Revised1

(3 Hours)

[Total Marks:80

QP Code: 75688

Instructions:

- Attempt any two questions from each section
- All questions carry equal marks
- Answers to Section I and Section II should be written in the same answer book.

SECTION I (Attempt any two questions)

- 1. (a) Define convergence of a sequence in a metric space (X, d). Define Cauchy sequence in a metric space (X, d). Prove that every convergent sequence in (X, d) is Cauchy. Does the converse of the above statement hold?
 - (b) State and prove Lebesgue covering lemma.
- 2. (a) Let (X, d_1) , (Y, d_2) be metric spaces. Let $f: X \to Y$ be a function. Prove that f is continuous on X if and only if inverse image of an open set in Y is an open set in X.
 - (b) Define compact set. Define uniform continuity of a function $f:(X,d_1)\to (Y,d_2)$, where $(X, d_1), (Y, d_2)$ are metric spaces. Prove that if K is a compact subset of X, and f is continuous on K then f is uniformly continuous on K.
- 3. (a) Define partial derivative. Find partial derivatives of all possible orders for the function $f(x, y, z) = (x^2y^2, 3xy^3z, xz^3).$
 - (b) State (without proof) chain rule. Write the matrices for $f', g', (f \circ g)'$ for the following functions and evaluate them at the point (2,5): $f(x,y) = (x+y, x^2+y^2, 2x+3y)$ and $g(u,v) = (u^2, v^3)$.
- 4. (a) State and prove mean value theorem.
 - (b) State implicit function theorem. Examine whether the function $f(x,y) = x^2 + y^2 4$ can be expressed as a function y = g(x) in a neighbourhood of the point (0, -2).

SECTION II (Attempt any two questions)

- 5. (a) Define base of a topological space. Define product topology. Prove that if \mathcal{B} is a basis for the topology on X and C is a basis for the topology on Y then prove that the collection $\mathcal{D} = \{B \times C \mid B \in \mathcal{B}, C \in \mathcal{C}\}\$ is a basis for the topology on $X \times Y$.
 - (b) Let (X, τ) be a topological space and $A \neq \emptyset$ be a subset of X. Define interior of A. Prove that if $A \subset B$, then $i(A) \subset i(B)$ and for all subsets A, B of $X, i(A \cap B) = i(A) \cap i(B)$.
- 6. (a) Define first countable topological space. Define second countable topological space. Prove that a second countable topological space is first countable.
 - (b) Define T_1 topological space. Prove that a topological space is a T_1 space if and only if every one point subset of it is a closed subset.

[TURN OVER

- 7. (a) State (without proof) tube lemma. Let f be a continuous real-valued function on [a, b]. Prove that the set $\{(x, f(x)) \mid x \in [a, b]\}$ is a compact subset of \mathbb{R}^2 .
 - (b) Define local compactness of a topological space (X, τ) . Define regular topological space. Prove that if X is a regular space such that X is locally compact at $x \in X$, then x has a local base of compact neighbourhoods in X.
- 8. (a) Define complete metric space (X, d). Assume that for each $n \in \mathbb{N}$, F_n 's are closed and bounded subsets of X such that $F_1 \supset F_2 \supset \cdots \supset F_n \supset F_{n+1} \supset \cdots$ and $\operatorname{diam}(F_n) \to 0$ and $n \to \infty$. Prove that $\bigcap_{n=1}^{\infty} F_n$ contains precisely one point.
 - (b) Define total boundedness of a metric space (X, d). Prove that if (X, d) is a compact metric space, then (X, d) is complete and totally bounded.