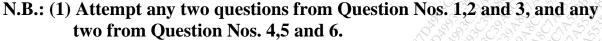
Q. P. Code: 11362

(3 hours)

[Total marks: 60]



- (2) Figures to the right indicate full marks.
- (3) Simple non-programmable calculator is allowed.
- (a) An urn contains N₁, N₂,...,N_k items of type 1,2,...,k respectively. In a random sample of size n drawn without replacement, let X_i denote the number of items of type i, where i = 1,2,...,k. Obtain:

 joint probability distribution of X₁, X₂,..., X_k.
 Cov(X₁, X₂)
 - (b) From an urn containing b black and r red balls, balls are drawn one by one with replacement until k black balls are obtained. Let Y denote the number of red balls drawn. Obtain probability distribution of Y and its cumulant generating function. Hence deduce its mean, variance and β1.
 - (c) An unbiased coin is tossed indefinitely. Let Y_1 denote the length of the first run. Obtain $E(Y_1)$.
- (a) The failure time of an equipment is exponential with mean λ.
 i) State and prove the forgetfulness property of this distribution.
 ii) Show that the number of failures in a given time t follows Poisson distribution.
 iii) Obtain pdf of the sample range based on a random sample of size n.
 - (b) Show that iid random variables $X_1, X_2, ..., X_n$ are geometric if and only if Minimum($X_1, X_2, ..., X_n$) is geometric. (05)
- 3. (a) i) Obtain mean deviation of a random variable following N(0,1). (05) ii) Let X_1 , X_2 be a random sample of size 2 from N(0,1). Obtain expectation of Maximum(X_1 , X_2).
 - (b) i) If X and Y are iid N(0,1) random variables, obtain pdf of U = X/Y.
 ii) State the characteristic function of Cauchy distribution with location parameter μ and scale parameter σ.
 iii) Hence deduce the distribution of average of n independent and identical Cauchy random variables.
 - (c) Explain how to simulate random observations from discrete uniform distribution over the set $\{1,...,n\}$.
- 4. (a) State and prove Bhattachrya's bound . (07) **P.T.O.**

Q. P. Code: 11362

- (b) Let $X_1, X_2, ..., X_n$ be a random sample of size n drawn from the normal distribution with mean μ and variance σ^2 , both unknown. $S^2 = \sum_{i=1}^n (x_i \bar{x})^2$. Three estimators of σ^2 are defined as $T_1 = \frac{s^2}{n}, T_2 = \frac{s^2}{n-1}, T_3 = \frac{s^2}{n+1}$. Find the M.S.E of each of them, compare their rate of convergence.
- 5. (a) Prove that sample quantiles are consistent estimators of population quantiles. (07)
 - (b) Let $X_1, X_2, ..., X_n$ be a random sample from Bernoulli with parameter p. (08) Obtain Jack-knife estimator of p^2 .
- 6. (a) Let $X_1, X_2, ..., X_n$ be a random sample from exponential distribution with mean . Obtain Cramer Rao lower bound for variance of unbiased estimator of $\frac{e^{\theta}}{\theta}$.
 - (b) State the Pitman estimator for scale parameter. Further obtain Pitman estimator for σ^r , if $X_1, X_2, ..., X_n$ is a random sample from $f(x|\sigma) = \frac{2}{\sigma} \left(1 \frac{x}{\sigma}\right), 0 < x \le \sigma$.
