[Total	Marks:	.100
--------	--------	------

N.B.: (1)	All	questions	are	compulsory
---------	----	-----	-----------	-----	------------

- (2) Attempt any two subquestions from a), b) c) in each question
- (3) Figures to the right indicate marks for respective subquestions.
- Q1. (a) (i) If W is a subspace of a vector space V then show that for any $x, y \in V$, the cosets W + x, W + y are either identical or disjoint. (5)
 - (ii) Let $A_{n\times n}$ be a real matrix. Let $\lambda \in \mathbb{R}$ is an eigen value of A and X is corresponding eigen vector. Show that for any $k \in \mathbb{N}$, λ^k is an eigen value of A^k .
 - (b) (i) Let G be a group, $a \in G$ and $N(a) = \{x \in G : ax = xa\}$. Show that N(a) is a subgroup of G.
 - (ii) Let G, G' be groups and $f: G \to G'$ be an isomorphism of groups. Show that,
 - (p) $f(a^k) = (f(a))^k$ for each $a \in G$ and for each $k \in \mathbb{Z}$.
 - (q) o(a) = o(f(a)) for each $a \in G$.
 - (c) (i) Define an ideal. If I, J are ideals of a ring R, then prove that $I \cap J$ is also an ideal of R.
 - (ii) Prove that finite integral domain is a field. (5)
- Q2. (a) State and prove the Cayley Hamilton theorem. (10)
 - (b) (i) Let V be a finite dimensional inner product space and $f: V \to V$ is map such that i) f(0) = 0 and ii) ||f(x) f(y)|| = ||x y|| for any $x, y \in V$ then prove that f is an orthogonal linear transformation.
 - (ii) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation given by T(x, y, z) = (x y, x z, 2x y z). Find Ker T. Write basis of KerT and a basis of $\mathbb{R}^3/KerT$.
 - (c) (i) Show that every quadratic form Q(X) can be reduced to a standard form $\sum_{i=1}^{n} \lambda_i y_i^2$ by an orthogonal change of variable X = PY for $X^t = (x_1, x_2, ..., x_n)^{\mathsf{t}}$ and $Y = (y_1, y_2, ..., y_n)^{\mathsf{t}} \in \mathbb{R}^n$. (6)
 - (i) Let $A_{n \times n}$ real matrix with n distinct eigen values. Show that A is diagonalizable. (4)

[P.T.O.]

Q3.	(a) State and prove Lagrange's Theorem for groups.	(10)
	(b) (i) Show that every subgroup of a cyclic group is cyclic.	(6)
	(ii) If order of a in the group G is n then prove that order of	\mathbf{f}
	$a^m = \frac{n}{\gcd(n,m)}.$	(4)
	(c) (i) Let G be an infinite cyclic group generated by a . Show to a^{-1} are the only generators of G .	that a and (6)
	(ii) Let $G\{\overline{5},\overline{15},\overline{25},\overline{35}\}$ under multiplication of residue classes	es mod 40.
	Form composition table of G .	(4)
Q4.	(a) State and prove the first isomorphism theorem for groups.	(10)
	(b) (i) Let G_1 and G_2 be abelian groups. Show that their production is also abelian.	$ ct G_1 \times G_2 $ (6)
		(0)
	(ii) Show that there are only two non-isomorphic groups of order 4.	(4)
	(c) (i) Prove that every subgroup of a group of index 2 is a normal group and hence or otherwise prove that A_n is a normal of S_n .	
	(ii) Show that groups $(\mathbb{Q}, +)$ and (\mathbb{Q}^*, \cdot) are not isomorphic.	(4)
Q5.	(a) Define maximal ideal of a ring. Show that an ideal M of a corring R is a maximal ideal if and only if R/M is field.	nmutative (10)
•	(b) (i) Define characteristic of a ring. Show that characteristic gral domain is either 0 or a prime integer.	of an inte- (6)
	(ii) Find the units of $\mathbb{Z}[i]$.	(4)
•	(c) (i) Show that every Euclidean domain is a Principal ideal do	main. (6)
	(ii) Define irreducible elements. Show that $1 + \sqrt{-5}$ is irre	ducible in
	$\mathbb{Z}[\sqrt{-5}].$	(4).

2

QP Code: 79052