(3 Hours) [Total Marks: 100

- N.B.: (1) Attempt any **FIVE** questions.
 - (2) Figures to the right indicate marks for respective sub-questions.
- 1. (a) Let E be a Lebesgue measurable subset of \mathbb{R} and $r \in \mathbb{R}$. Show that

(i)
$$r + E$$
 is Lebesgue measurable and $m(r + E) = m(E)$ (5)

- (ii) rE is Lebesgue measurable and m(rE) = |r|m(E) (5)
- (b) Show that there is a non-measurable subset in \mathbb{R} . (10)
- 2. (a) (i) Let $\{f_n\}$ be an increasing sequence of non-negative measurable functions on E. If $f_n \to f$ point-wise a.e. on E, then show that $\lim_{n \to \infty} \int_E f_n = \int_E f$. (5)
 - (ii) Let $E_1 \supseteq E_2 \supseteq \cdots$ be measurable subsets of \mathbb{R} with $E = \bigcap_{n=1}^{\infty} E_n$. If $m(E_k) < \infty$ for some k, then show that $m(E) = \lim_{n \to \infty} m(E_n)$. (5)
 - (b) State and prove Fatou's lemma. Show by an example that the inequality in Fatou's lemma may be a strict inequality. (10)
- 3. (a) (i) Let f be a bounded function defined on the closed and bounded interval [a, b]. If f is Riemann integrable over [a, b], then show that it is Lebesgue integrable over [a, b] and the two integrals are equal. (5)
 - (ii) Show by an example that a Lebesgue integrable function may not be Riemann integrable. (5)
 - (b) If f is a measurable function, then show that for $\lambda \in \mathbb{R}$,

(i)
$$\lambda f$$
 is measurable. (5)

- (ii) $\lambda + f$ is measurable. (5)
- 4. (a) (i) Let A be a subset of \mathbb{R} . Show that the characteristic function χ_A is measurable if and only if the set A is measurable. (5)
 - (ii) Let f and g be non-negative integrable functions on a measurable subset E of \mathbb{R} . Show that if $f \leq g$ a.e. then $\int_E f \leq \int_E g$.
 - (b) State Fubini's theorem. Use Fubini's theorem to evaluate $\int_A (ye^x x \sin y) dx dy$, where $A = [-1, 1] \times [0, \pi/2]$. (10)

[TURN OVER

- 5. (a) Let (f_n) be a sequence of measurable functions. Show that $\inf_n \{f_n\}$ and $\lim_{n \to \infty} f_n$ are measurable functions. (10)
 - (b) Let f and g be two non-negative measurable functions on a measurable set E and λ be a non-negative real number. Show that (10)

(i)
$$\int_{E} (f+g) = \int_{E} f + \int_{E} g$$

(ii)
$$\int_{E} (\lambda f) = \lambda \int_{E} f$$

- 6. (a) Let S be a closed subspace of a Hilbert space H. Show that S^{\perp} is also a closed subspace of H and $H = S \oplus S^{\perp}$. (10)
 - (b) State and prove Minkowski's inequality. (5)
 - (c) State and prove Bessel's inequality. (5)
- 7. (a) Let $\{e_n\}_{n\in\mathbb{N}}$ be an arbitrary orthonormal set in $L^2[-\pi,\pi]$ and let c_1,c_2,\ldots be complex numbers such that the series $\sum_{k=1}^{\infty} c_k$ converges. Show that there exist a function $f \in$

$$L^{2}[-\pi, \pi]$$
 such that $c_{k} = \langle f, e_{k} \rangle$ and $\sum_{k=1}^{\infty} c_{k}^{2} = ||f||^{2}$. (10)

- (b) Show that $\ell^2(\mathbb{N})$ is a complete metric space. (10)
- 8. (a) Let f be an integrable function on the circle which is differentiable at a point x_0 . Show that $S_N(f)(x_0) \to f(x_0)$ as $N \to \infty$, where $S_N f(x)$ is the N-th partial sum of the Fourier series of f.
 - (b) (i) Find the solution of the Dirichlet's problem $\Delta u = 0$ on the unit disc, with the boundary condition $u(1,\theta) = \sin^2 \theta$. (5)
 - (ii) Find the Fourier series of the function f(x) = x in $-\pi \le x \le \pi$. (5)