QP Code: 75685

Scheme A (External)](3 Hours)[Total Marks:100Scheme B (Internal)](2 Hours)[Total Marks: 40

Instructions:

Instructions:

- Mention on the top of the answer book the scheme under which you are appearing
- · Scheme A students should attempt any five questions
- Scheme B students should attempt any three questions
- All questions carry equal marks
- 1. (a) State and prove Nested Intervals theorem.
 - (b) Define the supremum and infimum of a non-empty subset S of $\mathbb R$ and state Supremum property (axiom) of $\mathbb R$. Show that a real number M is the supremum of S iff $M \ge x, \forall x \in S$ and for any $\epsilon > 0, \exists y \in S$ such that $M \epsilon < y \le M$, where $\phi \subseteq S \subseteq \mathbb R$.
- 2. (a) If S is a nonempty, open subset of \mathbb{R}^n and $f: S \to \mathbb{R}$, define continuity of f at $a \in S$. Show that if $f, g: S \to \mathbb{R}$ are both continuous at a and α, β are real numbers then $(\alpha f + \beta g)$ is continuous at a.
 - (b) Examine the continuity and differentiablity of f at (0,0) given that $f(x,y) = \frac{x^3y}{x^6+y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0
- 3. (a) Define a real valued Cauchy sequence in \mathbb{R}^n and show that a convergent (real valued) sequence in \mathbb{R}^n is Cauchy.
 - (b) Examine the pointwise and uniform convergence of the sequence $\{f_n(x)\}$ defined by $f_n(x) = x^n$ on [0, 1]. Justify your answers.
- 4. (a) State and prove Weirstrass test for uniform convergence of a series $\sum f_n(x)$ defined on a non-empty subset S of \mathbb{R} .
 - (b) State Root test for convergence of a positive term series $\sum a_n$. Hence or otherwise discuss the convergence of $\sum \frac{3^n}{n^n \cdot x^n}$, where $x \in \mathbb{R}^+$.
- 5. (a) Let S be a non-empty open subset of \mathbb{R}^n and $a \in S$. Suppose $f : S \to \mathbb{R}$. Define the total derivative of f at a. Find the total derivative of f(x, y, z) = xy + yz + zx at (1, -2, 3). State the result used.
 - (b) If $f: \mathbb{R}^2 \to \mathbb{R}^3$ is given by $f(x,y) = (x-y,2y^2,x+y)$ and $g: \mathbb{R}^3 \to \mathbb{R}^2$ is given by $g(u,v,w) = (u-rv,w^2u)$ then find the jacobians of f and g respectively at (2,-3) and at f(2,-3). Also find the jacobian of $g \circ f$ at (2,3).
- 6. (a) If $x = se^{\sin t}$, $y = te^{\cos t}$ and $s = r\cos\theta$, $t = r\sin\theta$, use chain rule to find $\frac{\partial x}{\partial r}$, $\frac{\partial x}{\partial \theta}$, $\frac{\partial y}{\partial r}$, $\frac{\partial y}{\partial \theta}$ in terms of functions of r, θ .
 - (b) State Taylor's theorem and use it to expand the function $f(x, y) = e^x \cos y$ near $(0, \pi/4)$ upto and including degree two terms.

[TURN OVER

QP Code: 75685

- 7. (a) State and prove Fubini's theorem for the double integral of a bounded real-valued function f(x, y) over a rectangle D in xy-plane.
 - (b) Evaluate the double integral of $f(x,y)=x^2+y^2$ over the disc $x^2+y^2\leq 4$ in the xy-plane
- 8. (a) Define the convergence of an improper integral $\int_{a}^{\infty} f(x) dx$ and show that an improper integral $\int_{a}^{\infty} \frac{dx}{x^{p}}, p > 0$, converges iff p > 1. Hence show that $\int_{1}^{\infty} \frac{dx}{5x^{5}}$ converges.
 - (b) Discuss the convergence of (i) $\int_0^1 \frac{dx}{x^3\sqrt{1-x^2}}$, (ii) $\int_2^3 \frac{dx}{(x-2)^2x^3}$