QP Code: 11791

(21/2 Hours)

[Total Marks: 60

- **N.B.** (1) All questions are **compulsory**.
 - (2) Figures to the right indicate full marks.
 - (3) Use of non-programmable calculator is allowed.
- 1. (a) Answer any **two** of the following:—

8

- (i) Discuss any two methods to prepare alkyl and aryl derivatives of 'f' block elements.
- (ii) Calculate the formal oxidation state of the metal, total electron count (TEC), number of metal-metal bonds and basic geometry of the following clusters:
 - (A) Co₄(CO)₁₂
 - (B) $Os_3(CO)_{12}$
- (iii) Explain capping rules with suitable example and what are the its limitation.
- (iv) What is isolobal analogy? Explain giving reasons which organic fragment is isolobal with:
 - (A) Cp $W^1(CO)_2$
 - (B) Cp Rh(CO)
 - (C) Co (CO),
- (b) Answer any one of the following: -

4

- (i) Explain insertion of isocyanides and carbon monoxide properties of hereroleptic organometallics of lanthanides and actinides.
- (ii) Calculate the Total Electron Count (TEC), Polyhedral Electron Count (PEC) predict the structure of the following:—
 - (A) $[Os_{10}C(CO)_{24}]^{2-}$
 - (B) $[Ni_5(CO)_{12}]^{2-}$
 - (C) [Rh₆(CO)₁₆]
 - (D) [Ru₆ C (CO)₁₇]
- 2. (a) Answer any **two** of the following:—

8

- (i) Explain the mechanism of hydrogenation of alkenes using Wilkinson's catalyst. Is Wilkinson Catalyst organometallic compound? Justify your answer.
- (ii) What is role of organometallics of Group I to Group III and Group 14 in medicine.
- (iii) Explain carbonyl insertion and hydride elimination reactions involving modification of ligands.
- (iv) Discuss the use of organometallic compounds in agriculture and horticulture.
- (b) Answer any **one** of the following:—

4

- (i) Explain ligand dissociation-association and reductive elimination reactions involving loss and gain of ligands with suitable example of each.
- (ii) What is meant by asymmetric hydrogenation? Explain it's mechanism.

- 3. (a) Answer any two of the following:—
 - (i) Write a note on Gas-phase clusters and fullereness.
 - (ii) What is meant by styx number ? Assign styx number for (A) $\rm B_2\,H_6$,

2

- (B) $B_5 H_{11}$ (C) $B_4 H_{10}$.
- (iii) Discuss the structure and bonding in diborane molecule.
- (iv) What are carboranes? Give one method of preparation of 1-2, dicarbo closodedecaborane $(1, 2 C_2 B_{10} H_{12})$. Name its different isomers.
- (b) Answer any one of the following: -

(i) Explain the bonding for three centered two electron B-B-B bonds in boranes according to LCAO method.

- (ii) Classify the following carboranes into closo, nido, arachno by electron pair count using Wade's Rules:
 - (A) $C_2 B_4 H_6$

(C) $C_2 B_7 H_{13}$

- (B) $C_2 B_5 H_7$
- (D) $C_3 B_3 H_7$
- 4. (a) Answer any two of the following:—

8

8

4

- (i) Explain bonding in phosphazenes.
- (ii) Write a brief account on zeolites. What are its applications.
- (iii) Explain sheet silicates and chain silicates with suitable examples.
- (iv) Discuss polycationic compounds with reference to their structure.
- (b) Answer any **one** of the following:—

4

- (i) What are ultramarines? Discuss its properties and uses.
- (ii) What is the importance of talc and asbestos in our daily life?
- 5. Answer any four of the following:—

12

- (a) How are cyclopentadienyl derivations of lanthanides and actinides classified?
- (b) What is the importance of organo metallics as antitumour drugs.
- (c) Write balanced reactions for action of ammonia on diborane at low temperature and high temperature.
- (d) Write a brief note on three dimensional silicates with a suitable example and diagram.
- (e) Draw molecular energy level diagram for octahedrally co-ordianted metal complexes with d⁶ electrons with corresponding tetrahedral organic fragments.
- (f) Explain diagramatically mercurry conversion in the environment.
- (g) Classify the following boranes into closo, nido, arachno, hypho showing their electron count :
 - (A) $B_{10} H_{14}$

(C) $[B_{11} H_{13}]^{2-}$

- (B) $[B_{12}H_{12}]^{2-}$
- (h) What is water soluble silicate? How is it prepared. Give its commercial applications.