Q.P.Code: 11391

Total Marks: 60 $(2 \frac{1}{2} \text{ hours})$

- **N.B** (1) All Questions are compulsory, and carry equal marks.
 - (2) In first four questions, attempt any two subquestions from each question.
 - (3) In question five attempt any four subquestions.
 - (3) All subquestions of each question carry equal marks.
- (4) The norm of vector x is usually denoted by |x| and in the case of Function spaces the norm of a mapping f, is usually denoted by || f ||. Q(1)
- (a) Define a Baire space. Show that a compact Hausdroff space is a Baire space.
- (b) Define equicontinuous family of mappings. Show that if a family F of complex valued continuous functions defined on a compact metric space is compact in the space C(X) of continuous complex valued functions on a compact metric space X, then \mathbb{F} is uniformly bounded.
- i) Is Cantor set a Baire space? Is a Discrete space a Baire space?
 - ii) Show that a locally compact Hausdroff space is a Baire space.

[Please Turn over

Q(2)

- (a) Define a normed linear space and a Banach space. Show that $\mathbb C$ is a Banach space over $\mathbb R$.
- (b) Let Y be a <u>closed proper linear subspace</u> of a normed linear space X. Then given any r, 0 < r < 1, show that there exists <u>a unit vector</u> $x_r \in X$, such that $r < d(x_r, Y)$.
- (c) Show that any two norms are equivalent on \mathbb{R}^n

Q(3)

- (a) Let Y be a closed linear subspace of normed linear space X. Show that he quotient map is bounded linear map, and if Y and X/Y are both complete then X is complete.
- (b) Let B(X, Y) denote the space of bounded linear maps from a Banach space X to a Banach space Y. Show B(X,Y) is a Banach space.
- (c) i) Suppose X and Y are normed spaces. Show that projections of the product space $X \times Y$ on X, are bounded linear mappings.
 - ii) Give an example of an unbounded linear transformation.

Q(4)

- (a) State and Prove Hahn Banach theorem for real vector spaces.
- (b) Define graph of a linear transformation. State and Prove closed graph theorem.
- (c) State and Prove the uniform bounded ness principle. [Please turn over

Q.P.Code: 11391

3

Q(5)

- (a) Discuss for equicontinuity. $\mathbb{F} = \{ f_n ; f_n(x) = \sin nx \}, x \in X = [0, 2].$
- (b) i) Let X be a normed linear space. Show that the norm is continuous function.
 - ii) Show that a linear transformation is continuous if and only if it is continuous at the origin.
- (c) Let X be a normed linear space and $x_0 = 0$ be an arbitrary vector in X. Then there exists a bounded linear functional f in X*, such that ||f|| = 1, and $f(x_0) = |x_0|$.
- (d) X = C[0, 1] under sup norm. $T:X \rightarrow K$ is defined as, $T(f) = \int_0^1 f(x) dx$. Show that Y is bounded. Find the norm of T.
- e) Show that 1 is a normed linear space.
- f) State open mapping theorem.

Show that the graph of a bounded linear transformation from a Banach space X to a Banach space Y is a closed subspace of $X \times Y$.
