(4)

(4)

(10)

[Total Marks: 80

Revised (3 Hours)

N.B.: (1) Attempt any TWO questions from each Section.

- (2) Figures to the right indicate marks for respective subquestions.
- (3) Answers to section I and section II should be written in the same answer book

SECTION - I

- 1. (a) Let A be a rectangle in \mathbb{R}^n . Prove that a bounded function $f: A \to \mathbb{R}$ is integrable if and only if for every $\varepsilon > 0$ there is a partition P of A such that $U(f, P) L(f, p) < \varepsilon$. (6)
 - (b) Let $f:[0,1]\times[0,1]\to\mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

Show that f is not integrable.

- (c) Show that a subset A of \mathbb{R}^n has measure zero if and only if for a given $\varepsilon > 0$ there is a countable collection of open rectangles V_1, V_2, \cdots such that $A \subseteq \bigcup_i V_i$ and $\sum_i v(V_i) < \varepsilon$. (6)
- (d) Change the order of integration and then evaluate

$$\int_0^1 \int_0^y (x^2 + y^2) dx \ dy + \int_1^2 \int_0^{2-y} (x^2 + y^2) dx \ dy.$$

2. (a) If $\{E_j\}_{j\in J}$ is a countable collection of disjoint measurable sets then prove that $\bigcup_{j\in J} E_j$ is

measurable and
$$m\left(\bigcup_{j\in J} E_j\right) = \sum_{j\in J} m(E_j).$$
 (10)

- (b) Show that there is a non-measurable subset in \mathbb{R} .
- 3. (a) Show that the function χ_A is measurable if and only if the set A is measurable. (5)
 - (b) Define the integral of simple function ϕ that has a canonical representation. Let ϕ and ψ be simple functions defined on a set of finite measure E. Then prove that

$$\int_{E} (\alpha \phi + \beta \psi) = \alpha \int_{E} \phi + \beta \int_{E} \psi \quad \text{for any } \alpha \text{ and } \beta.$$
 (5)

- (c) Let f be a bounded measurable function on a set E of finite measure. If $\int_{E} f = 0$ then prove that f = 0 a.e. (5)
- (d) Show by an example that Lebesgue integrable function may not be Riemann integrable. (5)
- 4. (a) State and prove Fatau's lemma. Show by an example that the inequality in Fatau's lemma may be a strict inequality. (10)
 - (b) Let f_n be a sequence of measurable functions on E. Suppose there is a function g that is integrable over E and dominates f_n on E in the sense that $|f_n| \leq g$ on E for all n. If $f_n \to f$ pointwise a.e. on E then prove that f is integrable over E and $\lim_{n \to \infty} \int_E f_n = \int_E f$. Also show by an example that the condition g is integrable cannot be dropped. (10)

[TURN OVER

SECTION - II

Q. P. Code: 11900

- 5. (a) Define Fejer Kernel $F_N(x)$. Show that the N-th Fejer kernel $F_N(x) = \frac{1}{N} \frac{\sin^2(Nx/2)}{\sin^2(x/2)}$. (4)
 - (b) Let f be an integrable function on the circle which is differentiable at a point x_0 . Show $S_N(f)(x_0) \to f(x_0)$ as $N \to \infty$, where $S_N(f)(x) = \sum_{k=-N}^{N} \widehat{f}(n)e^{inx}$. (6)
 - (c) Find the Fourier coefficient and hence find the Fourier series of the function $f(x) = \pi x$, where $-\pi \le x \le \pi$.
 - (d) Define Dirichlet's kernel $D_N(x)$. Show that $\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(x) dx = 1$. (4)
- 6. (a) Let $\{e_k\}_{k=1}^{\infty}$ is an orthonormal set in a Hilbert space H. Show that the following statements are equivalent: (12)
 - (1) Finite linear combinations of elements in $\{e_k\}$ are dense in H.
 - (2) If $x \in H$ and $\langle x, e_i \rangle = 0$ for all i, then x = 0.
 - (3) If $x \in H$ and $S_N(x) = \sum_{k=1}^N a_k e_k$, where $a_k = \langle x, e_k \rangle$, then $S_N(x) \to x$ as $N \to \infty$ in the norm.
 - (4) If $a_k = \langle x, e_k \rangle$, then $||x||^2 = \sum_{k=1}^{\infty} |a_k|^2$
 - (b) If S is a closed subspace of a Hilbert space H, then show that $H = S \oplus S^{\perp}$. (4)
 - (c) Let H be a Hilbert space over \mathbb{C} . Prove that for any $x, y \in H$, $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$. (4)
- 7. (a) Let $f \in L^2([-\pi,\pi])$. Then for any collection of complex numbers $\{c_k\}_{k=-N}^N$, show that

$$\left\| f - \sum_{k=-N}^{N} \widehat{f}(k)e^{ikx} \right\|_{2} \le \left\| f - \sum_{k=-N}^{N} c_{k}e^{ikx} \right\|_{2}.$$

- Equality holds if and only if $c_k = \hat{f}(k)$ for $-N \le k \le N$. (8)
- (b) Show that $L^2([-\pi, \pi])$ is unitarily isomorphic to $\ell^2(\mathbb{Z})$. (6)
- (c) If $f \in L^2([-\pi, \pi])$, then show that $\sum_{-\infty}^{\infty} |\widehat{f}(n)|^2 \le ||f||^2$. (6)
- 8. (a) Define Poisson kernel $P_r(x)$. Prove that if $0 \le r < 1$, then $P_r(x) = \frac{1 r^2}{1 2r\cos x + r^2}$. Further show that $\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x) dx = 1$. (6)
 - (b) Prove that the Fourier series of an integrable function on the circle is Abel summable to f at every point of continuity of f. (8)
 - (c) Find the solution of the Dirichlet's problem $\Delta u = 0$ in the unit disc with boundary condition $u(1,\theta) = \sin^2 \theta + \sin \theta$. (6)

_ _ _ _ _ _ _ _