QP Code: 75568

(3 Hours)

[Total Marks: 75

N.B.: (1) All questions are compulsory

- (2) Figures to the right indicate full marks.
- 1. Answer any five of the following:

15

- (a) Using a suitable example, explain the mechanism of B_{AL}¹ ester hydrolysis.
- (b) Give one example each of tri and tetra coordinated sulphur compounds. Comment on the configurational stability of these compounds.
- (c) Explain the mechanism of Favorskii rearrangement.
- (d) Complete and name the following reactions:

- (e) Explain the mechanism of Clemmensen reduction.
- (f) Explain with examples oxidation reactions using periodic acid.
- (g) How will you distinguish between inter and intramolecular H-bonding on the basis of NMR spectroscopy?
- (h) What is the significance of finger print region?
- (a) Give examples to show the increased stability of carbocations due to inductive and mesomeric effects. Justify.

6

6

5

OR

(a) Give reasons:-

(i) Aromatic amines are less basic than aliphatic amines.

(ii) o - Nitrophenol is more acidic than phenol.

(b) Complete the following reaction and give the mechanism:-

2

(c) What are enantiotopic and diastereotopic ligands? Specify the relationship between H_a and H_b in the following two examples:-

$$H_a \xrightarrow{CH_3} H_b$$
 $H_a \xrightarrow{CH_3} H_b$
 $H_a \xrightarrow{CH_3} H_b$

OR

- (c) Discuss the stereochemistry of ansa compounds. Give two suitable examples to explain its configurational descriptors.
- (a) What is Robinson's annulation? Explain its mechanism. 6

(a) Give the mechanism and one application of Acyloin condensation. 6

(b) Explain the mechanism of McMurry coupling reaction.

5

4

(c) PhCHO+HCHO+(CH₃)₃ $\stackrel{+}{N}$ H. $\stackrel{-}{C}$ I \rightarrow ?

4

Complete and name the above reaction. Give its mechanism.

OR

4

(c) What is Knoevenagel reaction? Discuss the mechanism of the reaction.

6

(a) (i) Give an account of Beckmann rearragnement.

(ii) Discuss Reimer-Tiemann reaction with suitable mechanism.

6

(a) Compete the following reactions and give their mechanism :-

i)
$$\frac{11}{c} \xrightarrow{2) \text{ KOH}}$$
?

H₂C-C-C-CH₃ CH₃-C000H

3

(b) Complete the following reactions:-

5

i)
$$CH_3 \xrightarrow{SeO_2}$$
 ?

$$\begin{array}{c|c} \text{(iii)} & \begin{array}{c} DDQ \\ \hline C_6H_6 \end{array} \end{array}$$
?

$$\frac{(iv)}{(iv)} \xrightarrow{C_{r}O_{3}/cH_{3}cooH}$$
?

$$(V) \qquad \begin{array}{c} COOH \\ \hline \\ H_2SO_4 \end{array}$$

Con. 1301-17.

QP Code: 75568

4

	· · · · · · · · · · · · · · · · · · ·	
	 (c) Give one example of each of the following reactions:- (i) Hofmann rearrangement (ii) Schmidt rearrangement (iii) Birch reduction 	4
	(iv) Lossen rearrangement	
	OR	
	(c) Explain the mechanism of Fries rearrangement and give one application of it.	4
5.	(a) What is meant by 'chemical shift' in NMR spectroscopy? Discuss the factors affecting chemical shift.	6
	OR	
	(a) Give fragmentation pattern of the following:-	6
	(i) Benzoic acid (ii) Ethyl benzene	
	(b) An organic compound having molecular formula C ₄ H ₅ NO ₂ shows following spectral data:- IR (cm ⁻¹): 2250 (m), 1740 (s)	5
	PMR (δ ppm): 3.8 (3H, singlet), 3.5 (2H, singlet) Mass spectrum (m/z): 99, 73, 59	
	Deduce the structure of the compound.	ī
	(c) How will you distinguish between following pairs of compounds on the basis of IR spectroscopy?	4
	i) CH3-CH2-CHO and CH3-CU-CH3 CM0H	
	ii) Joh and	
	₽ H	

OR

(c) (i) Calculate $\chi_{\,\text{max}}$ for the following :

¥) _____

