Q.P. Code: **10032**

		(5 Hours) [Total Warks . 1	· UU		
N.B	(2) F : (3) N (4) U	Il questions are compulsory igures to the right indicate full marks eat diagrams should be drawn wherever necessary se of non-programmable calculators and logarithmic tables is allowed ymbols have their usual meaning unless otherwise stated			
1.	Attempt	any Two of the following:-			
	(a)	Derive the formula $E = mc^2$ between the relativistic mass and total energy of the moving body.	10		
	(b)	Discuss Minkowski's four dimensional space-time diagram give the calibration of the space-time axes relative to the stationary and moving frame of reference.	10		
	(c)	Derive Lorentz transformation equations for space-time co- ordinates making use of the postulates of the special theory of relativity.	10		
2.	Attempt any Two of the following:-				
		Derive Lorentz transformation equations for the components of electric field \vec{E} .	10		
	(b)	Show that the electric field of a uniformly moving charge in an inertial frame of reference loses its spherical symmetry.	10		
	(c)	Discuss in detail 'Weyl's postulate' and 'cosmological principle'.	10		
3.	Attempt any Two of the following:-				
	(a)		10		
	(b)	Starting from Biot-Savart's law obtain the expressions for $\overline{\nabla}.\overline{B}$ and $\overline{\nabla}\times\overline{B}$.	10		
	(c)	For a polarized dielectric give the physical interpretation of bound charge densities ρ_b and σ_b .	10		

[TURN OVER

Q.P. Code: **10032**

2

4.	Attempt any Two of the following:-				
	(a)	Obtain an expression for energy stored in magnetic field.	1		
	(b)	State and prove Poynting theorem. Obtain its differential form.	10		
	(c)	A plane electromagnetic wave is incident normally on the	10		
		interface of two non-conducting media. Write expressions for			
		the incident, reflected and transmitted fields. Apply suitable			
		boundary conditions and obtain reflection coefficient (R) and			
		transmission coefficient (T).			
5.	Attempt any Four o f the following:-				
	(a)	Explain in short Longitudinal and Transverse Doppler effect.	5		
	(b)	Show that $\vec{E}.\vec{B}$ is invariant under Lorentz transformation's of	5		
		electric field \vec{E} and magnetic field \vec{B} .			
	(c)	Write a note on 'Microwave Background Radiation.'	5		
	(d)	Obtain Gauss law in polarized dielectrics.	5		
	(e)	A vector field in vacuum is given by $\overline{B} = yz\hat{i} + xz\hat{j} + xy\hat{k}$. Check	5		
		if this can represent magnetostatic field.			
	(f)	Obtain Ampere's law in Magnetized material.	5		
	(f)	Obtain Ampere's law in Magnetized material.			