-Con.1076-16.

a) Fishing lure

b) Golf ball

[TURN OVER

c) Sunscreen lotion

d) All of the above

_				
8.	D	acm	onics	10
ο.		asıı	OHICS	

- a) A field of nanophotonics that holds the promise of molecular-size optical device technology
- b) The science of fluorescent nanoparticles used in modern fireworks
- c) A hypothetical science used in science fiction weaponry (plasma cannons)
- d) The technology used to design and build the laser-guided photonic gyroscopes used in aviation.
- 9. What is a 'self-assembled monolayer'?
 - a) Atoms or molecules that spontaneously form uniform single layers
 - b) A type of clothing that gets thicker in response to colder temperatures
 - c) An optical device that puts itself together
 - d) A fuzzy logic circuit
- 10. Optical tweezers...
 - a) Are used to remove facial hair with miniaturized laser beams
 - b) Use light to manipulate particles as small as a single atom
 - c) Are a nanotechnology-based tool for stamp collectors
 - d) Don't exist
- 11. Work function of a tungsten metal is --
 - a) 4.55 Volts

c) 5.12 Volts

b) 4.33 Volts

d) 4.28 Volts

- 12. A body cantered cubic (BCC) lattice has ---- atoms per primitive cell.
 - a) 1

c) 4

b) 2

- d) None of the above
- 13. The $2\theta X$ -ray diffraction pattern recorded using Cu K_{α} wavelength shows the diffraction peak positioned at ----- $^{\circ}$ has the inter planer spacing value of 2.602 Angstrom.
 - a) 34.4⁰

c) 17.2°

b) 24.5°

- d) None of the above
- 14. In case of electron beam evaporator, electrons are generated using the principle of
 - a) Thermionic emission

c) Photocurrent

b) Field emission

- d) None of the above
- 15. The photoionization process of O₂ can be presented as follows

a)
$$O_2 + hv \rightarrow O + O^+ + e^-$$

c) $O_2 + hv \rightarrow O^{++} + 2e^-$

b) $O_2 + hv \rightarrow 20^+ + 2e^-$

- d) None of the above
- 16. A transmission spectra recorded for a semiconductor material shows a strong absorption edge at 540 nm, hence the band gap energy associated with the material in eV is

a)5.3

b)2.2

PE-Con.1076-16.

Q. P. Code: 50188

	c)2.6	d)1	.2			
17.	In many of the carbon allotropes, graphite is	ê	andC ₆₀ is			
	a) metal and semiconductor	c)	semiconductor and metal			
	b) semimetal and semiconductor	d)	semiconductor and semimetal			
18.	is the most stable allotrope of carbon.					
	a) Diamond	c)	C ₆₀			
	b) CNT	d)	Graphite			
19.	In case of atomic force microscopy when the tip-surface force is maximum the operation					
	mode is known as					
	a) Noncontact mode	c)	None of the above			
	b) Contact mode	d)	Normal mode			
20.	Which of the following do not have any magnetic lens					
	a) Transmission electron microscope	c)	Tunneling electron microscope			
	b) Scanning electron microscope	d)	None of the above			
21.	Population inversion term is used in		To a state of			
	a) Lasers	c)	Transistors			
	b) Light emitting diodes	d)	Field effect transistors			
. 22	The resistivity of the wire depends on					
	a) Diameter and length	c)	Density			
	b) Length and density	d)	None of the above			
		,				
23.	The average diameter of a human hair is					
	a) 100 micron	c)	200 micron			
	b) 20 micron	d)	300 micron			
• :						
24.	NOR gate with two inputs is the digital logic gate which	ch in	nplements logical NOR. When its			
	output is high i.e. 1?					
	a) Both inputs are low i.e. 0	c)	Both inputs are high i.e. 1			
	b) One input is low (0) and the other	d)	None of the above			
	is high (1)		•			
			•			
25.	The low denying existence of monopole is					
	a) Magnetic, Gauss law	c)	Magnetic, Maxwell's Law			
	b) Electric, Faradays Law	d)	Gravitational, Newton's Law			
	•					
26.	In electromagnetic spectrum the microwave comes in	n be	tween following bands			
	a) Infrared and Radio					
	b) X-rays and Infrared					
	c) Ultraviolet and Infrared					
	d) None of the above					

PE-Con.1076-16.

[TURN OVER

- 27. has the highest thermal conductivity reported till now.
 - a) Copper

c) Graphene

b) Gold

- d) Graphite
- 28. Which of the following schematic represents a stimulated emission process

- 29. In molecular spectra the vibrational modes are absorbsregion.
 - a) UV-VIS (100-500 nm)

c) Microwave (1-10 cm)

b) Infrared (2-100 μm)

- d) None of the above
- 30. Hall measurements can give following information of your sample
 - a) Carrier Concentration

c) Type of carrier

b) Mobility

- d) All the above
- 31. The amount of heat released is proportional to the square of the current is known as
 - a) Joule heating

c) Resistive heating

b) Ohmic heating

- d) All the above
- 32. In quantum mechanics the Uncertainty principle is given as
 - a) Δx . $\Delta p_x \ge \frac{h}{2}$

c) a and b both

b) $\Delta E. \Delta t \geq \frac{h}{2}$

- d) None of the above
- 33. In n-type semiconductors Fermi energy level close to
 - a) Conduction band

b) Can't say

b) Valence band

- c) All the above
- 34. Following are primary factors causes nanomaterials to behave different than the bulk materials
 - a) Surface effect

c) None of the above

b) Quantum effect

- d) All the above
- 35. The fraction of atoms at the surface is called as
 - a) Dispersion

c) Hopping

b) Diffusion

d) Adsorption

- 36. Cohesive energy is
 - a) The bond energy per atom

- c) Bond length per atom
- b) Bang gap energy associated with atom
- d) None of the above

PE-Con.1076-16.

TURN OVER

Q. P. Code: 50188

37.	Nanomaterials are	defined as a set	of substances	where at least	one dimension	ı is less than
-----	-------------------	------------------	---------------	----------------	---------------	----------------

..... nm

a) 1000

c) 10

b) 100

d) 1

38. Nanotubes, nanorods, nanobelts and nanowires are

a) 1-D nanomaterials

c) 0-D nanomaterials

b) 2-D nanomaterials

d) All the above

39. The optical properties observed in metallic nanostructures are due to

a) Energy level spacing

c) Phonon interaction

b) Surface Plasmon resonance

d) Phonon-electron interaction

40. He has how many stable form of isotope

- a) Two
- b) Three
- c) Six
- d) Four

SECTION II

(Max. Marks: 30)

N.B. 1. Attempt any three questions

2. All question carry equal marks

- 1. Explain principle of the vapour condensation process along with the schematics occurs during the plasma processing for nanoparticles synthesis.
- 2. Explain crystal structure of carbon allotropes.
- 3. Draw schematics for wet etching observed when Si substrate with the orientation <100>,<110> and <111> is used.
- 4. Define three main criteria for an electron source considered for the use electron beam lithography.
- 5. Define surface to volume ratio of a sphere?

PE-Con.1076-16.

[TURN OVER

Q. P. Code: 50188

SETCION III (Max. Marks: 30)

- N.B. 1. Attempt any two questions
 - 2. All question carry equal marks
- 1. If the de-Broglie wavelength of a particle is 6.63×10^{-34} m, calculate the weight and velocity associated with it.
- 2. What is the role of following modules in X-ray diffraction system and specify its position in the system with schematic diagram
 - a) Collimator
 - b) Monochromator
 - c) Slits
 - d) Goniometer
 - e) X-ray tube
- 3. Explain any five type of nano-devices based on nanomaterials properties.
- 4. Explain the different type of nanotubes based on their structural ordering.

PE-Con.1076-16.