Q.P.Code: 011474

Tim	ne:	3 Hours [Total Marks: 100]
N.B.		Attempt any five questions out of eight . All questions carry equal marks.
	` '	State the class equation for a finite group. Prove it by explaining clearly all the notation used. (10)
	(b)	Let G be a group and let p be a prime dividing the order of G . Prove that any two Sylow p -subgroups of G are conjugate to each other. (10)
	(a) (b)	 Let G be a group and let H be a normal subgroup of G. Prove that G is solvable if and only if both H and G/H are solvable. (i) Prove that the center of a group G is a normal subgroup of G. Determine the center of the group of quaternions. (5) (ii) Classify (upto isomorphism) all groups of order 6 with correct justification.
		(ii) Classify (upto isomorphism) all groups of order 6 with correct justification. (5)
Q. 3.	(a)	State and prove the first isomorphism theorem for modules over a commutative ring R with unity. (10)
	(b)	(i) State (without proof) the Hilbert basis theorem. Define the terms: Noetherian ring. Noetherian module. (5)
		(ii) Prove that any Artinian ring has finitely many maximal ideals. (5)
-	(a) (b)	Construct a finite field of order 9 with correct justification. (i) State (without proof) the structure theorem for modules over a principal ideal domain. Give an example of a ring which is not a principal ideal domain. (5) (ii) Define the terms: free module, torsion module. Give one example of each with correct justification. (5)
) . 5.	(a)	(i) Determine the degree of the field extension $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ over \mathbb{Q} with correct justification (5)
	40	(ii) State (without proof) primitive element theorem. Give an example of an extension of \mathbb{Q} which is not normal with correct justification. (5)
7	(b)	State and prove the fundamental theorem of Galois theory. (10)
2. 6.	(a)	(i) Determine with correct justification whether the cubic equation $X^3 - 1$ is solvable by radicals over \mathbb{Q} .
		(ii) Is the polynomial $X_1^2 + X_2^2$ symmetric in the variables X_1, X_2 ? If yes, express it in terms of the elementary symmetric polynomials. (5)
	(b)	Prove that an angle θ is constructible by straightedge and compass if and only if $\cos \hat{\theta}$ is constructible by straight edge and compass. (10)

TURN OVER

- Q. 7. (a) (i) Prove that the map $a + b\sqrt{3} \mapsto a b\sqrt{3}$ is an automorphism of $\mathbb{Q}(\sqrt{3})$. Find the fixed field of this automorphism. (5)
 - (ii) Determine the degree of the splitting field of $X^2 + X + 1$ over \mathbb{Q} with correct justification. (5)
 - (b) Let R be a commutative ring with unity and let M be an R-module. Prove that M is a Noetherian R-module if and only if every submodule of M is finitely generated. (10)
- Q. 8. (a) (i) Define the term: normal extension. Let k be a field and let K be a degree two extension of k. Prove that K is a normal extension of k. (5)
 - (ii) Let S_3 act on itself by left-multiplication. Find the orbit of $(1\ 2), (1\ 2\ 3)$ under this action. (5)
 - (b) Let k be a field. Prove that there exists an algebraically closed field containing k as a subfield. (10)

822C27AFC1FCADEAA4D1E945591F7973