Q.P.Code: 016031

[Total Marks: 100]

			gures to the right indicate marks for respective subquestions. e of non programmable calculators allowed	TO S
l	(a)	(i)	Prove that the variance σ_v^2 of a portfolio cannot be greater than the	(5)
		(ii)	variance σ_1^2 and σ_2^2 of the components, if short sales are not allowed. Let $\Omega = \{2,3\}$ and $F = \{\phi, \Omega, \{2\}, \{3\}\}$. Check if $X(\omega) = 2$ is a random variable w.r.t. the given σ field.	(5)
	(b)	(i)	paying stock with a strike price of 30, the risk free interest rate is 6%	(5)
		(ii)	p.a. and the volatility is 8% p.a. State and prove Total Probability theorem.	(5)
	(c)	(i)	Define a field, an atom in the field. Show that different atoms in a field must be disjoint.	(5)
		(ii)	Define finitely additive probability measure, countably additive probability measure sub additive property of a probability measure.	(5)
2	(a)		Let \widetilde{F} be a σ - field that satisfies the condition $A \subset \widetilde{F}$	(10)
			If F is a σ -field and A \subset F then $\widetilde{F} \subset$ F. Show that $\mathcal{F}_A = \widetilde{F}$	
	(b)	(i)	Find $\lim_{n\to\infty} \sup A_n$ and $\lim_{n\to\infty} \inf A_n$ where $A_{2n} = \{2, 4, 6,\}; A_{2n-1} = \{1, 3, 7,\}, n \in \mathbb{N}$	(6)
		(ii)	Show that $f(x) = \begin{cases} x - [x] & \text{for } x \in [0, 2] \\ \text{otherwise} \end{cases}$ is a density function. Let P	(4)
	37.00		be an absolutely continuous probability measure with density given by the above function f . Find $P(A)$ where $A = [2,4]$.	
300	(c)	(i)	Let \mathcal{A} be the family of finite subsets of Ω . Determine the σ - field generated by \mathcal{A} .	(6)
		(ii)	If $A_1 \subset A_2 \subset A_3 \subset \cdots$, then show that $P(\bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} P(A_k)$.	(4)
	(a)		Define a random variable.Let X be a random variable. Show that the map $P_X(B)=P(\{X\in B\})$ is a probability measure on the σ -field B of	(10)
			Borel subsets of \mathbb{R} . Further, if X and Y and random variables defined on the same probability space, Show that the distribution P_Y of Y can be obtained from the joint distribution as $P_Y(B) = P_{X,Y}(\mathbb{R} \times B)$ for any Borel set B in \mathbb{R} .	
3	(b)	(i)	State and prove Jensen Inequality.	(6)
1 2 2 X		(H)	Define distribution function, F_X , of a random variable X . Show that F_X is non-decreasing.	(4)
	SA			_

(3 Hours)

N.B.: (1) All questions are compulsory.
(2) Attempt any two subquestions from part(a), part(b) and part(c).

	(c)	(i)	Define conditional expectation of X given B where X is random variable and B is any event. Further define conditional expectation of X given Y where X is an arbitrary random variable and let Y is a discrete random variable.	(6)
		(ii)	variable. Find the expectation of the random variable with Binomial distribution.	(4)
4	(a)		State and prove weak law of large numbers.	(10)
	(b)	(i)	What is meant by the following assumptions used in the mathematical model of a financial security- Liquidity, Short selling, No Arbitrage Principle.	(6)
		(ii)	Explain risk-neutral valuation approach to value a European call option using a one step binomial tree.	(4)
	(c)	(i)	Exhibit an arbitrage opportunity if the forward price $F(0,T)$ of a stock paying no dividends is greater than $S(0)^{e^{rT}}$. Assume continuous	(6)
		(ii)	compounding with risk free interest rate r . What is meant by a long forward position, an European call option.	(4)
5	(a)		Prove that a binomial tree model admits no arbitrage if and only if $d < r < u$. Assume 1-step tree model.	(10)
	(b)	(i)	Show that price of an American call option (C_A) = price of a European call option (C_E) , whenever the strike price X and expiry time T are the same for both options.	(6)
		(ii)	State Black-Scholes-Merton formula for an European call option price. List 4 factors that affect the stock option price	(4)
	(c)	(i)	An investor buys a European put on a share for Rs.10. The stock price is 55 and the strike price is 50. Under what circumstances does the investor make a profit? Under what circumstances will the option be exercised?	(6)
		(ii)	Show that price of an European put option (P_E) on a stock paying no dividends satisfies the following inequality: $\max\{0, -S(0) + Xe^{-rT}\} \le P_E \le Xe^{-rT}$	(4)
790		2770		