Q. P. Code: 11371

Revised

(3 Hours)

Total Marks: 80

Instructions:

- Attempt any two questions from each section
- All questions carry equal marks. Scientific calculator can be used.
- Answers to section I and section II should be written in the same answer book

Section I(Attempt any two questions)

- Q1 a) Define: Absolute error, Relative error and Percentage error. Find the Relative and Absolute error in calculation of Z = 3x 3 by taking approximate value of x as 3.45, and true value of x as 3.457.
 - b) i) Convert decimal number (0.859375)₁₀ to corresponding binary number. ii) Convert binary number (10110101.110011100)₂ to Octal number.
- Q2 a) Prove that Newton Raphson method has quadratic rate of convergence. Hence find correct root using Newton-Raphson Method for $f(x) = x^4 x 10$ with initial approximation $x_0 = 1$ upto two decimal places.
 - b) Derive the Muller's formula to find a root of the algebraic or transcendental equation f(x) = 0. Perform one iteration with muller method for

$$f(x) = x^2 + x - 1 & x_0 = 0, x_1 = 0.5, x_2 = 1$$

Q3 a) Solve the system by using cholesky method 12x + 4y - z = 15

$$4x + 7y + z = 12$$

$$-x + y + 6z = 6$$

- b) Determine the largest eigenvalues and the corresponding eigenvector of the matrix $\begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}$ correct to three decimal places using power method. Take the initial approximate vector as $\mathbf{v}^{(0)} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{t}$.
- Q4 a) Obtain the Newton's forward interpolating polynomial, for the following tabular data and interpolate the value of the function at x = 0.0045.

1	HILLE	Ciato tire	value o.	0100101			
	x	0	0.001	0.002	0.003	0.004	0.005
	у	1.121	1.123	1.1255	1.127	1.128	1.1285

b) From the following table, find x for which y is minimum and find this value of y.

x	3	4	5	6	7
У	2.7	6.4	12.5	21.6	34.3

Section II (Attempt any two questions)

- Q5 a) Derive two point Guassian quadrature formula to evaluate the integral $\int_{-1}^{1} f(x) dx$.
 - Evaluate $\int_{0}^{\pi} \frac{\sin^{2} x}{5 + 4\cos x} dx$ by taking 5 ordinates by Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule.
- Q6 a) Obtain the least squares approximation of second degree for $f(x) = \sin x$ on $\left[0, \frac{\pi}{2}\right]$ with respect to the weight function w(x) = 1.
 - b) Explain the term Discrete Fourier Transform(D.F.T) and compute the (4-point) D.F.T of the sequence x = (1,2,3,4)

- Q7 a) Derive the Milne's Method to solve the differential equation $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.
 - b) Solve

$$\frac{dx}{dt} = y - t, \qquad \frac{dy}{dt} = x + t$$

With x(0) = 1, y(0) = 1 for x(0.1) and y(0.1) by Runge –Kutta Method.

- Q8 a) Derive the Bender-Schmidt method to obtain the numerical solution of one dimensional heat equation with initial and boundary conditions.
 - b) Solve $u_t = u_{xx}$ subject to the initial condition $u(x,0) = \sin \pi x \ \forall \ x \in [0,1]$ and $u(0,t) = 0, u(0,t) = 1 \ \forall \ t > 0$ by the Gauss-Seidel Method.