
Question Paper Code: 37783 S.E.(Information Technology Engineering)(SEM-III)

(Choice Base Credit Grading System)(R2016) DBMS Date of Exam: 2nd June 2018

Paper Solution

Q 1] a Explain the Role of DBA ?

Five main functions of a database administrator are:

To create the scheme definition

To define the storage structure and access methods

To modify the scheme and/or physical organization when necessary

To grant authorization for data access

To specify integrity constraints

Q1] b List all the functional dependencies satisfied by the relation

Ans. When a column (entity) can be fully determined by another column, then it is functional

dependent on that column.

Following are all functional dependencies which are possible from above relation.

X → Y

X → Z

Y → X

Y → Z

Z → X

Z → Y

XY → Z

YZ → X

XZ → Y

Out of these functional dependencies, following are the functional dependencies satisfied by the

relation.

Y → Z

X → Z

XY → Z

Q 1] c What is the difference between Unique Key and Primary Key

Primary Key:

There can only be one primary key in a table

In some DBMS it cannot be NULL - e.g. MySQL adds NOT NULL

Primary Key is a unique key identifier of the record

Unique Key:

Can be more than one unique key in one table

Unique key can have NULL values

It can be a candidate key

Unique key can be NULL and may not be unique

Q 1 d Explain different types of attributes with examples?

Simple attribute − Simple attributes are atomic values, which cannot be divided
further. For example, a student's phone number is an atomic value of 10 digits.

Composite attribute − Composite attributes are made of more than one simple
attribute. For example, a student's complete name may have first_name and
last_name.

Derived attribute − Derived attributes are the attributes that do not exist in the
physical database, but their values are derived from other attributes present in the
database. For example, average_salary in a department should not be saved
directly in the database, instead it can be derived. For another example, age can
be derived from data_of_birth.

Single-value attribute − Single-value attributes contain single value. For
example − Social_Security_Number.

Multi-value attribute − Multi-value attributes may contain more than one
values. For example, a person can have more than one phone number,
email_address, etc.

Q 2 a Explain Static hashing technique with example

HASHING TECHNIQUES:

Hashing provides very fast access to records on certain search conditions. This organization
is usually called a hash file.
The search condition must be an equality condition on a single field, called the hash field of
the file. The hash field is also called as hash key.

The idea behind hashing is to provide a function ‘h’ called a hash function (or)
randomizing function, that is applied to the hash field value of a record and yields the
address of the disk block in which the record is stored.

Hashing is also used as an internal search within a program whenever a group of records is
accessed or exclusively by using the value of one field.

Static Hashing

A bucket is a unit of storage containing one or more records (a bucket is typically a disk
block).
The file blocks are divided into M equal-sized buckets, numbered bucket0, bucket1...
bucketM-1.Typically, a bucket corresponds to one (or a fixed number of) disk block.

In a hash file organization we obtain the bucket of a record directly from its search-key
value using a hash function, h (K).

The record with hash key value K is stored in bucket, where i=h(K).

Hash function is used to locate records for access, insertion as well as deletion.

Records with different search-key values may be mapped to the same bucket; thus entire
bucket has to be searched sequentially to locate a record.

primary pages fixed, allocated sequentially, never de-allocated; overflow pages if needed.

h(K) mod M = bucket to which data entry with key k belongs. (M = # of buckets)

Static External Hashing

One of the file fields is designated to be the hash key, K, of the file.
Collisions occur when a new record hashes to a bucket that is already full.

An overflow file is kept for storing such records. Overflow records that hash to each bucket
can be linked together.

To reduce overflow records, a hash file is typically kept 70-80% full.

The hash function h should distribute the records uniformly among the buckets; otherwise,
search time will be increased because many overflow records will exist.

Static Hashing (Contd.)

Hash function works on search key field of record r. Must distribute values over range 0 ...
M-1.

H (K) = (a * K + b) usually works well.
a and b are constants;
lots known a but how to tune h.

Typical hash functions perform computation on the internal binary representation of the
search-key.

For example, for a string search-key, the binary representations of all the characters in the string
could be added and the sum modulo the number of buckets could be returned. .

Ideal hash function is random, so each bucket will have the same number of records
assigned to it irrespective of the actual distribution of search-key values in the file.

Q 2 b Define Normalization ? Explain 1NF, 2NF and 3NF with examples ?

Q3. a Consider the following employee database.
Employee(empname, street, city, date_of_joining)
Works(empname, company_name, salary)
Company(company_name, city)
Manages(empname, manager_name)
Write SQL queries for the following statements:

i) Modify the database so that employee “Sachin ” now lives in “Mumbai”
Ans. update Employee set city =’Mumbai’ where empname = ‘Sachin’;

ii) Find number of employees in each city with date_of_joining as “01-Aug-
2017”

Ans. select count(*) from Employee where date_of_joining = ’01-Aug-
2017’ groupby city;

or

Ans. elect count(*) from Employee where date_of_joining = ’01-Aug-2017’
groupby city;

iii)List the name of companies starting with letter “A”
Ans. select company_name from Company where company_name like
‘A%’;

iv)

Display empname , manager_name , city of those employees whose
date_of_joining is greater than “01-01-2014”

Ans. select empname , manager_name , city from Employee, Manages
where Employee.empname = Manages.empname and
Employee.date_of_joining=’ 01-01-2014’;

Q3.b Explain DBMS architecture
Ans. The architecture of a database system is greatly influenced by the underlying
computer system on which the database is running:
i. Centralized.

ii. Client-server.

iii. Parallel (multi-processor).

iv. Distributed

Database Users:

Users are differentiated by the way they expect to interact with the system:

Application programmers:

Application programmers are computer professionals who write
application programs. Application programmers can choose from many
tools to develop user interfaces.
Rapid application development (RAD) tools are tools that enable an
application programmer to construct forms and reports without writing a
program.

Sophisticated users:

Sophisticated users interact with the system without writing programs.
Instead, they form their requests in a database query language.
They submit each such query to a query processor, whose function is
to break down DML statements into instructions that the storage
manager understands.

Specialized users :

Specialized users are sophisticated users who write specialized
database applications that do not fit into the traditional data-processing
framework.
Among these applications are computer-aided design systems,
knowledge base and expert systems, systems that store data with
complex data types (for example, graphics data and audio data), and
environment-modeling systems.

Naïve users :

Naive users are unsophisticated users who interact with the system by
invoking one of the application programs that have been written
previously.
For example, a bank teller who needs to transfer $50 from account A to
account B invokes a program called transfer. This program asks the
teller for the amount of money to be transferred, the account from
which the money is to be transferred, and the account to which the
money is to be transferred.

Database Administrator:

Coordinates all the activities of the database system. The database
administrator has a good understanding of the enterprise’s information
resources and needs.
Database administrator's duties include:

Schema definition: The DBA creates the original database schema by
executing a set of data definition statements in the DDL.
Storage structure and access method definition.
Schema and physical organization modification: The DBA carries
out changes to the schema and physical organization to reflect the
changing needs of the organization, or to alter the physical organization
to improve performance.
Granting user authority to access the database: By granting
different types of authorization, the database administrator can regulate
which parts of the database various users can access.
Specifying integrity constraints.
Monitoring performance and responding to changes in

requirements.

Query Processor:

The query processor will accept query from user and solves it by accessing the
database.

Parts of Query processor:

DDL interpreter

This will interprets DDL statements and fetch the definitions in the data
dictionary.

DML compiler

a. This will translates DML statements in a query language into low level
instructions that the query evaluation engine understands.

b. A query can usually be translated into any of a number of alternative
evaluation plans for same query result DML compiler will select best plan for
query optimization.

Query evaluation engine

This engine will execute low-level instructions generated by the DML compiler
on DBMS.

Storage Manager/Storage Management:

A storage manager is a program module which acts like interface between the
data stored in a database and the application programs and queries submitted
to the system.
Thus, the storage manager is responsible for storing, retrieving and updating
data in the database.
The storage manager components include:

Authorization and integrity manager: Checks for integrity constraints
and authority of users to access data.
Transaction manager: Ensures that the database remains in a
consistent state although there are system failures.
File manager: Manages the allocation of space on disk storage and
the data structures used to represent information stored on disk.
Buffer manager: It is responsible for retrieving data from disk storage
into main memory. It enables the database to handle data sizes that
are much larger than the size of main memory.
Data structures implemented by storage manager.
Data files: Stored in the database itself.
Data dictionary: Stores metadata about the structure of the database.
Indices: Provide fast access to data items.

Q4 a. Construct a dependency diagram of relation R and normalize it up to the
BCNF Normal form

Ans.
Step 1: The relation R is already in 1NF, since all its values are atomic.
Step 2: Converting into 2NF form. A relation schema R is in second normal form
(2NF) if every non-prime attribute A in R is fully functionally dependent on the
primary key

Step 3: Converting into 3NF. A relation schema R is in third normal form (3NF) if it is
in 2NF and no non-prime attribute A in R is transitively dependent on the primary key

Therefore the Normalized relation are

AB --> CFG

AB--> CFE

E--> G

C--> B

A--> D

This is the final solution in 3NF.

Step 4: For a table to satisfy the Boyce-Codd Normal Form, it should satisfy the
following two conditions:

It should be in the Third Normal Form
And, for any dependency A → B, A should be a super key

The second point sounds a bit tricky, right? In simple words, it means, that for a
dependency A → B, A cannot be a non-prime attribute, if B is a prime attribute.
The above solution is in BCNF since no non key attribute determines another non
key attribute.

Q4.b Explain different types of relational algebra operations.
Ans. Relational Algebra
Relational algebra is a procedural query language, which takes instances of relations
as input and yields instances of relations as output. It uses operators to perform
queries. An operator can be either unary or binary. They accept relations as their

input and yield relations as their output. Relational algebra is performed recursively
on a relation and intermediate results are also considered relations.

The fundamental operations of relational algebra are as follows −

Select
Project
Union
Set different
Cartesian product
Rename

We will discuss all these operations in the following sections.

Select Operation (σ)
It selects tuples that satisfy the given predicate from a relation.

Notation − σp(r)

Where σ stands for selection predicate and r stands for relation. p is prepositional
logic formula which may use connectors like and, or, and not. These terms may use
relational operators like − =, ≠, ≥, < , >, ≤.

For example

σsubject = "database"(Books)

Output − Selects tuples from books where subject is 'database'.

σsubject = "database" and price = "450"(Books)

Output − Selects tuples from books where subject is 'database' and 'price' is 450.

σsubject = "database" and price = "450" or year > "2010"(Books)

Output − Selects tuples from books where subject is 'database' and 'price' is 450 or
those books published after 2010.

Project Operation (∏)
It projects column(s) that satisfy a given predicate.

Notation − ∏A , A , An (r)

Where A , A , An are attribute names of relation r

Duplicate rows are automatically eliminated, as relation is a set.

For example

∏subject, author (Books)

Selects and projects columns named as subject and author from the relation Books.

Union Operation ()
It performs binary union between two given relations and is defined as −

r s = { t | t r or t s}

Notation − r U s

Where r and s are either database relations or relation result set (temporary
relation).

For a union operation to be valid, the following conditions must hold −

r, and s must have the same number of attributes.
Attribute domains must be compatible.
Duplicate tuples are automatically eliminated.

∏ author (Books) ∏ author (Articles)

Output − Projects the names of the authors who have either written a book or an
article or both.

Set Difference (−)
The result of set difference operation is tuples, which are present in one relation but
are not in the second relation.

Notation r s

Finds all the tuples that are present in r but not in s

∏ author (Books) − ∏ author (Articles)

Output − Provides the name of authors who have written books but not articles.

Cartesian Product (Χ)
Combines information of two different relations into one.

Notation − r Χ s

Where r and s are relations and their output will be defined as −

r Χ s = { q t | q r and t s}

σauthor = 'tutorialspoint'(Books Χ Articles)

Output − Yields a relation, which shows all the books and articles written by
tutorialspoint.

Rename Operation (ρ)

The results of relational algebra are also relations but without any name. The
rename operation allows us to rename the output relation. 'rename' operation is
denoted with small Greek letter rho ρ

Notation ρ x (E)

Where the result of expression E is saved with name of x

Additional operations are −

Set intersection
Assignment
Natural join

Q5.a Explain Cursors and its types with example?
Ans. A cursor is a pointer to this context area. PL/SQL controls the context area
through a cursor. A cursor holds the rows (one or more) returned by a SQL
statement. The set of rows the cursor holds is referred to as the active set
You can name a cursor so that it could be referred to in a program to fetch and
process the rows returned by the SQL statement, one at a time. There are two types
of cursors −

Implicit cursors
Explicit cursors

Implicit Cursors
Implicit cursors are automatically created by Oracle whenever an SQL statement is
executed, when there is no explicit cursor for the statement. Programmers cannot
control the implicit cursors and the information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit
cursor is associated with this statement. For INSERT operations, the cursor holds
the data that needs to be inserted. For UPDATE and DELETE operations, the cursor
identifies the rows that would be affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which
always has attributes such as %FOUND, %ISOPEN, %NOTFOUND, and
%ROWCOUNT. The SQL cursor has additional attributes, %BULK_ROWCOUNT
and %BULK_EXCEPTIONS, designed for use with the FORALL statement. The
following table provides the description of the most used attributes −

S.No Attribute & Description 1

%FOUND

Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or more
rows or a SELECT INTO statement returned one or more rows. Otherwise, it returns
FALSE.

%NOTFOUND

The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or
DELETE statement affected no rows, or a SELECT INTO statement returned no
rows. Otherwise, it returns FALSE.

%ISOPEN

Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor
automatically after executing its associated SQL statement.

%ROWCOUNT

Returns the number of rows affected by an INSERT, UPDATE, or DELETE
statement, or returned by a SELECT INTO statement.

Any SQL cursor attribute will be accessed as sql%attribute_name as shown below
in the example.

Example
We will be using the CUSTOMERS table we had created and used in the previous
chapters.

Select * from customers;

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+----------+-----+-----------+----------+

The following program will update the table and increase the salary of each customer
by 500 and use the SQL%ROWCOUNT attribute to determine the number of rows
affected −

DECLARE
 total_rows number(2);
BEGIN
 UPDATE customers
 SET salary = salary + 500;
 IF sql%notfound THEN
 dbms_output.put_line('no customers selected');
 ELSIF sql%found THEN
 total_rows := sql%rowcount;
 dbms_output.put_line(total_rows || ' customers selected ');
 END IF;

END;
/

When the above code is executed at the SQL prompt, it produces the following result
−

6 customers selected

PL/SQL procedure successfully completed.

If you check the records in customers table, you will find that the rows have been
updated −

Select * from customers;

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2500.00
2	Khilan	25	Delhi	2000.00
3	kaushik	23	Kota	2500.00
4	Chaitali	25	Mumbai	7000.00
5	Hardik	27	Bhopal	9000.00
6	Komal	22	MP	5000.00
+----+----------+-----+-----------+----------+

Explicit Cursors
Explicit cursors are programmer-defined cursors for gaining more control over the
context area. An explicit cursor should be defined in the declaration section of the
PL/SQL Block. It is created on a SELECT Statement which returns more than one
row.

The syntax for creating an explicit cursor is −

CURSOR cursor_name IS select_statement;

Working with an explicit cursor includes the following steps −

Declaring the cursor for initializing the memory
Opening the cursor for allocating the memory
Fetching the cursor for retrieving the data
Closing the cursor to release the allocated memory

Declaring the Cursor
Declaring the cursor defines the cursor with a name and the associated SELECT
statement. For example −

CURSOR c_customers IS
 SELECT id, name, address FROM customers;

Opening the Cursor
Opening the cursor allocates the memory for the cursor and makes it ready for

fetching the rows returned by the SQL statement into it. For example, we will open
the above defined cursor as follows −

OPEN c_customers;

Fetching the Cursor
Fetching the cursor involves accessing one row at a time. For example, we will fetch
rows from the above-opened cursor as follows −

FETCH c_customers INTO c_id, c_name, c_addr;

Closing the Cursor
Closing the cursor means releasing the allocated memory. For example, we will
close the above-opened cursor as follows −

CLOSE c_customers;

Example
Following is a complete example to illustrate the concepts of explicit cursors &minua;

DECLARE
 c_id customers.id%type;
 c_name customerS.No.ame%type;
 c_addr customers.address%type;
 CURSOR c_customers is
 SELECT id, name, address FROM customers;
BEGIN
 OPEN c_customers;
 LOOP
 FETCH c_customers into c_id, c_name, c_addr;
 EXIT WHEN c_customers%notfound;
 dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);
 END LOOP;
 CLOSE c_customers;
END;
/

When the above code is executed at the SQL prompt, it produces the following result
−

1 Ramesh Ahmedabad
2 Khilan Delhi
3 kaushik Kota
4 Chaitali Mumbai
5 Hardik Bhopal
6 Komal MP

PL/SQL procedure successfully completed.

Q5. b Draw EER diagram for Hospital Management System showing constraints on
generalisation and specialisation
Ans.

Q 6] a

Types of Entities

Ans. Entity –

An entity is an object that are represented in the database. For example Mohit, Vasu, CSE306 etc.

An entity is represented or defined by set of attributes. Attributes are the properties used to describe

an entity. For example, a STUDENT entity may have a Name, Roll number, Class, Marks etc.

where STUDENT is the entity and name roll number class marks are the attributes.

Basic Types of Entity –

Strong Entity Types

Weak Entity Types

Strong Entity Type – are the entities which has a key attribute in its attribute list or a set that has a

primary key. The strong entity type is also called regular entity type. For Example,

Strong Entity Type(Entity and its Types)

The Student’s unique RollNo will identify the students. So, RollNo is set to be the Primary Key of

the STUDENT entity, & Hence STUDENT is a strong entity type because of its key attribute.

Q 6] b

Authorization in SQL

Ans. Authorization is finding out if the person, once identified, is permitted to have
the resource.
Authorization explains that what you can do and is handled through the DBMS
unless external security procedures are available.

Database management system allows DBA to give different access rights to the
users as per their requirements.

Basic Authorization we can use any one form or combination of the following basic
forms of authorizations

i. Resource authorization:-Authorization to access any system resource. e.g.
sharing of database, printer etc.

ii. Alternation Authorization:- Authorization to add attributes or delete attributes from
relations

iii. Drop Authorization:-Authorization to drop a relation.

Granting of privileges:

i. A system privilege is the right to perform a particular action,or to perform an action
on any schema objects of a particular type.

ii. An authorized user may pass on this authorization to other users.This process is
called as ganting of privileges.

iii. Syntax:

GRANT <privilege list>

ON<relation name or view name>

TO<user/role list>

iv. Example:

The following grant statement grants user U1,U2 and U3 the select privilege on
Emp_Salary relation:

GRANT select

ON Emp_Salary

TO U1,U2 and U3.

Revoking of privileges:

i. We can reject the privileges given to particular user with help of revoke statement.

ii. To revoke an authorization, we use the revoke statement.

iii. Syntax:

REVOKE <privilege list>

ON<relation name or view name>

FROM <user/role list>[restrict/cascade]

iv. Example:

The revocation of privileges from user or role may cause other user or roles also
have to loose that privileges.This behavior is called cascading of the revoke.

Revoke select

ON Emp_Salary

FROM U1,U2,U3.

Some other types of Privileges:

i. Reference privileges:

SQL permits a user to declare foreign keys while creating relations.

Example: Allow user U1 to create relation that references key ‘Eid’ of Emp_Salary
relation.

GRANT REFERENCES(Eid)

ON Emp_Salary

TO U1

ii. Execute privileges:

This privileges authorizes a user to execute a function or procedure.

Thus,only user who has execute privilege on a function Create_Acc() can call
function.

GRANT EXECUTE

ON Create_Acc

TO U1.

Q 6 c Views in SQL

Ans. SQL CREATE VIEW Statement

In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view are
fields from one or more real tables in the database.

You can add SQL functions, WHERE, and JOIN statements to a view and present
the data as if the data were coming from one single table.

CREATE VIEW Syntax
CREATE VIEW view_name AS
SELECT column1, column2, ...
FROM table_name
WHERE condition;

Note: A view always shows up-to-date data! The database engine recreates the
data, using the view's SQL statement, every time a user queries a view.

Q 6 d

 B Tree

Ans. B-Tree Index Files

B-tree indices are similar to B -tree indices.
Difference is that B-tree eliminates the redundant storage of search key
values.
In B -tree of Figure 11.11, some search key values appear twice.

A corresponding B-tree of Figure 11.18 allows search key values to appear
only once.
Thus we can store the index in less space.

Figure 11.8: Leaf and nonleaf node of a B-tree.

Advantages:
Lack of redundant storage (but only marginally different).
Some searches are faster (key may be in non-leaf node).

Disadvantages:
Leaf and non-leaf nodes are of different size (complicates storage)
Deletion may occur in a non-leaf node (more complicated)

Generally, the structural simplicity of B -tree is preferred.

