QP Code: 77059

(2 1/2 Hours)

[Total Marks:75

N.B.: (1) All questions are compulsory

- (2) Figures to the right indicate full marks.
- (3) Use of calculator is allowed.
- 1. (a) Let $x_1, x_2, ..., x_n$ be a random sample drawn from N $(0, \sigma^2)$. Examine whether

 $T = \frac{\sum x_i^2}{n}$

- is (i) Unbiased, (ii) Consistent, (iii) Sufficient estimator of σ^2 .
- (b) Explain the term consistency. Let $x_1, x_2, ..., x_n$ be a random sample drawn from population with mean μ and variance σ^2 .

Check whether $T = 2 \sum_{k=1}^{n} \frac{kx_k}{n(n+1)}$ is unbiased and consistent estimator of μ .

OR

1. (p) In each of the following cases, find sufficient estimator of θ :

(i) $f(x, \theta) = \frac{1}{\theta} e^{-x/\theta}$; x > 0 , $\theta > 0$ = 0 ; otherwise

(ii) $f(x, \theta) = e^{-(x-\theta)}$; $x > \theta$ = 0 ; otherwise

- (q) Prove that an estimator T of parameter θ is consistent estimator of θ if its bias $\to 0$ and $V(T) \to 0$ as $n \to \infty$, in usual notations.
- 2. (a) Prove that if MVUE exists then it is unique.

8

[TURN OVER]

b) Let
$$x_1$$
, x_2 , x_n be a random sample taken from population with p.m.f.
$$f(x, \theta) = \theta^x (1-\theta)^{1-x} ; x = 0,1 ; 0 < \theta < 1$$
$$= 0 ; otherwise$$

7

Find MVUE of θ and its standard error.

OR

2. (p) State and prove Cramer-Rao Inequality.

- (q) If $X \sim N(\mu, \sigma^2)$ where σ^2 is known, find CRLB for the variance of an unbiased estimator of μ .
- 3. (a) With reference to point estimation, explain 8
 - (i) method of minimum chi-square,

7

- (ii) method of modified minimum chi-square.
- (b) Obtain an estimator of θ based on a random sample of size n drawn from a population with p.d.f.
 - ; 0 < x < 1(i) $f(x, \theta) = (1+\theta) x^{\theta}$; otherwise
 - (ii) $f(x, \theta) = \frac{1}{\theta}$ $; 0 < x < \theta$; otherwise,

using method of moments.

OR

3. (p) State the properties of Maximum Likelihood Estimator (MLE).

8

(q) Let x_1, x_2,x_n be a random sample of size n from the population with p.d.f.

$$f(x,\alpha,\beta) = \frac{1}{\beta} e^{-(x-\alpha)/\beta}; \quad \alpha \leq x < \infty, \quad \beta > 0$$

; otherwise

Find estimators of parameters α and β using method of maximum likelihood.

- 4. (a) Let x_1, x_2,x_n be a random sample from exponential distribution with mean $1/\theta$ where θ is itself distributed as gamma with parameter α and β Assuming squared error loss function, find Bayes' estimator for θ .
 - (b) Two independent samples of sizes n, and n, are drawn from two populations

[TURN OVER]

8

having normal distributions with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 respectively. Construct 100 (1- α) % confidence interval for σ_1^2/σ_2^2 where μ_1 and μ_2 are unknown.

OR

- 4. (p) Let x_1, x_2,x_n be a random sample from Poisson distribution with parameter θ . The prior distribution of θ is exponential with mean $\frac{1}{\alpha}$.

 Assuming squared error loss function, find Bayes' estimator of θ .
 - (q) Obtain 100 (1-α) % confidence interval for θ, parameter of Poisson distribution using asymptotic distribution of M.L.E.
- 5. (a) Let x_1 , x_2 , x_3 be a random sample of size 3 drawn from N (μ , σ^2) 5 distribution. Show that sample mean \overline{X} and $T = \frac{x_1 + 2x_2 + 3x_3}{6}$ are both unbiased estimators of μ . Which estimator would you prefer? Justify.
 - (b) Let x_1, x_2,x_n be a random sample drawn from population with p.m.f 5

$$f(x,\theta) = \frac{x}{\theta^2} e^{-x/\theta} ; x > 0, \theta > 0$$
$$= 0 ; otherwise$$

Find MLE of θ

(c) Explain the following terms as used in Bayesian estimation:

- (i) Prior distribution,
- (ii) Posterior distribution.

OR

5. (p) Define:

5

- (i) relative efficiency of an estimator,
- (ii) exponential family of distributions.
- (q) Let x_1, x_2,x_n be a random sample from a distribution with p.m.f $f(x, \theta) = \theta (1-\theta)^{x-1} ; x = 1, 2, \qquad 0 < \theta < 1$ $= 0 \qquad ; \text{ otherwise}$

Show that variance of sample mean \overline{X} attains CRLB.