QP Code : 77071

 $(2\frac{1}{2} \text{ Hours})$

[Total Marks: 75

- N.B. (1) All questions are compulsory.
 - (2) Figures to the right indicate full marks
 - (3) Neat diagrams should be drawn wherever necessary.
 - (4) Use of calculators /log tables is allowed.
 - (5) Symbols have their usual meaning unless otherwise stated.

List of Constants:

Charge of an electron e = 1.6021x10⁻¹⁹ Coulomb

Mass of an electron $m_e = 9.109 \times 10^{-31} \text{ kg}$

Boltzmann constant k = 1.38054x10-23 Joule/Kelvin

Planck's constant h =6.626x10⁻³⁴ joule sec

Permeability of free space $\mu_0 = 4\pi x \cdot 10^{-7} \, \text{Henry/m}$

Q.1 A Attempt any ONE:

10

- Give the outline of classical theory of metallic conduction and hence deduce Ohm's law.
- ii) Derive an expression for density of energy states in metals at an energy E.
- B Attempt any ONE:

05

- i) Based on Fermi-Dirac statistics, state the nature of the Fermi distribution function. State and explain how it will vary with temperature.
- ii) Compute the average kinetic energy of a gas molecule at 27°C. Express the result in eV. If the gas is hydrogen, what is the order of magnitude of the velocity of the molecules at 27°C.

Given: Mass of hydrogen atom =1.008 \times 1.67 \times 10⁻²⁷ Kg

Q.2 A Attempt any ONE:

1(

- Using E-k curve derive an expression for the effective mass of electron. Explain with relevant graphs the variation in effective mass of electron with wave vector k.
- ii) State the salient features of superconductivity. Explain how the superconducting transition temperature varies with magnetic field.

{TURNOVER

•	В	Attempt any ONE:	05
	i)	Discuss the conclusions of Kronig – Penny model with the scattering	
		power of potential as : a) $P \to 0$ and b) $P \to \infty$	
	ii)	Calculate the critical current density which can flow through a long	
		thin superconducting wire of aluminium of diameter 10^{-3} m. The	
		critical magnetic field for Aluminium is 7.9×10^3 Amp/m	
Q.3	Α	Attempt any ONE:	10
	i) ·	What is diamagnetism? Derive an expression for the Larmor	
		Frequency of precession of angular momentum vector about the	
		direction of applied field and hence obtain an expression for the	
		diamagnetic susceptibility for a spherical charge distribution in an	
	,	atom.	
	ii)	Discuss the quantum theory of Paramagnetism. Derive an expression	
		for paramagnetic susceptibility at ordinary field and normal	
	_	temperature.	
	В	Attempt any ONE:	05
	i)	Write a note on Antiferromagnetism.	
·	ii)	The magnetic field strength in silicon is 1000 A/m. If the magnetic	
	•	field susceptibility is -0.3 x10 ⁻⁵ , calculate the magnetization and flux	
		density in silicon.	
Q.4	A	Attempt any ONE:	10
	, i)	Obtain an expression for concentration of electrons in an intrinsic	
		semiconductor. Assuming the expression for concentration of holes	
		for an intrinsic semiconductor, prove that its Fermi energy lies exactly	
		halfway between the top of the valence band and bottom of the	
		conduction band for m* _n = m* _e	. •
	ii)	Derive an expression for the total current in a p-n junction diode as a	
		function of an applied voltage.	
	В	Attempt any ONE:	05
	i)	Discuss the temperature dependence of saturation current for Ge and	•
		Si p-n junction diodes.	

TURNOVER

QP Code : 77071

Q.5

		4
ii)	An electric field of 100V/m is applied to the sample of n-type	
	semiconductor whose hall coefficient is found to be -0.0125m³/C.	
	Determine the current density in the sample assuming the mobility of	
	the electron is 0.36m²/Vs	
Α	Attempt any ONE:	04
i)	The Fermi temperature of copper is $8.18 \times 10^4 K$. Calculate the	
	Fermi velocity of electrons in copper.	
ii)	The Fermi energy of silver is 5.51 eV. Calculate a) The average	
	energy of the free electrons of silver at 0 K. b) Speed of the electrons	
	with this energy.	
В	Attempt any ONE :	04
i)	The magnetic field intensity in the tin material is zero at a	
	temperature of 3.69 K and $2.387 \times 10^4 A/m$ at zero kelvin. Calculate	
•	the temperature of the superconductor state if the field intensity	
•	measured was $1.591 \times 10^4 A/m$	
ii)	Consider a two dimensional square lattice of sides 0.25 nm. At what	
	electron momentum values do the sides of the first Brillouin zone	
	comes? Calculate the energy of the free electron with this	
	momentum.	
С	Attempt any ONE :	04
i)	A paramagnetic substance has 10 ²⁸ atoms/m³. The magnetic	
	moment of each atom is 1.8x10-23 Amp m2.Calculate the	
	paramagnetic susceptibility at 300K.	•
ii)	A magnetic material made of steel has a magnetic moment of 2.5	
	Am ² and a mass of 6.6 $\times 10^{-3}$ kg. If the density of steel is 7.9 \times 10 ³	
	kg/m³, find the magnetization of the material.	***
D	Attempt any ONE:	03
i)	In an n-type semiconductor, the Fermi level lies 0.4 eV below the	
	conduction band. If the concentration of donor atoms is doubled, find	

 $0.07m_{\text{o}}$ and that of the hole is $0.4~m_{\text{o}}$ where m_{o} is the rest mass of the electron. Calculate the intrinsic concentration of charge carriers at

the new position of the Fermi level. Assume KT= 0.003 eV.

In an intrinsic semiconductor, the effective mass of the electron is

300K. Given: E_g= 0.68 eV

ii)