Q.P.Code: 016022

(3 hours) Total Marks: 100

- N.B: (1) All questions are compulsory
 - (2) Attempt any two sub-questions from part (a), part (b) and part(c)
 - (3) Figures to the right indicate marks for respective sub-questions.
- Q1.a) i) Determine all solutions in integers of the Diophantine equation:56x+72y=40 (5)
 - ii) Assuming that p_n is the n^{th} prime number, establish that , none of the (5) integers $P_n=p_1p_2p_3\dots p_n+1$ is a perfect square.
- b) i) Prove that if the irrational x > 1 is represented by the infinite continued (5) fraction $[a_{0;} a_{1}, a_{2}, \dots]$ then $\frac{1}{x}$ has the expansion $[0; a_{0;} a_{1}, a_{2}, \dots]$
 - ii) Show that there are infinitely many primes of the form 4k+1. (5)
- c) i) Encipher message GOODLUCK by using Caesar cipher. (5)
 - ii) Find all solutions of $x^2 \equiv 23 \pmod{7^2}$ (5)
- Q2.a) Prove that the linear Diophantine equation ax+by=c has a solution if and only (10) if $d \mid c$, where $d = \gcd(a.b)$. Also , if x_0, y_0 is any particular solution of this equation, then all other solutions are given by $x=x_0+\left(\frac{b}{d}\right)t$, $y=y_0-\left(\frac{a}{d}\right)t$, where t is an arbitrary integer.
- b) i) State and Euler's generalization of Fermat's theorem. (6)
 - ii) Confirm that for any integer $n \ge 0$, $51 | 10^{32n+9} 7$ (4)
- c) i) Prove that the quadratic congruence $x^2+1 \equiv 0 \pmod{p}$, where p is an odd (6) prime, has a solution if and only if $p \equiv 1 \pmod{4}$
 - ii) Prove that if p and p+2 are a pair of twin primes, then (4) $4((p-1)!+1)\equiv 0 \pmod{p(p+2)}$.
- Q3.a) For an odd prime p , define the Legendre symbol $\left(\frac{a}{p}\right)$ where a ϵ \mathbb{Z} .State the quadratic reciprocity law. Hence show that

$$\left(\frac{p}{q}\right) = \begin{cases} \left(\frac{q}{p}\right) & \text{if } p \text{ or } q \equiv 1 \pmod{4} \\ -\left(\frac{q}{p}\right) & \text{if } p \text{ and } q \equiv 3 \pmod{4} \end{cases}$$

b) i) Define Jacobi symbol $\left(\frac{P}{Q}\right)$ where Q is odd and positive. Show that $\left(\frac{P}{Q}\right) = (-1)^{\frac{P-1}{2}\frac{Q-1}{2}}\left(\frac{Q}{P}\right)$

TURNOVER

							V
::\	F		f 720		σ are arithmetic	401 AY BY 1 42 X	AT AN
111	EVAIDATE TO	ηι απα σιη ι	TOT n=//U	where τ and	σ are arithmetic	TUNCTIONS	0-71 ATV
,	Evaluate t	it j with O (it j	10111 / 20,	WIICIC L WILL	o arcantininetic	Turiotionis.	^ > v ≪n/.

- c) i) Define $M\ddot{o}bius$ function μ . Prove that μ is multiplicative function. Also prove (6) that , if n is a positive integer, $\sum_{d\mid n}\mu(d)=\begin{cases} 1 & \text{if } n=1\\ 0 & \text{if } n>1 \end{cases}$
 - ii) Show that the Fermat number F_5 is divisible by 641. (4)
- Q4.a) Prove that every simple infinite continued fraction represents an (10) irrational number and conversely every irrational number represents an infinite continued fraction. Represent $\sqrt{2}$ as a simple infinite continued fraction.
- b) i) If $C_k = \frac{p_k}{q_k}$ is the k^{th} convergent of the finite simple continued fraction (6) $[a_0; a_1, a_2, _,_,_, a_n]$; then show that the convergents with even subscripts form a strictly increasing sequence.
 - ii) For any positive integer n , Show that $\sqrt{(n^2+1)} = [n; \overline{2n}]$ (4)
- c) i) Find the fundamental solution of $x^2 41y^2 = 1$ (6)
 - ii) If d is divisible by a prime $p \equiv 3 \pmod{4}$, show that the equation of $x^2 (4)$ $dy^2 = -1$ has no solution.
- Q5.a) Define Carmichael number. Show that n is Carmichael number if and only if (10) it is odd and for every prime p dividing n, p-1 | n-1.
- b) i) Explain Hill cipher with block of two letters stating enciphering and (6 deciphering function.
 - ii) Use affine transformation $f(x) = 2x + 1 \pmod{26}$ to encipher message "MATHS" (4)
- c) i) If n is pseudoprime to bases b_1 and b_2 , then prove that n is pseudoprime to (6) bases b_1 b_2 and b_1 b_2^{-1} .
 - ii) If $n = 2^{2^k} + 1$ is composite then show that n is pseudoprime to base 2 where k > 0.

3BB7988552D430087D4993C39AF3B9F7